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Motivations

* Uncertainty is everywhere around us
— “what is the chance of raining today?”
— “when will the next bus arrive?”
— “will | go to the recitation today?”
* Machine learning tries to understand
uncertainties and interact with the real world

* Probability theory is the mathematical study
of uncertainty.



Basic Concepts

 Sample Space Q: set of all possible outcomes
 Event A is a subspace of Q
— P(A) 2 0 (non-negativity)
— P(Q) =1 (trivial event)
— For 2 events A and B: (addictivity)
P(AuB) =P +P(B) —P(ANB)



Basic Concepts

 Example: rolling a fair 6-sided dice
- 0={1,2,3,4,5,6}
— P({1}) = P({2}) = P({3}) = P({4}) = P({5}) = P({6}) =1/6
— P({2,4,6}) = P({2})+P({4})+P({6}) = 1/2



Joint and Conditional Probability

For a pair of events x and y:

* Joint Probability is the probability of both events occurring
at the same time: P(x,y)

0<P(x,y)<1

ZZP(X y) <1 f_o:o f_(:p(x,y)dxdy <1

(Discrete RV) (Continuous RV)

* Conditional Probability x|y is the probability of event x if
we consider only the cases in which y occurs: P(x|y)

Joint Probability

P(y) # 0

Conditional Probability

T Px|y) = Plxy)

P(y)




Joint and Conditional Probability

Example: Draw 2 Kings from a Deck
Event A=drawing a King first

Event B=drawing a King second

For the first card, the chance of drawing a King is 4/52 (there are 4 Kings in a
deck of 52 cards
’ P(A) = 4/52

After removing a King from the deck, the probability of the 2" card drawn is
less (only 3 Kings left in the remaining deck)

P(B|A) = 3/51

And so:

3 4 12
P(A. B) = P(BIA)P(A) = _ _
(4,B) = P(BIAP(A) = o3 * o5 = 5rs = 557

So, the chance of getting a pair of Kings is about 0.5% 6

~ 0.5%




Marginal Distribution

* |f Xand Y have a joint distribution with
probability function p(x,y), then the marginal
distribution of X has a probability function

p(x), which is defined as
p(x) = Zp(x, y) p(x) = J_ p(x,y)dy

y (Discrete RV) (Continuous RV)

e Similarly, the marginal distribution of y is

0.0)

P(}’)=2p(x,y) p(y)=j_ p(x,y)dx

X (Discrete RV) (Continuous RV)



Marginal Distribution

* Example:
X3 X4 py(Y) .
Y1 Vao | Va %2
Y2 Vao | Va %2
Y3 Y32 | Yao %32
Ya 0 0 %2
Px(X) - Yao | Va2 3222

p(x,) = z p(x1,Y) =p(x1, Y1) + p(x1,y2) + p(x1,¥3) + (X1, Va)

y
=430+ 2/30+%/33+8/3,=10/3,



Independence

* Event A, B are independent:
P(A,B) = P(A)P(B)
or equivalently

P(A|B) = P(A)
$\\\\\\

Recall

P(4,B)
P(AIB) = =553
P(A)P(B)

P(AIB) = =575

P(A|B) = P(A)



Independence

Example:

Roll a dice twice. What is the probability of
rolling 6 at both trials?

A=rolling a 6 in the first trial
B=rolling a 6 in the second trial

P(A,B) = P(A)P(B) 3

=
=Ys*Ye="36 |2




Joint Probability Distribution

P(4,B) = P(B|A)P(A)

* Chain Rule
P(Al)AZJ ---;An) — P(An; "')A2)A1)
— P(AnlAn—l "')AZJAI)P(An—l ...,Az,Al)

= P(An|An-1 -, A2, ADP(Ap_1|An—7 .., Az, Ay) *

n
— HP(AllAl’ Az ) ---;Ai—l)
i=1



Bayes’ Theorem

P(A,B) = P(A|B)P(B) = P(B|A)P(A)

Likelihood Function

/ /Prior Information

P(B|A)P(A)
P(A|B) =
(AI1B) = =5
Posterior Probability ™~ Evidence

P(A|B) « P(B|A)P(A)

12



Bayes’ Theorem

Example: If a person has an allergy (A), very often sneezing (S)

is observed P(5|A) = (0.8
What is the chance of an allergy is sneezing is observed?
P(A|S) =7

More information: P(A) = 0.001 (assume very little people has
allergy), P(S) = 0.1 (assume many people sneeze)

paars) - LSPE
- 0.8%0.001 0,008
B 0.1 o

So, 0.8% chance the sneezing is due to allergy.



Random variable

e Random variable X is a function X: Q -> R
— Example: number of heads in 20 tosses of a coin
— Discrete and continuous random variable

e Cumulative Distribution Function (CDF):
F(x) =P(X < x)
— Properties:
*0<F(x) <1

 F(x) is monotonically increasing
e lim F(x) =0 lim F(x) =1

X— —00 xX— 400



Discrete random variable

* r.v. of the underlying distribution can take
only finite many different values

* Probability Mass Function (pmf):
p(x) =P(X =x)

— Example:

* Rolling a dice

x 12 13 a5 6

P(X) 1/6 1/6 1/6 1/6 1/6 1/6
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Continuous random variable

* r.v. of the underlying distribution can take
infinite many different values

* Probability Density Function (pdf)
dF (x)
dx

flx) =

— Knowing cdf, we can calculate P(a < x < b) for
all intervals fromatob



Expectation

* Expectation: mean of the distribution
« Expectation for random variables X: E (x)

— Discrete X: E(x) = z xp(x)
— Continuous X: E(x) =j xf(x)

 Expectation is linear
E(aX) = aE(X) ais const
EX+Y)=EX)+E)



Variance

e Variance of a distribution is the measure of
the “spread” of a distribution.

Var(X) = E((X — ECO)")
or equivalently
Var(X) = E(X2) — E(X)?
e Variance is NOT linear
Var(aX + b) = a?Var(X) a,b is const



Some Important Distributions

* Bernoulli(p)

p(x) =p*(1—-p)'* forx=01 Ex)=p
* Binomial(n,p)

p(x) = (Z) p*(1—p)"* E(x) = np
* Geometric(p)

p(x) =p(1l—p)** EC) =1/p
e Poisson(A)

p(x) = e Elx) =2

x!



Some Important Distributions

e Uniform (a,b) (a<b)

1 f(x)
) =173"2 asxs=b . .
0 otherwise |
_]_
E(X) —E(a+b) 5 5 b .
* Normal (pn,0?)

1 B 1 (x_‘u)z f(x) distribut
flx) = e 20° 9
V2TTo

51359 ' .3413 |.3413 ! 11359 ™«

E(x) — l,l —§0 -éo -0 0 6 2L0 3‘0
X



Multivariate Gaussian Distribution

o X =[X1,X2, ...,Xn]" random vector
e X~N(u X)n-dimensional Gaussian distribution:

1
fO = Gy &P 3 (X — 0" K =)
E(x) =
Cov(x) =Y

=E(X-EX(X - E(X)))

Example of a 2D Gaussian
Distribution



Parameter Estimation

* Parametrized distribution P(x,0) with
parameter(s) 6 unknown

* iid samples x,,x,,...,x,, observed
e Goal: estimate 6
* Recall Bayes’ Theorem: P(6|X) < P(X|0)P(6)

— (ideally) MAP: 8 = argmax P(0|X)
— (in practice) MLE: 8 = argmax P(X|0)



Parameter Estimation — “log” trick

* Logarithmic function is monotonically increasing, it
will not distort where the maximum is location
(although the maximum value of the function before
and after taking logarithm will be different)

e Simplify the calculation
— Gradient descent could be used for minimization

— Multiplication turns into summation

argmaxg f(6|x) = argming — log (f(0]x))
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Parameter Estimation

 Example 1: Binomial distribution

* Coin toss. Repeat the tossing experiment n times,
and observe k time ‘head’

 What is the probability observing head?

n
argmax, P(k|p) = argmax (k) pk(1 — p)nk



Parameter Estimation

 Example 1: Binomial distribution
argmax, P(k|p) = argmax (:) pk(1 — p)nF
= argmax p*(1 —p)* ¥
= argmin — log (p*(1 — p)*~%)
= argmin — klogp — (n — k)log (1 — p)

Take derivatives wrt p and zeroing: p =

k
n



Parameter Estimation

 Example 2: Gaussian distribution

o Give {x1) x2  x{M}data samples, what is the
optimal p and 0% assuming independence of
the observed data

argmax, 52 P (x®, ..., x™ |y, a?)

2 2
1 - 12(x(1>_#)) ( 1 6_2;2(x<n>_u))

= argmax,, ;2 \————§€ 20
5 H.o (\/Zna V2no

n
1 _1 nW_ )2
= argmaxy, 2 ‘ ‘ —— e 20° &=n)
] Vimo



Parameter Estimation

Example 2: Gaussian distribution

(x(l)_u)
argmaxuaz‘ ‘\/_ e 202
o

l ( - 12(96(”—#)2)
argmlnlwz — log e 20
L] V21To

n

. Z , 1 1 (x® — p)?
= argmin,, ;2 0g 2

- 0-2
=1

_ n . N 1w . .
= argmin,, ;2 Elog(a )+§log(2) +Fz((x(‘) — ) )

Take partial derivatives wrt L and o2 and zeroing...



Central Limit Theorem

* Central limit theorem: Let X,,X,,..., X, be iid
with finite mean p and finite variance o?,
then the random variable v=-1>" x, is
approximately Gaussian with mean L and
variance o%/n

* Approximation becomes better as n grows



Confidence Interval

* A Confidence interval is an interval in which a measurement
or trial falls corresponding to a given probability.
<

0.3

B 34.19 34.1%

0.2

0.1

0.0

Pu—o<x<u+o)=~0.6827
P(u—20<x<u+20) =~ 0.9545
P(u—30§x§u+30)%09973 29



Hypothesis testing

* Null Hypothesis (H,): A maintained hypothesis that is held
to be true unless sufficient evident to the contrary is
presented.

* Alternative Hypothesis (H,): A hypothesis that is held to be
true when the null hypothesis is rejected.

» Significance Level (a): The probability of rejecting a true
null hypothesis.

e P-value: The probability of obtaining the observed sample
results assuming the null hypothesis is actually true

e Decision Criterion for a Hypothesis Test using P-value:
— p-value < a =>reject H,
— P-value > a =>fail to reject H,



Hypothesis testing

Example: IQ is normally distributed in the population
according to a N(100, 152) distribution. We tested 9 Caltech
students and find they have an average |1Q of 112.

H,: Caltech students’ 1Q follow a N(100,152) distribution
H,: the average Caltech student 1Q is greater than 100

Can we reject H, at a significant level o =0.057?

z-statistic
X —U 112 —100
Z = = = 2.4
o/\lm 15/\/9

p = P(z > 2.4) =0.0081975
p<a



Hypothesis testing

 Can we reject H, at a significant level o =0.057?

f(z|Ho) ~ N(0,1)

x

T 205 2.4

reject Hy

accept Hy

Reject H,: in favor of the alternative hypothesis that
Caltech students have higher IQ than average
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