# **Probability**

CS 155 Machine Learning and Data Mining Recitation

Lucy Yin January 21, 2016

#### Motivations

- Uncertainty is everywhere around us
  - "what is the chance of raining today?"
  - "when will the next bus arrive?"
  - "will I go to the recitation today?"
- Machine learning tries to understand uncertainties and interact with the real world
- Probability theory is the mathematical study of uncertainty.

### **Basic Concepts**

- Sample Space  $\Omega$ : set of all possible outcomes
- Event A is a subspace of  $\Omega$ 
  - $-P(A) \ge 0$  (non-negativity)
  - $-P(\Omega) = 1$  (trivial event)
  - For 2 events A and B: (addictivity)

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

### **Basic Concepts**

- Example: rolling a fair 6-sided dice
  - $-\Omega$ ={1,2,3,4,5,6}
  - $-P({1}) = P({2}) = P({3}) = P({4}) = P({5}) = P({6}) = 1/6$
  - $-P({2,4,6}) = P({2})+P({4})+P({6}) = 1/2$



# Joint and Conditional Probability

#### For a pair of events x and y:

• **Joint Probability** is the probability of both events occurring at the same time: P(x,y)

$$0 \le P(x,y) \le 1$$

$$\sum_{x} \sum_{y} P(x,y) \le 1 \qquad \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} p(x,y) dx dy \le 1$$
(Continuous RV)

 Conditional Probability x|y is the probability of event x if we consider only the cases in which y occurs: P(x|y)

Conditional Probability
$$P(x|y) = \frac{P(x,y)}{P(y)} \qquad P(y) \neq 0$$

## Joint and Conditional Probability

**Example**: Draw 2 Kings from a Deck

Event A=drawing a King first

Event B=drawing a King second



For the first card, the chance of drawing a King is 4/52 (there are 4 Kings in a deck of 52 cards) P(A) = 4/52

After removing a King from the deck, the probability of the 2<sup>nd</sup> card drawn is less (only 3 Kings left in the remaining deck)

$$P(B|A) = 3/51$$

And so:  

$$P(A,B) = P(B|A)P(A) = \frac{3}{51} * \frac{4}{52} = \frac{12}{2652} = \frac{1}{221} \approx 0.5\%$$

So, the chance of getting a pair of Kings is about 0.5%

### Marginal Distribution

 If X and Y have a joint distribution with probability function p(x,y), then the marginal distribution of X has a probability function p(x), which is defined as

$$p(x) = \sum_{y} p(x, y) \qquad p(x) = \int_{-\infty}^{\infty} p(x, y) dy$$
(Continuous RV)

Similarly, the marginal distribution of y is

$$p(y) = \sum_{x} p(x, y) \qquad p(y) = \int_{-\infty}^{\infty} p(x, y) dx$$
(Continuous RV)

### Marginal Distribution

#### Example:

|                      | x <sub>1</sub> | x <sub>2</sub>               | <b>x</b> <sub>3</sub> | X <sub>4</sub> | p <sub>y</sub> (Y)↓ |
|----------------------|----------------|------------------------------|-----------------------|----------------|---------------------|
| У1                   | 4/32           | <sup>2</sup> / <sub>32</sub> | 1/32                  | 1/32           | 8/32                |
| У2                   | 2/32           | 4/32                         | 1/32                  | 1/32           | 8/32                |
| Уз                   | 2/32           | <sup>2</sup> / <sub>32</sub> | 2/32                  | 2/32           | 8/32                |
| У4                   | 8/32           | 0                            | 0                     | 0              | 8/32                |
| p <sub>x</sub> (X) → | 16/32          | 8/32                         | 4/32                  | 4/32           | 32/32               |

$$p(x_1) = \sum_{y} p(x_1, y) = p(x_1, y_1) + p(x_1, y_2) + p(x_1, y_3) + p(x_1, y_4)$$
$$= \frac{4}{32} + \frac{2}{32} + \frac{2}{32} + \frac{8}{32} = \frac{16}{32}$$

### Independence

Event A, B are independent:

$$P(A,B) = P(A)P(B)$$
  
or equivalently

$$P(A|B) = P(A)$$



$$P(A|B) = \frac{P(A,B)}{P(B)}$$

$$P(A|B) = \frac{P(A)P(B)}{P(B)}$$

$$P(A|B) = P(A)$$

### Independence

#### **Example:**

Roll a dice twice. What is the probability of rolling 6 at both trials?

A=rolling a 6 in the first trial

B=rolling a 6 in the second trial

$$P(A,B) = P(A)P(B)$$
  
=  $\frac{1}{6} * \frac{1}{6} = \frac{1}{36}$ 



### Joint Probability Distribution

$$P(A,B) = P(B|A)P(A)$$

#### Chain Rule

$$P(A_1, A_2, ..., A_n) = P(A_n, ..., A_2, A_1)$$

$$= P(A_n | A_{n-1} ..., A_2, A_1) P(A_{n-1} ..., A_2, A_1)$$
...

$$= P(A_n|A_{n-1} ..., A_2, A_1)P(A_{n-1}|A_{n-2} ..., A_2, A_1) *$$

$$... * P(A_2|A_1)P(A_1)$$

$$= \prod_{i=1}^{n} P(A_i|A_1, A_2, \dots, A_{i-1})$$

# Bayes' Theorem

$$P(A,B) = P(A|B)P(B) = P(B|A)P(A)$$

Prior Information 
$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$
 Posterior Probability Evidence

$$P(A|B) \propto P(B|A)P(A)$$

# Bayes' Theorem

**Example**: If a person has an allergy (A), very often sneezing (S) is observed P(S|A) = 0.8

What is the chance of an allergy is sneezing is observed?

$$P(A|S) = ?$$

More information: P(A) = 0.001 (assume very little people has allergy), P(S) = 0.1 (assume many people sneeze)

$$P(A|S) = \frac{P(S|A)P(A)}{P(S)}$$
$$= \frac{0.8 * 0.001}{0.1} = 0.008$$

So, 0.8% chance the sneezing is due to allergy.

### Random variable

- Random variable X is a function X: Ω -> R
  - Example: number of heads in 20 tosses of a coin
  - Discrete and continuous random variable
- Cumulative Distribution Function (CDF):

$$F(x) = P(X \le x)$$

- Properties:
  - $0 \le F(x) \le 1$
  - F(x) is monotonically increasing
  - $\lim_{x \to -\infty} F(x) = 0 \qquad \lim_{x \to +\infty} F(x) = 1$

### Discrete random variable

- r.v. of the underlying distribution can take only finite many different values
- Probability Mass Function (pmf):

$$p(x) = P(X = x)$$

- Example:
  - Rolling a dice

| X    | 1   | 2   | 3   | 4   | 5   | 6   |
|------|-----|-----|-----|-----|-----|-----|
| P(X) | 1/6 | 1/6 | 1/6 | 1/6 | 1/6 | 1/6 |

### Continuous random variable

- r.v. of the underlying distribution can take infinite many different values
- Probability Density Function (pdf)

$$f(x) = \frac{dF(x)}{dx}$$

– Knowing cdf, we can calculate  $P(a < x \le b)$  for all intervals from a to b

### Expectation

- Expectation: mean of the distribution
- Expectation for random variables X: E(x)

- Discrete X: 
$$E(x) = \sum_{x} xp(x)$$

- Continuous X: 
$$E(x) = \int_{x} xf(x)$$

• Expectation is linear

$$E(aX) = aE(X)$$
 a is const  
 $E(X + Y) = E(X) + E(Y)$ 

#### Variance

 Variance of a distribution is the measure of the "spread" of a distribution.

$$Var(X) = E((X - E(X))^{2})$$
  
or equivalently

$$Var(X) = E(X^2) - E(X)^2$$

Variance is NOT linear

$$Var(aX + b) = a^2 Var(X)$$
 a, b is const

### Some Important Distributions

Bernoulli(p)

$$p(x) = p^{x}(1-p)^{1-x}$$
 for  $x = 0.1$   $E(x) = p$ 

Binomial(n,p)

$$p(x) = \binom{n}{x} p^x (1-p)^{n-x} \qquad E(x) = np$$

Geometric(p)

$$p(x) = p(1-p)^{x-1}$$
  $E(x) = \frac{1}{p}$ 

Poisson(λ)

$$p(x) = \frac{\lambda^{x} e^{-\lambda}}{x!}$$

$$E(x) = \lambda$$

### Some Important Distributions

Uniform (a,b) (a<b)</li>

$$f(x) = \begin{cases} \frac{1}{b-a} & a \le x \le b \\ 0 & otherwise \end{cases}$$
$$E(x) = \frac{1}{2}(a+b)$$



• Normal  $(\mu, \sigma^2)$ 

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2\sigma^2}(x-\mu)^2}$$

$$E(x) = \mu$$



### Multivariate Gaussian Distribution

- $X = [X_1, X_2, ..., X_n]^T$  random vector
- $X \sim \mathcal{N}(\mu, \Sigma)$  n-dimensional Gaussian distribution:

$$f(X) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2} (X - \mu)^T \Sigma^{-1} (X - \mu)\right)$$

$$E(x) = \mu$$

$$Cov(x) = \Sigma$$

$$= E((X - E(X)(X - E(X))^{T})^{\frac{1}{0.2}}$$

Example of a 2D Gaussian Distribution

21

- Parametrized distribution  $P(x,\theta)$  with parameter(s)  $\theta$  unknown
- iid samples x<sub>1</sub>,x<sub>2</sub>,...,x<sub>n</sub> observed
- Goal: estimate θ
- Recall Bayes' Theorem:  $P(\theta|X) \propto P(X|\theta)P(\theta)$ 
  - (ideally) MAP:  $\hat{\theta} = argmax P(\theta|X)$
  - (in practice) MLE:  $\hat{\theta} = argmax P(X|\theta)$

### Parameter Estimation – "log" trick

- Logarithmic function is monotonically increasing, it will not distort where the maximum is location (although the maximum value of the function before and after taking logarithm will be different)
- Simplify the calculation
  - Gradient descent could be used for minimization
  - Multiplication turns into summation

$$argmax_{\theta} f(\theta|x) = argmin_{\theta} - \log(f(\theta|x))$$

- Example 1: Binomial distribution
- Coin toss. Repeat the tossing experiment n times, and observe k time 'head'
- What is the probability observing head?

$$\operatorname{argmax}_{p} P(k|p) = \operatorname{argmax} {n \choose k} p^{k} (1-p)^{n-k}$$

Example 1: Binomial distribution

$$argmax_{p} P(k|p) = argmax \binom{n}{k} p^{k} (1-p)^{n-k}$$

$$= argmax \ p^{k} (1-p)^{n-k}$$

$$= argmin - \log (p^{k} (1-p)^{n-k})$$

$$= argmin - k\log p - (n-k)\log (1-p)$$

Take derivatives wrt p and zeroing:

$$p = \frac{k}{n}$$

- Example 2: Gaussian distribution
- Give  $\{x^{(1)}, x^{(2)}, ..., x^{(n)}\}$  data samples, what is the optimal  $\mu$  and  $\sigma^2$  assuming independence of the observed data

$$\begin{aligned} & \operatorname{argmax}_{\mu,\sigma^{2}} P\left(x^{(1)}, \dots, x^{(n)} | \mu, \sigma^{2}\right) \\ &= \operatorname{argmax}_{\mu,\sigma^{2}} \left(\frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2\sigma^{2}} \left(x^{(1)} - \mu\right)^{2}}\right) \dots \left(\frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2\sigma^{2}} \left(x^{(n)} - \mu\right)^{2}}\right) \\ &= \operatorname{argmax}_{\mu,\sigma^{2}} \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2\sigma^{2}} \left(x^{(i)} - \mu\right)^{2}} \end{aligned}$$

Example 2: Gaussian distribution

$$\operatorname{argmax}_{\mu,\sigma^{2}} \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2\sigma^{2}}(x^{(i)} - \mu)^{2}}$$

$$= \operatorname{argmin}_{\mu,\sigma^{2}} - \log \left( \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2\sigma^{2}}(x^{(i)} - \mu)^{2}} \right)$$

$$= \operatorname{argmin}_{\mu,\sigma^{2}} - \sum_{i=1}^{n} \left( \log \frac{1}{\sqrt{2\pi\sigma^{2}}} - \frac{1}{2} \frac{(x^{(i)} - \mu)^{2}}{\sigma^{2}} \right)$$

$$= \operatorname{argmin}_{\mu,\sigma^{2}} \frac{n}{2} \log(\sigma^{2}) + \frac{n}{2} \log(2) + \frac{1}{\sigma^{2}} \sum_{i=1}^{n} \left( (x^{(i)} - \mu)^{2} \right)$$

Take partial derivatives wrt  $\mu$  and  $\sigma^2$  and zeroing...

#### Central Limit Theorem

- Central limit theorem: Let  $X_1, X_2, ..., X_n$  be iid with finite mean  $\mu$  and finite variance  $\sigma^2$ , then the random variable  $Y = \frac{1}{n} \sum_{i=1}^{n} X_i$  is approximately Gaussian with mean  $\mu$  and variance  $\sigma^2/n$
- Approximation becomes better as n grows

### Confidence Interval

 A Confidence interval is an interval in which a measurement or trial falls corresponding to a given probability.



 $P(\mu - 3\sigma \le x \le \mu + 3\sigma) \approx 0.9973$ 

### Hypothesis testing

- Null Hypothesis (H<sub>0</sub>): A maintained hypothesis that is held to be true unless sufficient evident to the contrary is presented.
- Alternative Hypothesis (H<sub>1</sub>): A hypothesis that is held to be true when the null hypothesis is rejected.
- Significance Level ( $\alpha$ ): The probability of rejecting a true null hypothesis.
- **P-value**: The probability of obtaining the observed sample results assuming the null hypothesis is actually true
- Decision Criterion for a Hypothesis Test using P-value:
  - p-value <  $\alpha$  => reject H<sub>0</sub>
  - P-value >  $\alpha$  => fail to reject H<sub>0</sub>

### Hypothesis testing

• Example: IQ is normally distributed in the population according to a N(100, 15<sup>2</sup>) distribution. We tested 9 Caltech students and find they have an average IQ of 112.

H<sub>0</sub>: Caltech students' IQ follow a N(100,15<sup>2</sup>) distribution

H<sub>1</sub>: the average Caltech student IQ is greater than 100

- Can we reject  $H_0$  at a significant level  $\alpha = 0.05$ ?
- z-statistic

$$z = \frac{\bar{x} - \mu}{\sigma/\sqrt{n}} = \frac{112 - 100}{15/\sqrt{9}} = 2.4$$

$$p = P(z \ge 2.4) = 0.0081975$$

$$p < \alpha$$

# Hypothesis testing

• Can we reject  $H_0$  at a significant level  $\alpha = 0.05$ ?



**Reject H<sub>0</sub>**: in favor of the alternative hypothesis that Caltech students have higher IQ than average