CS155 Recitation: Linear Algebra

Fabian Boemer

January 14, 2016

3 Linear Space

4 Linear Dependence and Independence
5 Linear map

6 Matrix and Vectors

7 Matrix Multiplication

8 Operators and properties

9 Special types of matrices

10 Vector Norms

11 Rank of a Matrix

12 Inverse of a Matrix

13 Eigenvalues and Eigenvectors
14 Determinant

15 Invertible Matrix Theorem

16 Singular Value Decomposition
17 Gradient

18 The Hessian

19 More Derivatives

20 Least Squares Problem

20 Least Squares Problem

21 Moral of the Story

A vector space over a field F is a set V with two operations:
e +:VxV-—-V
e —:VxV-—>V

satisfying the following axioms
out+(v+w)=(u+v)+w
eutv=v+u
@ zero vector 0 such that v+ 0= v

additive inverse —v such that v+ (—v) =0

associativity a(bv) = (ab)v

identity element 1lv =v

distributivity a(u 4+ v) = au + av

distributivity (a + b)v = av + bv

Linear Dependence and Independence

@ A set of vectors S = {v1,va,...,vn} is linearly dependent if
daa, ..., a, such that agvy + ... 4+ ayvy, = 0.
@ A set of vectors S = {v1,va,...,vn} is linearly independent if it is

not linearly dependent.
The span of a set S is span(S) = {fozl a,-vi‘k eN,v;e S, a; € IE‘} .

@ A set S is a basis for a vector space V if S is linearly independent and
spans V.
e Every v € V can be uniquely written as 27:1 «a;v; where v; are the
basis elements of V.

The dimension n of a (finite-dimensional) linear space V is the length
of any basis for V.

Linear map

@ Let V and W be vector spaces over the same field F. L:V — W is a
linear map if, Yu,v € V,a € F,
o L(u+v)=L(u)+ L(v)
o L(au)+ al(u)
@ In this course, we let F = R.
@ Any linear map L can be completely determined by its action on the
basis {vi,...,vp} for V as linear combinations on the basis
{wi,..., wp} for W.
o Usually, vy = ¢, = (0,0,...,0,1,0,...,0), with 1 at /'th location.

Matrix and Vectors

e A matrix M™*" is a rectangular array of numbers (which specifices
the action of a linear operator on the basis elements of R").

a1 812 ... din
dp1 a2 ... ap
dml adm2 --- Amn
@ A column vector x € R":
X1
X2

Xn

Matrix Multiplication

o IfAc R™" B e R"™P, then C = AB € R™*P with

Cj=> AuwBy
k=1
Properties of Matrix Multiplication:
@ Associativity (AB)C = A(BC)
e Distributive: A(B+ C) = AB + AC)
e Non-commutative (in general): AB # BA.

Operators and properties

Transpose: if A€ R™<", then AT € R™™: (AT); = Aj.
Properties:
o (AT =A
o (AB)T =BTAT
o (A+B) =A"T +BT
Trace: if A€ R™", then tr(A) = >"7 1 Aji
Properties:
o tr(AT =tr(A)
o tr(A+ B) = tr(A) + tr(B)
o tr(AA) = Atr(A)
o If AB is square, tr(AB) = tr(BA).

Special types of matrices

Identity matrix: [= [, € R"™*"
VAeR™": Al, =1,A=A

e Diagonal matrix: D = diag(d1, da, ..., dp):

d j=i
ij= .
0 otherwise

Symmetric matrices: A € R"*" is symmetric if A= AT
Orthogonal matrices: U € R"*" is orthogonal if UUT =1 = UTU.

A norm of a vector space V is a function || - || : V — R™ such that:

° |x][=0 < x=0

o [lax|| = |af - [[x]]

o [Ix+yl < Ix]+llyll
The norm of a vector is a measure of its “length” or “magnitude”. The
most common is Euclidean (¢2) norm.

1
o Ly norm: x|l = (g xil?)”
1/2

o {5 norm: ||x|l2 = (X0, Ixif2)Y

used in ridge regression |ly — X3||?> + A 8|13

e /1 norm: |Ix|l1 = >0 |xil.
used in lasso regression ||y — X3|1> + A|| 8|1

@ /s norm: ||x|jec = max |x;|.
1

Rank of a Matrix

o If A€ R™*", then rank(A) = dim(span(cols(A)) is the maximum
number of linearly independent columns (or rows)

@ Properties
o rank(A) = rank(AT)

rank(A) < min{m, n}
rank(AB) < min{rank(A), rank(B)}
rank(A + B) < rank(A) + rank(B)

Inverse of a Matrix

o If Ae R"™" is invertible if 3B € R"*" such that AB=1,= BA. Bis
the inverse of A, and written B = A1
o Properties (if A~ exists)
o (A 1=A
o (AB)"1=pB1A"1
° (A—l)T — (AT)—l
e The inverse of an orthogonal matrix is its transpose

Eigenvalues and Eigenvectors

@ Ac R"™" X €T is an eigenvalue of A with corresponding eigenvector
x € F"(x # 0) if Ax = Ax.
@ Every finite-dimensional complex-valued (F = C) linear operator has
an eigenvalue.
@ Properties
o tr(A)=>"" N\
o det(A) =[]\
o rank(A) = |{1 < i < n|\; # 0}

o Determinant: det(A) =" s sgn(o) 1L aio;
@ Properties:

det(/) =1

det(MA) = A det(A)

det(AT) = det(A)

det(AB) = det(A) det(B)

det(A) #0 <= A s invertible.

If A invertible, then det(A~1) = det(A)~!

Invertible Matrix Theorem

Invertible Matrix Theorem. Let A € R"*". The following are equivalent:
o A is invertible
@ nullspace {x|Ax =0} = {0}

The columns of A form a linearly independent set

The columns of A span R".

Ax = b has at least one solution for each b € R".
AT is invertible.

detA=#£0

Singular Value Decomposition

e For A € R™7", the singular values o(A) = \/A(ATA).

e For A € R™*" the singular value decomposition (SVD) is a
factorization A = UX VT where U and V are orthogonal, X is
diagonal, with ¥; = 0;(A), the i'th largest singular value of A.

Let £ : R™*" — R. Then, given a matrix A € R™*", the gradient
V : RMXN 5 RMXN of f is:

Of(A) Of(A) Of (A)
0A11 O0A1> O0A1,
Of(A) Of(A) Of (A)
Varia - |
Of (A) afiA) Of (A)
8Am1 8Am2 aAmn

In particular, if A is the vector x € R”,

Vif(x)= | 2

Let f : R" — R. Then, given a vector x € R”, the Hessian V2:R" > R"
of fis:

[0%f(x) 9%F(x) 0?f(x)
8x12 0x1 Ox2 o 0x1 Oxn
0?f(x) 0°f 0?f(x)
Vif(X) _ aXQ 8x1 87X22 o 8X2 aXn
82f(x) 82f(x) 82f(x)
| Ox, Ox1 Oxn Ox0 o Ox?

More Derivatives

xTa _ daTx _
@ 5x T ax — 9
daTXb __ T
o X = ab
da’Xa __ T
o 5% =ba
da’ Xa — da’™XTa __ T

= aa

Least Squares Problem

Solve the following minimization problem:
minimize ||Ax — b||3
Note that

|Ax — b||3 = (Ax — b) T (Ax — b)
= xTATAx —2b"Ax+bTb

Least Squares Problem

Solve the following minimization problem:
minimize ||Ax — b||3
Note that
|Ax — b|j3 = (Ax — b) T (Ax — b)
=xTATAx —2b"Ax + b7 b

Taking the gradient with respect to x (and using the properties above):

Vi(xTATAx —2bTAx + b b) = V,xTATAx — V,2bT Ax + Vb b

=2ATAx —2ATb

Setting this to zero and solving for x yields the Moore-Penrose
Pseudoinverse:

x=(ATA)1ATb

Moral of the Story

MATLAB, Numpy are optimized for fast matrix operations. Use matrix
operations whenever possible, instead of nested ‘for’ loops.

N = 10000; d = 5; nu =1

X = np.random.random((N, d));
w = np.random.random((d, 1));
y = np.random.random((N, 1));

How to compute dw = —2-nu- X7 - (y — X - w)?

For loops:

y-minus_x_dot_w = [0 for i in range(N)]
dw = [0 for i in range(d)]
for i in range(N):
dot = 0
for j in range(d):
dot +=X[i][j] * wlj]
y-minus_x_dot_-w[i] = y[i] — dot
for i in range(d):
dot = 0
for j in range(N):
dot += X[j][i] * y_-minus_x_dot_w[j]
dw[i] = =2 % nu % dot[0]

For loops:

y-minus_x_dot_w = [0 for i in range(N)]
dw = [0 for i in range(d)]
for i in range(N):
dot = 0
for j in range(d):
dot +=X[i][j] * wlj]
y-minus_x_dot_-w[i] = y[i] — dot
for i in range(d):
dot = 0
for j in range(N):
dot += X[j][i] * y_-minus_x_dot_w[j]
dw[i] = =2 % nu % dot[0]

0.30 seconds.
Matrix operations:

dw = —2 % nu * X.T.dot((y — X.dot(w)))

For loops:

y-minus_x_dot_w = [0 for i in range(N)]
dw = [0 for i in range(d)]
for i in range(N):
dot = 0
for j in range(d):
dot +=X[i][j] * wlj]
y-minus_x_dot_-w[i] = y[i] — dot
for i in range(d):
dot = 0
for j in range(N):
dot += X[j][i] * y_-minus_x_dot_w[j]
dw[i] = =2 % nu % dot[0]

0.30 seconds.
Matrix operations:

dw = —2 % nu * X.T.dot((y — X.dot(w)))

0.00006 seconds

