Probability

CS 155 Machine Learning and Data Mining Recitation

Lucy Yin January 21, 2016

Motivations

- Uncertainty is everywhere around us
 - "what is the chance of raining today?"
 - "when will the next bus arrive?"
 - "will I go to the recitation today?"
- Machine learning tries to understand uncertainties and interact with the real world
- Probability theory is the mathematical study of uncertainty.

Basic Concepts

- Sample Space Ω : set of all possible outcomes
- Event A is a subspace of Ω
 - $-P(A) \ge 0$ (non-negativity)
 - $-P(\Omega) = 1$ (trivial event)
 - For 2 events A and B: (addictivity)

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Basic Concepts

- Example: rolling a fair 6-sided dice
 - $-\Omega$ ={1,2,3,4,5,6}
 - $-P({1}) = P({2}) = P({3}) = P({4}) = P({5}) = P({6}) = 1/6$
 - $-P({2,4,6}) = P({2})+P({4})+P({6}) = 1/2$

Joint and Conditional Probability

For a pair of events x and y:

• **Joint Probability** is the probability of both events occurring at the same time: P(x,y)

$$0 \le P(x,y) \le 1$$

$$\sum_{x} \sum_{y} P(x,y) \le 1 \qquad \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} p(x,y) dx dy \le 1$$
(Continuous RV)

 Conditional Probability x|y is the probability of event x if we consider only the cases in which y occurs: P(x|y)

Conditional Probability
$$P(x|y) = \frac{P(x,y)}{P(y)} \qquad P(y) \neq 0$$

Joint and Conditional Probability

Example: Draw 2 Kings from a Deck

Event A=drawing a King first

Event B=drawing a King second

For the first card, the chance of drawing a King is 4/52 (there are 4 Kings in a deck of 52 cards) P(A) = 4/52

After removing a King from the deck, the probability of the 2nd card drawn is less (only 3 Kings left in the remaining deck)

$$P(B|A) = 3/51$$

And so:

$$P(A,B) = P(B|A)P(A) = \frac{3}{51} * \frac{4}{52} = \frac{12}{2652} = \frac{1}{221} \approx 0.5\%$$

So, the chance of getting a pair of Kings is about 0.5%

Marginal Distribution

 If X and Y have a joint distribution with probability function p(x,y), then the marginal distribution of X has a probability function p(x), which is defined as

$$p(x) = \sum_{y} p(x, y) \qquad p(x) = \int_{-\infty}^{\infty} p(x, y) dy$$
(Continuous RV)

Similarly, the marginal distribution of y is

$$p(y) = \sum_{x} p(x, y) \qquad p(y) = \int_{-\infty}^{\infty} p(x, y) dx$$
(Continuous RV)

Marginal Distribution

Example:

	x ₁	x ₂	x ₃	X ₄	p _y (Y)↓
У1	4/32	² / ₃₂	1/32	1/32	8/32
У2	2/32	4/32	1/32	1/32	8/32
Уз	2/32	² / ₃₂	2/32	2/32	8/32
У4	8/32	0	0	0	8/32
p _x (X) →	16/32	8/32	4/32	4/32	32/32

$$p(x_1) = \sum_{y} p(x_1, y) = p(x_1, y_1) + p(x_1, y_2) + p(x_1, y_3) + p(x_1, y_4)$$
$$= \frac{4}{32} + \frac{2}{32} + \frac{2}{32} + \frac{8}{32} = \frac{16}{32}$$

Independence

Event A, B are independent:

$$P(A,B) = P(A)P(B)$$

or equivalently

$$P(A|B) = P(A)$$

$$P(A|B) = \frac{P(A,B)}{P(B)}$$

$$P(A|B) = \frac{P(A)P(B)}{P(B)}$$

$$P(A|B) = P(A)$$

Independence

Example:

Roll a dice twice. What is the probability of rolling 6 at both trials?

A=rolling a 6 in the first trial

B=rolling a 6 in the second trial

$$P(A,B) = P(A)P(B)$$

= $\frac{1}{6} * \frac{1}{6} = \frac{1}{36}$



Joint Probability Distribution

$$P(A,B) = P(B|A)P(A)$$

Chain Rule

$$P(A_1, A_2, ..., A_n) = P(A_n, ..., A_2, A_1)$$

$$= P(A_n | A_{n-1} ..., A_2, A_1) P(A_{n-1} ..., A_2, A_1)$$
...

$$= P(A_n|A_{n-1} ..., A_2, A_1)P(A_{n-1}|A_{n-2} ..., A_2, A_1) *$$

$$... * P(A_2|A_1)P(A_1)$$

$$= \prod_{i=1}^{n} P(A_i|A_1, A_2, \dots, A_{i-1})$$

Bayes' Theorem

$$P(A,B) = P(A|B)P(B) = P(B|A)P(A)$$

Prior Information
$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$
 Posterior Probability Evidence

$$P(A|B) \propto P(B|A)P(A)$$

Bayes' Theorem

Example: If a person has an allergy (A), very often sneezing (S) is observed P(S|A) = 0.8

What is the chance of an allergy is sneezing is observed?

$$P(A|S) = ?$$

More information: P(A) = 0.001 (assume very little people has allergy), P(S) = 0.1 (assume many people sneeze)

$$P(A|S) = \frac{P(S|A)P(A)}{P(S)}$$
$$= \frac{0.8 * 0.001}{0.1} = 0.008$$

So, 0.8% chance the sneezing is due to allergy.

Random variable

- Random variable X is a function X: Ω -> R
 - Example: number of heads in 20 tosses of a coin
 - Discrete and continuous random variable
- Cumulative Distribution Function (CDF):

$$F(x) = P(X \le x)$$

- Properties:
 - $0 \le F(x) \le 1$
 - F(x) is monotonically increasing
 - $\lim_{x \to -\infty} F(x) = 0 \qquad \lim_{x \to +\infty} F(x) = 1$

Discrete random variable

- r.v. of the underlying distribution can take only finite many different values
- Probability Mass Function (pmf):

$$p(x) = P(X = x)$$

- Example:
 - Rolling a dice

X	1	2	3	4	5	6
P(X)	1/6	1/6	1/6	1/6	1/6	1/6

Continuous random variable

- r.v. of the underlying distribution can take infinite many different values
- Probability Density Function (pdf)

$$f(x) = \frac{dF(x)}{dx}$$

– Knowing cdf, we can calculate $P(a < x \le b)$ for all intervals from a to b

Expectation

- Expectation: mean of the distribution
- Expectation for random variables X: E(x)

- Discrete X:
$$E(x) = \sum_{x} xp(x)$$

- Continuous X:
$$E(x) = \int_{x} xf(x)$$

• Expectation is linear

$$E(aX) = aE(X)$$
 a is const
 $E(X + Y) = E(X) + E(Y)$

Variance

 Variance of a distribution is the measure of the "spread" of a distribution.

$$Var(X) = E((X - E(X))^{2})$$

or equivalently

$$Var(X) = E(X^2) - E(X)^2$$

Variance is NOT linear

$$Var(aX + b) = a^2 Var(X)$$
 a, b is const

Some Important Distributions

Bernoulli(p)

$$p(x) = p^{x}(1-p)^{1-x}$$
 for $x = 0.1$ $E(x) = p$

Binomial(n,p)

$$p(x) = \binom{n}{x} p^x (1-p)^{n-x} \qquad E(x) = np$$

Geometric(p)

$$p(x) = p(1-p)^{x-1}$$
 $E(x) = \frac{1}{p}$

Poisson(λ)

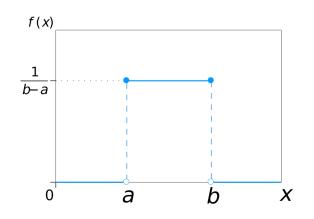
$$p(x) = \frac{\lambda^{x} e^{-\lambda}}{x!}$$

$$E(x) = \lambda$$

Some Important Distributions

Uniform (a,b) (a<b)

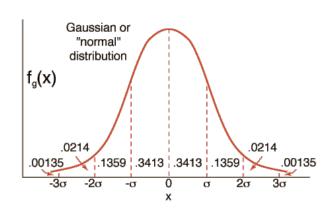
$$f(x) = \begin{cases} \frac{1}{b-a} & a \le x \le b \\ 0 & otherwise \end{cases}$$
$$E(x) = \frac{1}{2}(a+b)$$



• Normal (μ, σ^2)

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2\sigma^2}(x-\mu)^2}$$

$$E(x) = \mu$$



Multivariate Gaussian Distribution

- $X = [X_1, X_2, ..., X_n]^T$ random vector
- $X \sim \mathcal{N}(\mu, \Sigma)$ n-dimensional Gaussian distribution:

$$f(X) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2} (X - \mu)^T \Sigma^{-1} (X - \mu)\right)$$

$$E(x) = \mu$$

$$Cov(x) = \Sigma$$

$$= E((X - E(X)(X - E(X))^{T})^{\frac{1}{0.2}}$$

Example of a 2D Gaussian Distribution

21

- Parametrized distribution $P(x,\theta)$ with parameter(s) θ unknown
- iid samples x₁,x₂,...,x_n observed
- Goal: estimate θ
- Recall Bayes' Theorem: $P(\theta|X) \propto P(X|\theta)P(\theta)$
 - (ideally) MAP: $\hat{\theta} = argmax P(\theta|X)$
 - (in practice) MLE: $\hat{\theta} = argmax P(X|\theta)$

Parameter Estimation – "log" trick

- Logarithmic function is monotonically increasing, it will not distort where the maximum is location (although the maximum value of the function before and after taking logarithm will be different)
- Simplify the calculation
 - Gradient descent could be used for minimization
 - Multiplication turns into summation

$$argmax_{\theta} f(\theta|x) = argmin_{\theta} - \log(f(\theta|x))$$

- Example 1: Binomial distribution
- Coin toss. Repeat the tossing experiment n times, and observe k time 'head'
- What is the probability observing head?

$$\operatorname{argmax}_{p} P(k|p) = \operatorname{argmax} {n \choose k} p^{k} (1-p)^{n-k}$$

Example 1: Binomial distribution

$$argmax_{p} P(k|p) = argmax \binom{n}{k} p^{k} (1-p)^{n-k}$$

$$= argmax \ p^{k} (1-p)^{n-k}$$

$$= argmin - \log (p^{k} (1-p)^{n-k})$$

$$= argmin - k\log p - (n-k)\log (1-p)$$

Take derivatives wrt p and zeroing:

$$p = \frac{k}{n}$$

- Example 2: Gaussian distribution
- Give $\{x^{(1)}, x^{(2)}, ..., x^{(n)}\}$ data samples, what is the optimal μ and σ^2 assuming independence of the observed data

$$\begin{aligned} & \operatorname{argmax}_{\mu,\sigma^{2}} P\left(x^{(1)}, \dots, x^{(n)} | \mu, \sigma^{2}\right) \\ &= \operatorname{argmax}_{\mu,\sigma^{2}} \left(\frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2\sigma^{2}} \left(x^{(1)} - \mu\right)^{2}}\right) \dots \left(\frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2\sigma^{2}} \left(x^{(n)} - \mu\right)^{2}}\right) \\ &= \operatorname{argmax}_{\mu,\sigma^{2}} \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2\sigma^{2}} \left(x^{(i)} - \mu\right)^{2}} \end{aligned}$$

Example 2: Gaussian distribution

$$\operatorname{argmax}_{\mu,\sigma^{2}} \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2\sigma^{2}}(x^{(i)} - \mu)^{2}}$$

$$= \operatorname{argmin}_{\mu,\sigma^{2}} - \log \left(\prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2\sigma^{2}}(x^{(i)} - \mu)^{2}} \right)$$

$$= \operatorname{argmin}_{\mu,\sigma^{2}} - \sum_{i=1}^{n} \left(\log \frac{1}{\sqrt{2\pi\sigma^{2}}} - \frac{1}{2} \frac{(x^{(i)} - \mu)^{2}}{\sigma^{2}} \right)$$

$$= \operatorname{argmin}_{\mu,\sigma^{2}} \frac{n}{2} \log(\sigma^{2}) + \frac{n}{2} \log(2) + \frac{1}{\sigma^{2}} \sum_{i=1}^{n} \left((x^{(i)} - \mu)^{2} \right)$$

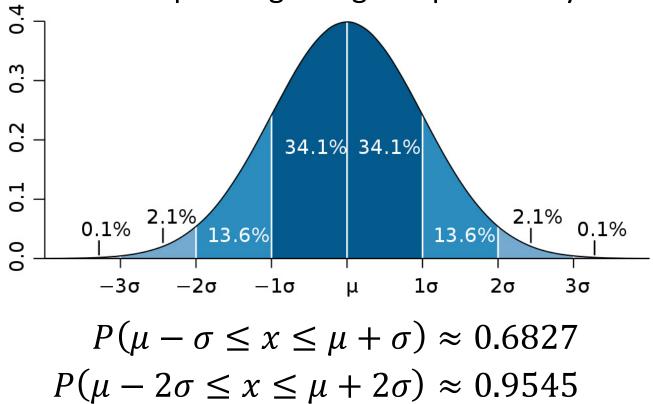
Take partial derivatives wrt μ and σ^2 and zeroing...

Central Limit Theorem

- Central limit theorem: Let $X_1, X_2, ..., X_n$ be iid with finite mean μ and finite variance σ^2 , then the random variable $Y = \frac{1}{n} \sum_{i=1}^{n} X_i$ is approximately Gaussian with mean μ and variance σ^2/n
- Approximation becomes better as n grows

Confidence Interval

 A Confidence interval is an interval in which a measurement or trial falls corresponding to a given probability.



 $P(\mu - 3\sigma \le x \le \mu + 3\sigma) \approx 0.9973$

Hypothesis testing

- Null Hypothesis (H₀): A maintained hypothesis that is held to be true unless sufficient evident to the contrary is presented.
- Alternative Hypothesis (H₁): A hypothesis that is held to be true when the null hypothesis is rejected.
- Significance Level (α): The probability of rejecting a true null hypothesis.
- **P-value**: The probability of obtaining the observed sample results assuming the null hypothesis is actually true
- Decision Criterion for a Hypothesis Test using P-value:
 - p-value < α => reject H₀
 - P-value > α => fail to reject H₀

Hypothesis testing

• Example: IQ is normally distributed in the population according to a N(100, 15²) distribution. We tested 9 Caltech students and find they have an average IQ of 112.

H₀: Caltech students' IQ follow a N(100,15²) distribution

H₁: the average Caltech student IQ is greater than 100

- Can we reject H_0 at a significant level $\alpha = 0.05$?
- z-statistic

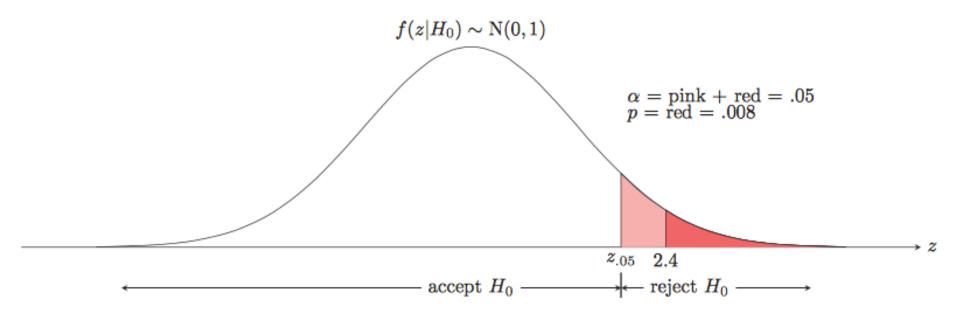
$$z = \frac{\bar{x} - \mu}{\sigma/\sqrt{n}} = \frac{112 - 100}{15/\sqrt{9}} = 2.4$$

$$p = P(z \ge 2.4) = 0.0081975$$

$$p < \alpha$$

Hypothesis testing

• Can we reject H_0 at a significant level $\alpha = 0.05$?



Reject H₀: in favor of the alternative hypothesis that Caltech students have higher IQ than average