
Machine Learning & Data Mining Caltech CS/CNS/EE 155
Homework 2 January 12th, 2017

This set is due 9pm, January 20th, via Moodle. You are free to collaborate on all of the problems, subject
to the collaboration policy stated in the syllabus. Please include any code with your submission.

1 Comparing Different Loss Functions
TAs: Jagriti Agrawal, Siddharth Murching
Relevant materials: Lecture 3

We’ve discussed three loss functions for linear models so far:

• Squared loss: Lsquared = (1− ywTx)2

• Hinge loss: Lhinge = max(0, 1− ywTx)

• Log loss: Llog = log(1 + e−yw
Tx)

where w ∈ Rn are the model parameters, y ∈ {−1, 1} is the class label for datapoint x ∈ Rn, and we’re
including a bias term in x and w. The model classifies points according to sign(wTx).

Performing gradient descent on any of these loss functions will train a model to classify more points
correctly, but the choice of loss function has a significant impact on the model that is learned.

Question A: Squared loss is almost always a terrible choice of loss function to train on for classification
problems. Why?

Question B: Leaving squared loss behind, let’s focus on log loss and hinge loss.
Consider the set of points S = {( 12 , 3), (2,−2), (−3, 1)} in 2D space, shown below, with labels (1, 1,−1)

respectively.
Given a linear model with weights w0 = 0, w1 = 1, w2 = 0 (where w0 corresponds to the bias term),

compute the gradients ∇wLhinge and ∇wLlog of the hinge loss and log loss, and calculate their values for
each point in S.

Compare the gradients resulting from log loss to those resulting from hinge loss. When (if ever) will
these gradients converge to 0? Based on this answer, explain why for an SVM to be a “maximum margin”
classifier, its learning objective must not be just to minimize Lhinge, but to minimize Lhinge +λ‖w‖2 for some
λ > 0.
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The example dataset and decision boundary described above. Positive instances are represented by red x’s, while

negative instances appear as blue dots.

Question C:
There are three 2-D datasets on the course website: problem1dataset1.txt, problem1dataset2, and prob-

lem1dataset3.txt. The first two columns in each represent x1, x2, and the last column represents the label,
y ∈ {−1,+1}.

Each of the three datasets consists of two clusters of points, one of points primarily with positive labels,
the other primarily of points with negative labels. The datasets vary as follows: dataset1 is noiseless and
has no “outliers”, meaning there are no points labeled +1 in the cluster of negative-labeled points, dataset2
has about 5 percent of the points as outliers, and dataset3 has about 15 percent of the points as outliers.
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Plot of dataset3: points with positive labels in red, those with negative labels in blue

On each of the three datasets, train both a logistic regression model and an SVM model to classify the
points. (In other words, on each dataset, train one linear classifier using Llog as the loss, and another linear
classifier using Lhinge as the loss.) For this problem, you should use the logistic regression and SVM (a.k.a.
SVC) implementations provided within scikit-learn (logistic regression documentation) (SVM documenta-
tion) instead of your own implementations. Leave all the parameters for these classifiers at their default
values, except change the kernel of the SVM to be linear. I.e. include kernel=’linear’ when you instantiate
your SVC class.

For each of the six combinations of dataset and loss function, plot the data points as a scatter plot and
overlay them with the decision boundary defined by the weights of the trained linear classifier. Include
your six plots in your submission. See the plot decision boundary.py file on the course website, which
contains a helper function for producing plots given a trained classifier.

What differences do you see in the decision boundaries learned using the different loss functions? Ex-
plain them based on what you know about the proportion of outliers in each cluster and the gradients for
SVM and logistic regression.

Question D: Now consider the case in which false negatives are significantly worse than false positives.
This could occur, for example, when fitting a classifier to diagnose a disease.

Fit both logistic regression and SVM (with a linear kernel) to dataset2, but weight positive-labeled in-
stances 5x more than negative-labeled instances in the loss calculation. (Hint: use the class weight param-
eter.) For each fitted model, create a plot showing the data points and the model’s decision boundary. You
should end up producing two plots. How does this class-weighting scheme affect the models’ decision
boundaries?

2 Effects of Regularization
TAs: Jagriti Agrawal, Siddharth Murching
Relevant materials: Lecture 4

For this problem, you are required to implement everything yourself and submit code.
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Question A : In order to prevent over-fitting in the least-squares linear regression problem, we add a
regularization penalty term. Can adding the penalty term decrease the training (in-sample) error? Will
adding a penalty term always decrease the out-of-sample errors? Please justify your answers. Think about
the case when there is over-fitting while training the model.

Question B: `1 regularization is sometimes favored over `2 regularization due to its ability to generate a
sparsew (more zero weights). In fact, `0 regularization (using `0 norm instead of `1 or `2 norm) can generate
an even sparser w, which seems favorable in high-dimensional problems. However, it is rarely used. Why?

Implementation of `2 regularization:
We are going to experiment with regression for the Red Wine Quality Rating data set. The data set is

uploaded on the course website, and you can read more about it here: https://archive.ics.uci.
edu/ml/datasets/Wine. The data relate 13 different factors (last 13 columns) to wine type (the first
column). Each column of data represents a different factor, and they are all continuous features. Note that
the original data set has three classes, but one was removed to make this a binary classification problem.

Download the data for training and testing. There are two training sets, wine training1.txt (100 data
points) and wine training2.txt (a proper subset of wine training1.txt containing only 40 data points), and
one test set, wine testing.txt (30 data points). You will use the wine testing.txt dataset to evaluate your
models.

We will train a `2-regularized logistic regression model on these data. Recall that the unregularized logistic
error (a.k.a. log loss) is

E = −
N∑
i=1

log(p(yi|xi))

where p(yi = −1|xi) is
1

1 + ewTxi

and p(yi = 1|xi) is
1

1 + e−wTxi
,

where as usual we assume that all xi contain a bias term. The `2-regularized logistic error is

E = −
N∑
i=1

log(p(yi|xi)) +
λ

N
wTw = λwTw −

N∑
i=1

log

(
1

1 + e−yiwTxi

)
.

Implement SGD to train a model that minimizes the `2-regularized logistic error, i.e. train an `2-regularized
logistic regression model. Train the model with 15 different values of λ starting with λ0 = 0.0001 and
increasing by a factor of 5, i.e.

λ0 = 0.0001, λ1 = 0.0005, λ2 = 0.0025, ..., λ14 = 610351.5625.

Some important notes: When doing stochastic gradient descent, you will have to figure out a stopping
condition that works well by trial and error. Refer to the last HW for one idea, but you may need to use
different values. You will also need to find a good learning rate to use. Ideally, you want the largest learning
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rate value that will still properly converge, but a smaller learning rate will not hurt, it will just take longer
to converge. You can start with a learning rate of 10−6. You should also initialize your weights to small
random numbers.

You may run into numerical instability issues (overflow or underflow). One way to deal with these
issues is by normalizing the input data X . Given the column for the jth feature, X:,j , you can normalize it

by setting Xij =
Xij−X:,j

σ(X:,j)
where σ(X:,j) is the standard deviation of the jth column’s entries, and X:,j is the

mean of the jth column’s entries. Normalization may change the optimal choice of λ. If you normalize the
input data, simply plot the enough choices of λ to see any trends.

Question C: Do the following for both training data sets (wine training1.txt and wine training2.txt) and
attach your plots in the homework submission (use a log-scale on the horizontal axis):

i. Plot the training error (Ein) versus different λs.

ii. Plot the test error (Eout) versus different λs using wine testing.txt as the test set.

iii. Plot the `2 norm of w versus different λs.

You should end up with three plots, with two series (one for wine training1.txt and one for wine -
training2.txt) on each plot. Note that the Ein and Eout values you plot should not include the regularization
penalty — the penalty is only included when performing gradient descent.

Question D : Given that the data in wine training2.txt is a subset of the data in wine training1.txt,
compare errors (training and test) resulting from training with wine training1.txt (100 data points) versus
wine training2.txt (40 data points). Briefly explain the differences.

Question E : Briefly explain the qualitative behavior (i.e. over-fitting and under-fitting) of the training
and test errors with different λs while training with data in wine training1.txt.

Question F: Briefly explain the qualitative behavior of the `2 norm of w with different λs while training
with the data in wine training1.txt.

Question G: If the model were trained with wine training2.txt, which λ would you choose to train your
final model? Why?

3 Lasso (`1) vs. Ridge (`2) Regularization
TAs: Jagriti Agrawal, Siddharth Murching
Relevant materials: Lecture 3

For this problem, you may use the scikit-learn (or other Python package) implementation of Lasso and
Ridge regression — you don’t have to code it yourself.

The two most regularized regression models are Lasso (`1) regression and Ridge (`2) regression. Al-
though both enforce “simplicity” in the models they learn, only Lasso regression results in sparse weight
vectors. This problem compares the affect of the two methods on the learned model parameters.

Question A: The tab-delimited file problem3data.txt on the course website contains 1000 9-dimensional
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datapoints. The first 9 columns contain x1, . . . , x9, and the last column contains the target value y.

i. Train a linear regression model on the problem3data.txt data with Lasso regularization for various
choices of regularization strength α. On a single plot, plot each of the model weights w1, ..., w9 (ignore the
bias/intercept) as a function of α. Start with α = 0 and increase α until all weights are small.

ii. Repeat i. but with Ridge regression.

iii. As the regularization parameter increases, what happens to the number of model weights that are
exactly zero with Lasso regression? What happens to the number of model weights that are exactly zero
with Ridge regression?

Question B:

i. Given a dataset containing N datapoints each with d features, solve for

argmin
w
‖y −XTw‖2 + λ‖w‖1

where X ∈ RN×d is the matrix of datapoints and y ∈ RN is the vector of all output values for these
datapoints. Do so just for the case where d = 1 and λ ≥ 0.

This is linear regression with Lasso regularization.

ii. Suppose that when λ = 0, w1 6= 0. Does there exist a value for λ such that w1 = 0? If so, what is the
smallest such value?

iii. Given a dataset containing N datapoints each with d features, solve for

argmin
w
‖y −XTw‖2 + λ‖w‖22

where X ∈ RN×d is the matrix of datapoints and y ∈ RN is the vector of all output values for these
datapoints. Do so for arbitrary d and λ ≥ 0.

This is linear regression with Ridge regularization.

iv. Suppose that when λ = 0, wi 6= 0. Does there exist a value for λ > 0 such that wi = 0? If so, what is
the smallest such value?
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