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What We Covered



Basic Supervised Learning

. . . N xER"
Training Data: S = {(xi,yi)}i=1 ve il
Model Class: f(xlw,b)= w'x—b  Linear Models
Loss Function:  L(a,b)=(a-b)’ Squared Loss

N
Learning Objective:  argmin ¥ L(y,.f(x, |w,b))
Wb i

Optimization Problem



Basic Unsupervised Learning
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Sequence Prediction

@, (y',y") @, (y*,y") @, (y",y)
@, (' 1x") @, (y* 1x%) @, (y’ 1x7) @, (" 1x™)

@/ (alx) }

@’ (a,blx)=
®,(a,b)




Intro to Deep Learning

0'%% @

7x7x3 Convolution 5x5x96 Convolution .
3x3x256 Convolution
RGB Input Image 3x3 Max Pooling 3x3 Max Pooling 13 x 13 x 354
224 x 224 x 3 X 13X
Down Sample 4x Down Sample 4x
55x55x96 13x13 x 256

54
TR

i 3x3x354 Convolution

Logistic Standard Standard 3x3x354 Convolution

_ 3x3 Max Pooling
Regression 4096 Units 4096 Units Down Sample 2x 13 x 13 x354

=1000 Classes 6 X6 X256




Simple Optimization Algorithms

 Stochastic Gradient Descent

e EM algorithm (for HMMs)



Other Basic Concepts

* Cross Validation
* Overfitting

e Bias-Variance Tradeoff



Learning Theory



Generalization Bounds

* Formal characterization of overfitting

* Example result:

I |
] Test Error  Training Error Make rigorous!
With Prob. 2 1-6: / / , . ,

E, . (h)=<E, (h)+ 0(10g(1 / 5))

N2

Trained Model Training Size
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Shattering

* Definition: A set of points is shattered by H if
for all possible binary labelings of points,
there exists some h that classifies perfectly.

PPV

In 2D, any 3 points can always be shattered by linear models!

Slide Material Borrowed From Piyush Rai:
https://www.cs.utah.edu/~piyush/teaching/27-9-print.pdf 11



Shattering

Definition: A set of points is shattered by H if
for all possible binary labelings of points,
there exists some h that classifies perfectly.

In 2D, linear models cannot shatter 4 points!

Slide Material Borrowed From Piyush Rai:
https://www.cs.utah.edu/~piyush/teaching/27-9-print.pdf 12



VC Dimension

 VC(H) = most # points that can be shattered

— If His linear models in 2D feature space:

e VC(H) =3

With Prob. 2 1-6:

E_(h)<E,(h)+O

13



Structured Prediction



Examples of Complex Output Spaces

e Part-of-Speech Tagging
— Given a sequence of words x, predict sequence of tags y.

— Dependencies from tag-tag transitions in Markov model.

The rain wet the cat — Det -=N—V — Det —- N

- Similarly for other sequence labeling problems, e.g., RNA Intron/
Exon Tagging.

15



Examples of Complex Output Spaces

« Natural Language Parsing
— Given a sequence of words x, predict the parse tree y.
— Dependencies from structural constraints, since y has to be a

tree.

y S

The dog chased the cat

e

N \VP
/ \ / e
2 \
V Det

Det N
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Examples of Complex Output Spaces

 Information Retrieval

— Given a query X, predict a ranking y.
— Dependencies between results (e.g. avoid redundant hits)
— Loss function over rankings (e.g. Average Precision)

X

SVM

y

NogkRON=

Kernel-Machines

SVM-Light

Learning with Kernels

SV Meppen Fan Club

Service Master & Co.

School of Volunteer Management
SV Mattersburg Online
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General Formula (Linear Models)

* Assume scoring function F

h(x;w)=argmax F(X,y;w)
yeY (x)

e Assume F Is linear:

F(x,y;w)=w" W(x,y)

18



Example 1

h(x;w) =argmax F(X,y;w)  F(x,y;w)=w"¥(X,y)

YEY (x)

Binary Classification:
Y(x)={-1,+1}

Y(x,y)=yx
F(x,y;w) = y(w'x)

h(x;w) = argmax y(wa)
yE{-1,+1}

19



Examples

h(x;w)=argmax F(X,y;w)
YEY (x)

15t Order Sequences:

Y (x) = all possible output sequences

F(x,y;w)=w"¥(x,y)

W(x,y)= Y oGy %)

Fyw)=w' Y o0y, 5™ 1%)

Solve using Viterbi!

20



Examples

h(x;w)=argmax F(X,y;w)
YEY (x)

Integer Linear Program:
Y (X) = Feasible settings of y
Eachy €{0,1}

F(x,y;w)=w"W(x,y)
W(x,y)= Y y'¢’(x)
J

F(x,y;w)=y'¢ c=

h(x;w) = argmaxy’ ¢
YEY (x)

WP x)

w'*(x)




Structured Prediction Learning Problem

 Efficient Inference/Prediction

h(x;w) = argmaxw’ ¥(y,X)
y

— Viterbi in sequence labeling
— CKY Parser for parse trees
— Sorting for ranking

+ Efficient Learning/Training
— Learn parameters w from training data {x.y:}.-1
— Structural SVM: Hinge Loss Minimization
— Conditional Random Fields: Log Loss Minimization
— Structured Perceptron, etc...

22



Perceptron Learning Algorithm

e wl=0, bl=0 h(x|w) = sign(w' x - b)
* Fort=1...
— Receive example (x,y) Training Set: N
— If h(x|wt) =y § =Gk,
e [wtl bt*1] = [wh bt] VAS {+1’_1}
— Else

Go through training set
in arbitrary order

e pttl = pht + y (e.g., randomly)

23



Structured Perceptron

.« wl=0 h(x1w) = argmaxw'W(x, y")
N
° For t= 1
— Receive example (x,y) Treiming et N
—If h(x|wt) =y $= Gk
o Witl = Wt
— Else

Go through training set
in arbitrary order
(e.g., randomly)

* W= wh+ Wix,y)

24



Conventional SVMs

Input: x (high dimensional point)
Target: y (either +1 or -1)
Prediction: sign(w’x)

Training: arg min : W+ ¢ if
| W,E 2 N =] i

subject to: Vi: Y. °(wal.) >] - §l

The sum of slacksz &. upper bounds the 0/1 loss!

25



Conventional SVMs

3 | | | | | | | |

argmln w w+—2§.
25 F . w,b,& 2
Hinge Loss

Vz.yl.(w X, — b)zl &,
oL
/\ Vi:§ =0

L(yiaf(xi)) = maX(Oal - yif(xi)) = gi

1 \ Targety
o5l 0/1 Loss l
0 ] ] ] | ] | |
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

f(x)

26




Structural SVM

« Let x denote a structured input (sentence)
« Lety denote a structured output (POS tags)

L . 1 C
- Standard objective function: —w* + — ¥ &
andard objective function: —w +NZ§

2

« Constraints are defined for each incorrect labeling y’
over each x.

Vi,Vy' i y(i) : leP(y(i),X(i)) > WTW(y',X(i))+Ai(Y')—§i
1 Y ] | T J \_'_I L'J

Score(y®) Score(y) Loss(y)  Slack

[Tsochantaridis et al., 2005] 27



Interpreting Constraints

1 C
2N S

Vi,Vy' = y(i) : WT\P(y(i),X(i)) > WT‘P(Y',X(i))+Ai(y')—§i
1 y J |\ 0 J \_'_I L'J

Score(y®) Score(y) Loss(y)  Slack
Suppose for incorrect y’ : 1.5 1 05
1.25 : '
1 _
0.75 -
0.5 -
Then: 51 = 075 = A(y') 025 -
O _

Score(y) Score(y') Loss(y')
[Tsochantaridis et al., 2005] 28



Crowdsourcing

29



Acquiring Labels from Annotators

Keyword Tagging Attractions in Paris!

« Please inspect the attraction below.

« SELECT ALL keywords that are appropriate for this attraction.

« Selected keywords will turn RED.

« The right pane below displays additional information (e.g., wikipedia page) for your convenience.

o

X 'i'|-

™

——

[

l/f

Place de la Madeleine

[+ Ancient Ruin | [ Palace s Mansion - F— % M
® Architecture ¢ Performance
e Art ® Plaza /Open Area : :
£e La Madeleine, Paris
e Bridge e Recreational
e Cabaret e Relaxing / Leisure
e Cemetary ® Religious
e Comedy ¢ Scenic -- Nature
e Culture e Scenic -- Urban
e Dining e Scenic -- Water \
¢ Fountain ¢ Shopping
¢ Garden / Park ® Sightseeing
e Historical e Spa/Massage
e Large Building e Sports
¢ Memorial e Street
¢ Monument / Statue ® Theater / Opera
e Museum -- Art e Tour L'église de la Madeleine (French pronunciation: [legliz da la madalen],
e Museum -- Other ¢ Transportation Madeleine Church; more formally, L'église Sainte-Marie-Madeleine; less
— = = formally, just La Madeleine) is a Roman Catholic church occupying a

e Nightlife ¢ Walking / Strolling . L . "

commanding position in the 8th arrondissement of Paris.
¢ Outdoors ® Zoo / Aguarium .

The Madeleine Church was designed in its present form as a temple to the glory s

i p " . v

Subms

e Ty Lo

mechanical t“.,re'é

o

Al Al &l
o I B
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How Reliable are Annotators?

* |f we knew what the labels were
— Can judge workers on label quality

* |f we knew who the good workers were
— Can create labels from their annotations

* Chicken and egg problem!

31



Worker Reliability as Latent Variable

* Let z,, denote the reliability of worker m

Estimated label |
\yi = Eylmzm
Ezm m

1

z, =%2L(y,-,yim)

32



Differing Ambiguities Across Tasks

e Often collecting annotations for many tasks
* Some tasks are harder than others

* How many labels to collect for each task?

33



Structured Annotations

\

Full Image-level  Point-level
supervision —supervision supervision

http://arxiv.org/pdf/1506.02106v4.pdf

34



Active Learning



Crowdsourcing

U

nlabeled Ham .

Labeled
Initially Empty

/
L

o

Mushroom”

36



Unlabeled

Labeled
Initially Empty

-

Passive Learning

j, 2
\ ((@ maomha alturk
3/\_/

“Mushroom”

Repeat
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Unlabeled

Labeled
Initially Empty

-

Active Learning

N

\ ((5\ amazon nmechanicalturk
3/\_/

“Mushroom”

Repeat

38



Goal: Maximize Accuracy with Minimal Cost

v

\

s \ &

“Mushroom”

amazon mechanical turk

el 2

39



Comparison with Passive Learning

* Conventional Supervised Learning is considered
“Passive” Learning

 Unlabeled training set sampled according to test
distribution

e So we label it at random

— Very Expensive!

40



Simple Example

e 1 feature
e Learn threshold function

Passive Learning

Sample from distribution True Model
'CB:’L—{TEB:' B EB:' - _l'l_}—::_lrj'_ '(T_H,—"_ LS_JH R — =
N

Learned Model

|

41



Simple Exampl

e 1 feature
e Learn threshold function

Active Learning
Binary Search True Model

e

42



Comparison with Passive Learning

* #samples to be within € of true model

1 e A
* Passive Learning: O| — PR T -
£ o o

eeeeeeeee

: : 1 s
* Active Learning: O(log— ‘ A

43



Multi-Armed Bandits



Problems with Crowdsourcing

* Assumes you can label by proxy
— E.g., have someone else label objects in images

 But sometimes you can’t!
— Personalized recommender systems
* Need to ask the user whether content is interesting

— Personalized medicine

* Need to try treatment on patient

— Requires actual target domain

45



Personalized Labels

Choose
Unlabeled —_— ‘ !)

Labeled
In|t|aIIy Empty

\ ﬁ End User

What is Cost?

Real System

46



Formal Definition

K actions/classes
Basic Setting
— K classes
No features

Each action has an average reward: y,

— Unknown to us

— Assume WLOG that u, is largest _

Fort=1...T .

— Algorithm chooses action a(t) Algorithm Simultaneously

P—

— Receives random reward y(t) Predicts & Receives Labels
* Expectation p,,

Goal: minimize Tuy — (Kyq) + M) -+ + Karm)

If we had perfect information to start \ Expected Reward of Algorithm

47



Interactive Personalization
(5 Classes, No features)

Average Likes

!

»
C »
)

# Shown 0 0 0 1 0
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Interactive Personalization
(5 Classes, No features)

Average Likes -- -- -- 0

!

»
C »
)

# Shown 0 0 0 1 0

49



Interactive Personalization
(5 Classes, No features)

Average Likes -- -- -- 0

!

»
C »
)

# Shown 0 0 1 1 0
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Interactive Personalization
(5 Classes, No features)

Average Likes -~ -- 1 0

!

»
C »
)

# Shown 0 0 1 1 0
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Interactive Personalization
(5 Classes, No features)

Average Likes -- -- 1 0 -- @ .

# Shown 0 0 1 1 1
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Interactive Personalization
(5 Classes, No features)

Average Likes -- -- 1 0 0 @ .

# Shown 0 0 1 1 1

53



Interactive Personalization

(5 Classes, No features)

~
b

Average Likes

# Shown 0 1 1 1 1

54



Interactive Personalization
(5 Classes, No features)

§Z§"’
Average Likes -- 1 1 0 0 @ : 2

# Shown 0 1 1 1 1

55



What should Algorithm Recommend?

Exploit: Explore: Best:

%’ Politics

¥

How to Optimally Balance Explore/Exploit Tradeoff?
Characterized by the Multi-Armed Bandit Problem

Average Likes | -- |0.44] 0.4 |0.33] 0.2 (D24

# Shown 0 25 10 15 20

56



Time Horizon

~

Regret: R(T) = g%i(OPT) — i%i(ALG)

« Opportunity cost of not knowing preferences
* “no-regret” if R(T)/T=>0

— Efficiency measured by convergence rate



Recap: The Multi-Armed Bandit Problem

K actions/classes

Each action has an average reward: y,

— All unknown to us

— Assume WLOG that u, is largest

Fort=1...T

— Algorithm chooses action a(t)

— Receives random reward y(t)

* Expectation p,,

P—

Goal: minimize Tu; — (M4 + Ky +

Basic Setting
— K classes
No features

Algorithm Simultaneously
Predicts & Receives Labels

e F Hym)

I
Regret

58



The Motivating Problem

 Slot Machine = One-Armed Bandit

= T’ = ‘
| b
‘ il
== 9?9@3 .( § Each Arm Has
Different Payoff

* Goal: Minimize regret From pulling suboptimal arms

http://en.wikipedia.org/wiki/Multi-armed_bandit
59



Implications of Regret

Regret: |[R(T)= fé(OPT) — %(ALG)

e |f R(T) grows linearly w.r.t. T:

— Then R(T)/T =» constant >0
— |l.e., we converge to predicting something suboptimal

e |f R(T) is sub-linear w.r.t. T:
— ThenR(T)/T=> 0
— |.e., we converge to predicting the optimal action

60



Experimental Design

* How to split trials to collect information

e Static Experimental Design
— Standard practice
— (pre-planned)

Treatment Placebo Treatment Placebo Treatment
— ~ - 7~ -

..........
e sscsess e

http://en.wikipedia.org/wiki/Design_of experiments

61



Sequential Experimental Design

* Adapt experiments based on outcomes

Treatment Placebo Treatment Treatment Treatment

& @

62



Sequential Experimental Design Matters

Monica Almeida/The New York Times, left

Two Cousins, Two Paths Thomas McLaughlin, left, was given a promising experimental drug to treat his lethal skin
cancer in a medical trial; Brandon Ryan had to go without it.

http://www.nytimes.com/2010/09/19/health/research/19trial.html
63



Sequential Experimental Design

MAB modeIsTsequentiaI experimental design!

basic

Each treatment has hidden expected value
— Need to run trials to gather information
— “Exploration”

In hindsight, should always have used treatment
with highest expected value

Regret = opportunity cost of exploration

64



Online Advertising

macbook

Web Shopping News Images Videos More ~ Search tools

About 97,000,000 results (0.39 seconds)

Shop for macbook on Google Sponsored ®

Apple MacBook  Apple® Refurbished MacBook Pro Apple MacBook
Air... MacBook Pro... Mac - MacBo...  with Retinadi... Pro...

$899.00 $719.00 $249.00 $1,299.00 $550.05

Fry's Electroni... Nomorerack Mac of All Tra...  Apple Store GainSaver

@ In store ® Special offer
Official Apple Store® ®

store.apple.com/MacBook ~

4.4 Y% %% rating for store.apple.com

MacBook Pro and MacBook Air. Free two-day shipping from Apple.

Free iLife and iWork apps - 11, 13, or 15-inch

9 2126 Glendale Galleria, Glendale, CA - (818) 502-8310
Buy MacBook Pro Special Financing Offer
Buy MacBook Air Free In-Store Pickup

Apple - MacBook Pro

https://www.apple.com/macbook-pro/ ¥ Apple Inc. ~

With the latest-generation Intel processors, all-new graphics, and faster flash storage,
MacBook Pro moves further ahead in power and performance.

Buy MacBook Pro with Retin... Compare Mac notebooks
With top-of-the-line Intel processors, MacBook Air or iMac. No matter
HD graphics, and ... which Mac you choose, you're ...

More results from apple.com »

9

Largest Use-Case
of Multi-Armed
Bandit Problems
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The UCB1 Algorithm

http://homes.di.unimi.it/~cesabian/Pubblicazioni/ml-02.pdf

66



Confidence Intervals

* Maintain Confidence Interval for Each Action
— Often derived using Chernoff-Hoeffding bounds (**)

= [0.25, 0.55]

o = [0.1, 0.3] Undefined

Average Likes

# Shown

0.44

0.2

25

10

20

** http://www.cs.utah.edu/~jeffp/papers/Chern-Hoeff.pdf
http://en.wikipedia.org/wiki/Hoeffding%27s_inequality




UCB1 Confidence Interval

Total Iterations so far

2Int < (70in example below)
tk

Expected Reward
Estimated from data ﬁk +

\

Htimes action k was chosen

Average Likes -- 10.44| 0.4 | 0.33]| 0.2

# Shown 0 25 10 15 20

http://homes.di.unimi.it/~cesabian/Pubblicazioni/ml-02.pdf
68



The UCB1 Algorithm

e At each iteration
— Play arm with highest Upper Confidence Bound:

argmax [, + \/(2 Inz)/t,
k

Average Likes -- 10.44| 0.4 | 0.33]| 0.2

# Shown 0 25 10 15 20

http://homes.di.unimi.it/~cesabian/Pubblicazioni/ml-02.pdf
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Balancing Explore/Exploit

“Optimism in the Face of Uncertainty”

argmax u, + \/(2 lnt) /¢,
T
Exploitation Term Exploration Term

Average Likes -- 10.44| 0.4 | 0.33]| 0.2

# Shown 0 25 10 15 20

http://homes.di.unimi.it/~cesabian/Pubblicazioni/ml-02.pdf



Analysis (Intuition)

a(t +1) = argmax i, + \/(21nt)/tk

k

With high probability (**): Upper Confidence Bound of Best Arm Value of

) Best Arm

_ _ e
oy +J(2101) /1, = T, +4)(2I08) /1, =

> — (21Int)/t The true value is greater than
Ma(r+1) ‘ua(m) \/( )/ a(t+l)  the lower confidence bound.

W, — ‘Lta(m) < 2\/(21nt) / ta(t+1) Bound on regret at time t+1

** Proof of Theorem 1 in http://homes.di.unimi.it/~cesabian/Pubblicazioni/ml|-02.pdf
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500 Iterations

) !
. ¢
158 145 89 34 74
5000 Iterations
1 | % m

2442 1401 713 131 318

0.

0.

06

0.5

0.

0.

0.

0.

9k

8k

4+

3k

ok

1k

0

2000 lterations

EEEN

913 676 139 82 195

25000 Iterations

4

20094 2844 1418 181 468

6
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How Often Sub-Optimal Arms Get Played

 An arm never gets selected if:

w++(2Int) /1, < p,

\

Shrinks quickly
with #trials

Bound grows
slowly with time

e The number of times selected: 0

— Prove using Hoeffding’s Inequality

Int )
(Ml — Uy )2

Theorem 1 in http://homes.di.unimi.it/~cesabian/Pubblicazioni/ml-02.pdf
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Regret Guarantee

* With high probability:
— UCB1 accumulates regret at most:

#HActions

v

R(T) — O(E ln Ta/ Time Horizon
E

\

Gap between best & 2" best
E=l— 1

Theorem 1 in http://homes.di.unimi.it/~cesabian/Pubblicazioni/ml-02.pdf
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Extensions

e Contextual Bandits

— Features of environment

* Dependent-Arms Bandits

— Features of actions/classes

* Dueling Bandits

— Learn from pairwise feedback



Recap: MAB & UCB1

* Interactive setting
— Receives reward/label while making prediction

* Must balance explore/exploit

* Sub-linear regret is good

— Average regret converges to 0
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Reinforcement Learning

77



Actions Impact State

* In MAB:

— Actions do not impact state
— Constant reward function

* Reinforcement Learning
— Actions effect state you’re in
— Reward function depends on state

78



Video Demo
(Deep Reinforcement Learning for Atari)

https://www.youtube.com/watch?v=igXKQf2BOSE
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What is State?

Reward of each action varies depending on state!

Action at current state impacts future states!

Much harder to do exploration!

http://www.nature.com/nature/journal/v518/n7540/pdf/nature14236.pdf



Non-Convex Optimization



Recall: Hidden Markov Models

X! X? XM

Optional

P(x,y) = P(End | y" )HP(yi Iyi_l)nP(xi Iy')



Recall: EM Algorithm for HMMs

* If we had y’s = max likelihood.
* If we had (A,O) =» predict y’s

Chicken vs Egg!

1. Initialize A and O arbitrarily

Expectation Step
N4

. Predict prob. of y’s for each training x

N Maximization Step

2
3. Use y’s to estimate new (A,O)
4

. Repeat back to Step 1 until convergence

http://en.wikipedia.org/wiki/Baum%E2%80%93Welch_algorithm 83



Converges to local optimum.

* If we had y’s = max likelihood.
* If we had (A,O) =» predict y’s

Chicken vs Egg!

1. Initialize A and O arbitrarily

Expectation Step

Can We Train HMMs Optimally?

http://en.wikipedia.org/wiki/Baum%E2%80%93Welch_algorithm 84



Inspiration from Dimensionality Reduction

* Find best rank K approximationtoY:

argmin
UerR™ yer™*

Y - UVTHz

* Non-convex optimization problem!

— Due to non-convex feasible region

e But optimally solved via SVD!
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Spectral Learning of HMMs

Want to
Estimate:

P(yj ij'1)=A P(xj ij)=0

]

3 = E[xf” (xj)T]

- el i) |
Treat each ¥/ and y! i | -
as indicator vector - (OAfkyJ)(OyJ) ]
= AtE[yj (yj)TIOT
=0A'Z0"

http://www.cs.cmu.edu/~ggordon/spectral-learning/ .



Spectral Learning of HMMs

N
At 4 o
3t -

Rank-K SVD of 31

/

Optimal Solution: A = UT 22 (UT El)

-1

(requires a lot of data)

http://www.cs.cmu.edu/~ggordon/spectral-learning/ .



...and many more topics!

Probabilistic Models
Representation Learning

— Deep learning is the most visible example
Causal Reasoning

ML + Game Theory

ML + Systems

— Large Scale Machine Learning

Etc ...
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CS 159

e Special Topics in Machine Learning
— Taught Every Spring Term
— Topics Rotate

* Next Term:

— “Online Learning, Interactive Machine Learning, and
Learning from Human Feedback”

 Paper Reading & Presenting + Final Project

— Graded on participation and final project



