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A vector space over a field F is a set V with two operations:
e +:VxV-—-V
e —:VxV-—>V

satisfying the following axioms
out+(v+w)=(u+v)+w
eutv=v+u
@ zero vector 0 such that v+ 0= v

additive inverse —v such that v+ (—v) =0

associativity a(bv) = (ab)v

identity element 1lv =v

distributivity a(u 4+ v) = au + av

distributivity (a + b)v = av + bv



Linear Dependence and Independence

@ A set of vectors S = {v1,va,...,vn} is linearly dependent if
daa, ..., a, such that agvy + ... 4+ ayvy, = 0.
@ A set of vectors S = {v1,va,...,vn} is linearly independent if it is

not linearly dependent.
The span of a set S is span(S) = {fozl a,-vi‘k eN,v;e S, a; € IE‘} .

@ A set S is a basis for a vector space V if S is linearly independent and
spans V.
e Every v € V can be uniquely written as 27:1 «a;v; where v; are the
basis elements of V.

The dimension n of a (finite-dimensional) linear space V is the length
of any basis for V.



Linear map

@ Let V and W be vector spaces over the same field F. L:V — W is a
linear map if, Yu,v € V,a € F,
o L(u+v)=L(u)+ L(v)
o L(au)+ al(u)
@ In this course, we let F = R.
@ Any linear map L can be completely determined by its action on the
basis {vi,...,vp} for V as linear combinations on the basis
{wi,..., wp} for W.
o Usually, vy = ¢, = (0,0,...,0,1,0,...,0), with 1 at /'th location.



Matrix and Vectors

e A matrix M™*" is a rectangular array of numbers (which specifices
the action of a linear operator on the basis elements of R").

a1 812 ... din
dp1 a2 ... ap
dml adm2 --- Amn
@ A column vector x € R":
X1
X2

Xn



Matrix Multiplication

o IfAc R™" B e R"™P, then C = AB € R™*P with

Cj=> AuwBy
k=1
Properties of Matrix Multiplication:
@ Associativity (AB)C = A(BC)
e Distributive: A(B+ C) = AB + AC)
e Non-commutative (in general): AB # BA.



Operators and properties

Transpose: if A€ R™<", then AT € R™™: (AT); = Aj.
Properties:
o (AT =A
o (AB)T =BTAT
o (A+B) =A"T +BT
Trace: if A€ R™", then tr(A) = >"7 1 Aji
Properties:
o tr(AT =tr(A)
o tr(A+ B) = tr(A) + tr(B)
o tr(AA) = Atr(A)
o If AB is square, tr(AB) = tr(BA).



Special types of matrices

Identity matrix: [ = [, € R"™*"
VAeR™": Al, =1,A=A

e Diagonal matrix: D = diag(d1, da, ..., dp):

d j=i
ij= .
0 otherwise

Symmetric matrices: A € R"*" is symmetric if A= AT
Orthogonal matrices: U € R"*" is orthogonal if UUT =1 = UTU.



A norm of a vector space V is a function || - || : V — R™ such that:

° |x][=0 < x=0

o [lax|| = |af - [[x]]

o [Ix+yl < Ix]+llyll
The norm of a vector is a measure of its “length” or “magnitude”. The
most common is Euclidean (¢2) norm.

1
o Ly norm: x|l = (g xil?)”
1/2

o {5 norm: ||x|l2 = (X0, Ixif2)Y

used in ridge regression |ly — X3||?> + A 8|13

e /1 norm: |Ix|l1 = >0 |xil.
used in lasso regression ||y — X3|1> + A|| 8|1

@ /s norm: ||x|jec = max |x;|.
1



Rank of a Matrix

o If A€ R™*", then rank(A) = dim(span(cols(A)) is the maximum
number of linearly independent columns (or rows)

@ Properties
o rank(A) = rank(AT)

rank(A) < min{m, n}
rank(AB) < min{rank(A), rank(B)}
rank(A + B) < rank(A) + rank(B)



Inverse of a Matrix

o If Ae R"™" is invertible if 3B € R"*" such that AB=1,= BA. Bis
the inverse of A, and written B = A1
o Properties (if A~ exists)
o (A 1=A
o (AB)"1=pB1A"1
° (A—l)T — (AT)—l
e The inverse of an orthogonal matrix is its transpose



Eigenvalues and Eigenvectors

@ Ac R"™" X €T is an eigenvalue of A with corresponding eigenvector
x € F"(x # 0) if Ax = Ax.
@ Every finite-dimensional complex-valued (F = C) linear operator has
an eigenvalue.
@ Properties
o tr(A)=>"" N\
o det(A) =[]\
o rank(A) = |{1 < i < n|\; # 0}



o Determinant: det(A) =" s sgn(o) 1L aio;
@ Properties:

det(/) =1

det(MA) = A det(A)

det(AT) = det(A)

det(AB) = det(A) det(B)

det(A) #0 <= A s invertible.

If A invertible, then det(A~1) = det(A)~!



Invertible Matrix Theorem

Invertible Matrix Theorem. Let A € R"*". The following are equivalent:
o A is invertible
@ nullspace {x|Ax =0} = {0}

The columns of A form a linearly independent set

The columns of A span R".

Ax = b has at least one solution for each b € R".
AT is invertible.

detA=#£0



Singular Value Decomposition

e For A € R™7", the singular values o(A) = \/A(ATA).

e For A € R™*" the singular value decomposition (SVD) is a
factorization A = UX VT where U and V are orthogonal, X is
diagonal, with ¥; = 0;(A), the i'th largest singular value of A.



Let £ : R™*" — R. Then, given a matrix A € R™*", the gradient
V : RMXN 5 RMXN of f is:

Of(A)  Of(A) Of (A)
0A11 O0A1> O0A1,
Of(A)  Of(A) Of (A)
Varia - |
Of (A) afiA) Of (A)
8Am1 8Am2 aAmn

In particular, if A is the vector x € R”,

Vif(x)= | 2




Let f : R" — R. Then, given a vector x € R”, the Hessian V2:R" > R"
of fis:

[ 0%f(x)  9%F(x) 0?f(x)
8x12 0x1 Ox2 o 0x1 Oxn
0?f(x) 0°f 0?f(x)
Vif(X) _ aXQ 8x1 87X22 o 8X2 aXn
82f(x) 82f(x) 82f(x)
| Ox, Ox1 Oxn Ox0 o Ox?




More Derivatives

xTa _ daTx _
@ 5x T ax — 9
daTXb __ T
o X = ab
da’Xa __ T
o 5% =ba
da’ Xa — da’™XTa __ T

= aa



Least Squares Problem

Solve the following minimization problem:
minimize ||Ax — b||3
Note that

|Ax — b||3 = (Ax — b) T (Ax — b)
= xTATAx —2b"Ax+bTb



Least Squares Problem

Solve the following minimization problem:
minimize ||Ax — b||3
Note that
|Ax — b|j3 = (Ax — b) T (Ax — b)
=xTATAx —2b"Ax + b7 b

Taking the gradient with respect to x (and using the properties above):

Vi(xTATAx —2bTAx + b b) = V,xTATAx — V,2bT Ax + Vb b

=2ATAx —2ATb

Setting this to zero and solving for x yields the Moore-Penrose
Pseudoinverse:

x=(ATA)1ATb



Moral of the Story

MATLAB, Numpy are optimized for fast matrix operations. Use matrix
operations whenever possible, instead of nested ‘for’ loops.

N = 10000; d = 5; nu =1

X = np.random.random((N, d));
w = np.random.random((d, 1));
y = np.random.random((N, 1));

How to compute dw = —2-nu- X7 - (y — X - w)?



For loops:

y-minus_x_dot_w = [0 for i in range(N)]
dw = [0 for i in range(d)]
for i in range(N):
dot = 0
for j in range(d):
dot +=X[i][j] * wlj]
y-minus_x_dot_-w[i] = y[i] — dot
for i in range(d):
dot = 0
for j in range(N):
dot += X[j][i] * y_-minus_x_dot_w[j]
dw[i] = =2 % nu % dot[0]
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0.30 seconds.
Matrix operations:

dw = —2 % nu * X.T.dot((y — X.dot(w)))
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