CS155 Recitation: Linear Algebra

Fabian Boemer

January 14, 2016

Outline

- Linear Space
- Linear Dependence and Independence
- 5 6 7 Linear map
- Matrix and Vectors
- Matrix Multiplication
- 8 Operators and properties
- 9 Special types of matrices
- 10 Vector Norms
- 11 Rank of a Matrix
- 12 Inverse of a Matrix
- 13 Eigenvalues and Eigenvectors
- 14 Determinant
- 15 Invertible Matrix Theorem
- 16 Singular Value Decomposition
- Gradient 17
- 18 The Hessian
- 19 More Derivatives
- 20 Least Squares Problem
- Least Squares Problem 20
- Moral of the Story 21

Linear Space

A vector space over a field \mathbb{F} is a set V with two operations:

$$\bullet$$
 + : $V \times V \rightarrow V$

$$\bullet$$
 -: $V \times V \rightarrow V$

satisfying the following axioms

•
$$u + (v + w) = (u + v) + w$$

$$\bullet$$
 $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$

• zero vector
$$\mathbf{0}$$
 such that $\mathbf{v} + \mathbf{0} = \mathbf{v}$

• additive inverse
$$-\mathbf{v}$$
 such that $\mathbf{v} + (-\mathbf{v}) = 0$

• associativity
$$a(b\mathbf{v}) = (ab)\mathbf{v}$$

• identity element
$$1\mathbf{v} = \mathbf{v}$$

• distributivity
$$a(\mathbf{u} + \mathbf{v}) = a\mathbf{u} + a\mathbf{v}$$

• distributivity
$$(a+b)\mathbf{v} = a\mathbf{v} + b\mathbf{v}$$

Linear Dependence and Independence

- A set of vectors $S = \{\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}\}$ is linearly dependent if $\exists \alpha_1, \dots, \alpha_n$ such that $\alpha_1 \mathbf{v_1} + \dots + \alpha_n \mathbf{v_n} = 0$.
- A set of vectors $S = \{\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}\}$ is *linearly independent* if it is not linearly dependent.
- The *span* of a set S is $\text{span}(S) = \left\{ \sum_{i=1}^k \alpha_i \mathbf{v}_i \middle| k \in \mathbb{N}, v_i \in S, \alpha_i \in \mathbb{F} \right\}.$
- A set S is a basis for a vector space V if S is linearly independent and spans V.
 - Every $\mathbf{v} \in V$ can be uniquely written as $\sum_{i=1}^{n} \alpha_i \mathbf{v_i}$ where $\mathbf{v_i}$ are the basis elements of V.
- The dimension n of a (finite-dimensional) linear space V is the length of any basis for V.

Linear map

- Let V and W be vector spaces over the same field \mathbb{F} . $L:V\to W$ is a linear map if, $\forall u,v\in V,\alpha\in\mathbb{F}$,
 - L(u+v)=L(u)+L(v)
 - $L(\alpha u) + \alpha L(u)$
- In this course, we let $\mathbb{F} = \mathbb{R}$.
- Any linear map L can be completely determined by its action on the basis $\{v_1, \ldots, v_n\}$ for V as linear combinations on the basis $\{w_1, \ldots, w_n\}$ for W.
 - Usually, $v_i = e_i = (0, 0, \dots, 0, 1, 0, \dots, 0)$, with 1 at *i*'th location.

Matrix and Vectors

• A matrix $M^{m \times n}$ is a rectangular array of numbers (which specifices the action of a linear operator on the basis elements of \mathbb{R}^n).

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

• A column vector $x \in \mathbb{R}^n$:

$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

Matrix Multiplication

• If $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times p}$, then $C = AB \in \mathbb{R}^{m \times p}$ with

$$C_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}$$

Properties of Matrix Multiplication:

- Associativity (AB)C = A(BC)
- Distributive: A(B+C) = AB + AC)
- Non-commutative (in general): $AB \neq BA$.

Operators and properties

Transpose: if $A \in \mathbb{R}^{m \times n}$, then $A^T \in \mathbb{R}^{n \times m}$: $(A^T)_{ij} = A_{ji}$.

Properties:

- $(A^T)^T = A$
- $\bullet (AB)^T = B^T A^T$
- $\bullet (A+B)^T = A^T + B^T$

Trace: if $A \in \mathbb{R}^{m \times n}$, then $tr(A) = \sum_{i=1}^{n} A_{ii}$ Properties:

- $\operatorname{tr}(A^T = \operatorname{tr}(A)$
- $\operatorname{tr}(A+B) = \operatorname{tr}(A) + \operatorname{tr}(B)$
- $\operatorname{tr}(\lambda A) = \lambda \operatorname{tr}(A)$
- If AB is square, tr(AB) = tr(BA).

Special types of matrices

- Identity matrix: $I = I_n \in \mathbb{R}^{n \times n}$ $\forall A \in \mathbb{R}^{n \times n} : AI_n = I_m A = A$
- Diagonal matrix: $D = diag(d_1, d_2, \dots, d_n)$:

$$D_{ij} = egin{cases} d_i & j = i \ 0 & ext{otherwise} \end{cases}$$

- Symmetric matrices: $A \in \mathbb{R}^{n \times n}$ is symmetric if $A = A^T$.
- Orthogonal matrices: $U \in \mathbb{R}^{n \times n}$ is orthogonal if $UU^T = I = U^T U$.

Vector Norms

A *norm* of a vector space V is a function $\|\cdot\|:V\to\mathbb{R}^+$ such that:

- $\|x\| = 0 \iff x = 0$
- $\bullet \|\alpha x\| = |\alpha| \cdot \|x\|$
- $\|x + y\| \le \|x\| + \|y\|$

The norm of a vector is a measure of its "length" or "magnitude". The most common is Euclidean (ℓ_2) norm.

- ℓ_p norm: $||x||_p = (\sum_{i=1}^n |x_i|^p)^{1/p}$
- ℓ_2 norm: $\|x\|_2 = \left(\sum_{i=1}^n |x_i|^2\right)^{1/2}$ used in ridge regression $\|y X\beta\|^2 + \lambda \|\beta\|_2^2$
- ℓ_1 norm: $\|x\|_1 = \sum_{i=1}^n |x_i|$. used in lasso regression $\|y - X\beta\|^2 + \lambda \|\beta\|_1$
- ℓ_{∞} norm: $||x||_{\infty} = \max_{i} |x_{i}|$.

Rank of a Matrix

- If $A \in \mathbb{R}^{m \times n}$, then rank $(A) = \dim(\text{span}(\text{cols}(A)))$ is the maximum number of linearly independent columns (or rows)
- Properties
 - $rank(A) = rank(A^T)$
 - $rank(A) \leq min\{m, n\}$
 - $rank(AB) \le min\{rank(A), rank(B)\}$
 - $rank(A + B) \le rank(A) + rank(B)$

Inverse of a Matrix

- If $A \in \mathbb{R}^{n \times n}$ is invertible if $\exists B \in \mathbb{R}^{n \times n}$ such that $AB = I_n = BA$. B is the inverse of A, and written $B = A^{-1}$
- Properties (if A^{-1} exists)
 - $(A^{-1})^{-1} = A$
 - $(AB)^{-1} = B^{-1}A^{-1}$
 - $(A^{-1})^T = (A^T)^{-1}$
 - The inverse of an orthogonal matrix is its transpose

Eigenvalues and Eigenvectors

- $A \in \mathbb{R}^{n \times n}$, $\lambda \in \mathbb{F}$ is an eigenvalue of A with corresponding eigenvector $x \in \mathbb{F}^n(x \neq 0)$ if $Ax = \lambda x$.
- Every finite-dimensional complex-valued ($\mathbb{F}=\mathbb{C}$) linear operator has an eigenvalue.
- Properties
 - $\operatorname{tr}(A) = \sum_{i=1}^{n} \lambda_i$
 - $\det(A) = \prod_{i=1}^{n} \lambda_i$
 - $\operatorname{rank}(A) = |\{1 \le i \le n | \lambda_i \ne 0\}|$

Determinant

- Determinant: $\det(A) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \prod_{i=1}^n a_{i,\sigma_i}$
- Properties:
 - det(I) = 1
 - $\det(\lambda A) = \lambda \det(A)$
 - $\bullet \ \det(A^T) = \det(A)$
 - det(AB) = det(A) det(B)
 - $det(A) \neq 0 \iff A$ is invertible.
 - If A invertible, then $det(A^{-1}) = det(A)^{-1}$

Invertible Matrix Theorem

Invertible Matrix Theorem. Let $A \in \mathbb{R}^{n \times n}$. The following are equivalent:

- A is invertible
- nullspace $\{x | Ax = 0\} = \{0\}$
- The columns of A form a linearly independent set
- The columns of A span \mathbb{R}^n .
- Ax = b has at least one solution for each $b \in \mathbb{R}^n$.
- A^T is invertible.
- $\det A \neq 0$

Singular Value Decomposition

- For $A \in \mathbb{R}^{n \times n}$, the singular values $\sigma(A) = \sqrt{\lambda(A^T A)}$.
- For $A \in \mathbb{R}^{m \times n}$, the singular value decomposition (SVD) is a factorization $A = U \Sigma V^T$ where U and V are orthogonal, Σ is diagonal, with $\Sigma_{ii} = \sigma_i(A)$, the i'th largest singular value of A.

Gradient

Let $f: \mathbb{R}^{m \times n} \to \mathbb{R}$. Then, given a matrix $A \in \mathbb{R}^{m \times n}$, the gradient $\nabla: \mathbb{R}^{m \times n} \to \mathbb{R}^{m \times n}$ of f is:

$$\nabla_{A}f(A) = \begin{bmatrix} \frac{\partial f(A)}{\partial A_{11}} & \frac{\partial f(A)}{\partial A_{12}} & \cdots & \frac{\partial f(A)}{\partial A_{1n}} \\ \frac{\partial f(A)}{\partial A_{21}} & \frac{\partial f(A)}{\partial A_{22}} & \cdots & \frac{\partial f(A)}{\partial A_{2n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f(A)}{\partial A_{m1}} & \frac{\partial f(A)}{\partial A_{m2}} & \cdots & \frac{\partial f(A)}{\partial A_{mn}} \end{bmatrix}$$

In particular, if A is the vector $x \in \mathbb{R}^n$,

$$abla_x f(x) = egin{bmatrix} rac{\partial f(A)}{\partial x_1} \\ rac{\partial f(A)}{\partial x_2} \\ \vdots \\ rac{\partial f(x)}{\partial x_n} \end{bmatrix}$$

The Hessian

Let $f: \mathbb{R}^n \to \mathbb{R}$. Then, given a vector $x \in \mathbb{R}^n$, the *Hessian* $\nabla^2 : \mathbb{R}^n \to \mathbb{R}^n$ of f is:

$$\nabla_{x}^{2}f(x) = \begin{bmatrix} \frac{\partial^{2}f(x)}{\partial x_{1}^{2}} & \frac{\partial^{2}f(x)}{\partial x_{1}\partial x_{2}} & \cdots & \frac{\partial^{2}f(x)}{\partial x_{1}\partial x_{n}} \\ \frac{\partial^{2}f(x)}{\partial x_{2}\partial x_{1}} & \frac{\partial^{2}f}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2}f(x)}{\partial x_{2}\partial x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2}f(x)}{\partial x_{n}\partial x_{1}} & \frac{\partial^{2}f(x)}{\partial x_{n}\partial x_{2}} & \cdots & \frac{\partial^{2}f(x)}{\partial x_{n}^{2}} \end{bmatrix}.$$

More Derivatives

$$\bullet \ \frac{\partial x^T a}{\partial x} = \frac{\partial a^T x}{\partial x} = a$$

$$\bullet \ \, \tfrac{\partial a^T X b}{\partial X} = a b^T$$

•
$$\frac{\partial a^T X a}{\partial X} = b a^T$$

$$\bullet \ \ \tfrac{\partial \mathsf{a}^\mathsf{T} \mathsf{X} \mathsf{a}}{\partial \mathsf{X}} = \tfrac{\partial \mathsf{a}^\mathsf{T} \mathsf{X}^\mathsf{T} \mathsf{a}}{\partial \mathsf{X}} = \mathsf{a} \mathsf{a}^\mathsf{T}$$

Least Squares Problem

Solve the following minimization problem:

minimize
$$||Ax - b||_2^2$$

Note that

$$||Ax - b||_2^2 = (Ax - b)^T (Ax - b)$$

= $x^T A^T Ax - 2b^T Ax + b^T b$

Least Squares Problem

Solve the following minimization problem:

minimize
$$||Ax - b||_2^2$$

Note that

$$||Ax - b||_2^2 = (Ax - b)^T (Ax - b)$$

= $x^T A^T Ax - 2b^T Ax + b^T b$

Taking the gradient with respect to x (and using the properties above):

$$\nabla_{x}(x^{T}A^{T}Ax - 2b^{T}Ax + b^{T}b) = \nabla_{x}x^{T}A^{T}Ax - \nabla_{x}2b^{T}Ax + \nabla_{x}b^{T}b$$
$$= 2A^{T}Ax - 2A^{T}b$$

Setting this to zero and solving for x yields the Moore-Penrose Pseudoinverse:

$$x = (A^T A)^{-1} A^T b$$

Moral of the Story

MATLAB, Numpy are optimized for fast matrix operations. Use matrix operations whenever possible, instead of nested 'for' loops.

```
 \begin{array}{lll} N = 10000; & d = 5; & nu = 1 \\ X = & np.random.random((N, d)); \\ w = & np.random.random((d, 1)); \\ y = & np.random.random((N, 1)); \end{array}
```

How to compute $dw = -2 \cdot nu \cdot X^T \cdot (y - X \cdot w)$?

For loops:

```
y_minus_x_dot_w = [0 \text{ for } i \text{ in } range(N)]
dw = [0 \text{ for i in range}(d)]
for i in range(N):
         dot = 0
         for j in range(d):
                  dot += X[i][i] * w[i]
         y_minus_x_dot_w[i] = y[i] - dot
for i in range(d):
         dot = 0
         for j in range(N):
                  dot += X[j][i] * y_minus_x_dot_w[j]
         dw[i] = -2 * nu * dot[0]
```

For loops:

```
y_minus_x_dot_w = [0 \text{ for } i \text{ in } range(N)]
dw = [0 \text{ for i in range}(d)]
for i in range(N):
         dot = 0
         for j in range(d):
                  dot += X[i][i] * w[i]
         y_minus_x_dot_w[i] = y[i] - dot
for i in range(d):
         dot = 0
         for j in range(N):
                  dot += X[j][i] * y_minus_x_dot_w[j]
         dw[i] = -2 * nu * dot[0]
```

0.30 seconds.

Matrix operations:

```
dw = -2 * nu * X.T.dot((y - X.dot(w)))
```

For loops:

```
y_minus_x_dot_w = [0 \text{ for } i \text{ in } range(N)]
dw = [0 \text{ for i in range}(d)]
for i in range(N):
         dot = 0
         for j in range(d):
                  dot += X[i][i] * w[i]
         y_minus_x_dot_w[i] = y[i] - dot
for i in range(d):
         dot = 0
         for j in range(N):
                  dot += X[j][i] * y_minus_x_dot_w[j]
         dw[i] = -2 * nu * dot[0]
```

0.30 seconds.

Matrix operations:

```
dw = -2 * nu * X.T.dot((y - X.dot(w)))
```