
PYTHON FOR DATA
SCIENCE

CS/EE/CNS/CMS/LOL/ROFL
155
Recitation 1
Kevin Tang

OUTLINE OF RECITATION

  Python for Data Science

  Installing Python, Numpy, Sk-learn

  iPython notebooks

  Basic Numpy

  Linear Algebra “tricks”

  More on expectation values

  Additional Resources

CS 155 AND PYTHON

  You may do sets in whatever (reasonable) language you are comfortable with
­  Python and Matlab are recommended
­  TA’s may not be able to assist you with other languages

  Python will be a supported language
­  Solutions that require code will be released in either Python or Matlab
­  Boilerplate/template code for projects and sets will be released in Python

  We will support Python 2.7 and up

WHY PYTHON?

  Free, Open source!

  Everyone should know it from CS1 or have some familiarity

  Relatively simple

  Great packages: Numpy, Scipy, Sklearn, etc.

  Not everyone has Matlab installed, and I know some who hate it with a passion

We will assume you know basic Python to at least a CS1 Level

NUMPY, SCIPY, MATPLOTLIB

  Three packages in Python you will learn to know well

  Numpy is a high-performance package that deals with arrays of data
­ Matlab “like”
­ Uses cython and bytecode to make things fast!

  Scipy adds more data processing and other scientific tools

  Matplotlib is a plotting library used to plot data
­ Much prettier than Matlab plots

HOW TO INSTALL ALL OF THIS

  Easy way: install Anaconda https://www.continuum.io/downloads
­ Anaconda is a python distribution that has every tool you will ever use in this class and probably more
­ After installing, go into command line/terminal and type

“conda update –all” to update all of your packages.

  Hard way: install Python from
https://www.python.org/downloads/release/python-2711/
­  Then install Scipy and Sklearn manually
­ Alternatively, install miniconda rom continuum and use the cona command to manually install the

package you need.

IPYTHON NOTEBOOK/
JUPYTER
  Matlab/Mathematica like way to do your pythoning

  Github supports rendering Jupyter notebooks! [Link]

  Demo – see Ipython notebooks

MORE ON EXPECTED
VALUES
Expected values are “averages” over some distribution

Expected values act over some domain

​𝐸↓𝐷 [𝑓(𝑥)] refers to the expected value of f(x) over data set D

​𝐸↓𝑥 [𝑓(𝑥)] refers to the expected value of f(x) over the entire domain of f

Properties of Expectation Values:

𝐸[𝜆𝑋+𝑌]=𝜆𝐸[𝑋]+𝐸[𝑌]

𝐸[𝑐]=𝑐

​𝐸↓𝐷 [​𝐸↓𝑥 [𝑓(𝑥)]]= ​𝐸↓𝑥 [​𝐸↓𝐷 [𝑓(𝑥)]]

Question: is this true? 𝐸[​𝑋↑2 ]=𝐸​[𝑋]↑2 

EXPECTED VALUE OF
DISCRETE RANDOM
VARIABLES
Question 1: If you roll a die numbered 1-6, what is the expected value of the dice roll?

Question 2: If you roll a die numbered 1-6, what is the expected value of the square of the
rolled number?

Question 3: If you are randomly drawing from a jar of numbers that contain the numbers [0, 1,
3, 4, 4, 6], what is the expected value of the number you draw?

Note that expectation value of discrete random variable X with some probability mass function
𝑝(𝑎)=𝑃(𝑋=𝑎)

𝐸(𝑋)=∑𝑎𝑝(𝑎)
In practice, you can simply take an average of all samples you have. The expectation value of
some function f(x) over some dataset D with values ​𝐷↓1 , ​𝐷↓2 , ​𝐷↓3 ,…can be calculated as

𝐸(𝑋)= ​1/|𝐷| ∑𝑖∈𝐷↑▒𝑓(​𝐷↓𝑖 ) 

EXPECTED VALUE OF
CONTINUOUS RANDOM
VARIABLE OVER A DOMAIN
  Question 1: What is the expected value of a uniform distribution from [-1,1]?

  Question 2: What is the expected value of cos​(𝑥) over the domain [− ​𝜋/2 , ​𝜋/2 ]?

  For some continuous domain [a,b] and some function f(x), the expected value of f(x)

𝐸[𝑓(𝑥)]= ​1/𝑏−𝑎 ∫𝑎↑𝑏▒𝑓(𝑥)𝑑𝑥 

WHEN ANALYTICAL METHOD
DOESN’T WORK
  Say you have some unknown function f(x) (or its some unknown distribution that you
can sample from) and you want to find the expectation value of g(f(x)) over a known
domain D where g is a known function.

  How can we do this?

  Approximate!

  Riemann Sums or Monte Carlo are potential methods here

  For Monte Carlo, sample a large number of values randomly chosen from the
distribution and average the g(f(x)) that you get!

ADDITIONAL RESOURCES

  Python 2.7 documentation https://docs.python.org/2.7/

  Scipy, numpy, matplotlib, pandas, and documentation http://www.scipy.org/

  Scikitlearn: http://scikit-learn.org/stable/

  Great Github repo of example python notebooks in data science:
https://github.com/donnemartin/data-science-ipython-notebooks

  SciPy Cookbook: collection of recipes for data science
http://scipy-cookbook.readthedocs.org/

  More in depth Python/Numpy tutorial http://cs231n.github.io/python-numpy-tutorial/

