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Basic	
  Supervised	
  Learning	
  

•  Training	
  Data:	
  

•  Model	
  Class:	
  

•  Loss	
  FuncCon:	
  

•  Learning	
  ObjecCve:	
  	
  

S = (xi, yi ){ }i=1
N

f (x |w,b) = wT x − b

L(a,b) = (a− b)2

Linear	
  Models	
  

Squared	
  Loss	
  

x ∈ RD

y ∈ −1,+1{ }

argmin
w,b

L yi, f (xi |w,b)( )
i=1

N

∑

OpCmizaCon	
  Problem	
  
3	
  



Basic	
  Unsupervised	
  Learning	
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Sequence	
  PredicCon	
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Intro	
  to	
  Deep	
  Learning	
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Simple	
  OpCmizaCon	
  Algorithms	
  

•  StochasCc	
  Gradient	
  Descent	
  

•  EM	
  algorithm	
  (for	
  HMMs)	
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Other	
  Basic	
  Concepts	
  	
  

•  Cross	
  ValidaCon	
  

•  Overfi]ng	
  

•  Bias-­‐Variance	
  Tradeoff	
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Learning	
  Theory	
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GeneralizaCon	
  Bounds	
  

•  Formal	
  characterizaCon	
  of	
  overfi]ng	
  

•  Example	
  result:	
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Eout (h) ≤ Ein (h)+O
log(1 /δ)

N
"

#
$

%

&
'

Trained	
  Model	
   Training	
  Size	
  

Training	
  Error	
  Test	
  Error	
  
With	
  Prob.	
  ≥	
  1-­‐δ	
  :	
  

Make	
  rigorous!	
  



Shabering	
  

•  DefiniGon:	
  A	
  set	
  of	
  points	
  is	
  shaHered	
  by	
  H	
  if	
  
for	
  all	
  possible	
  binary	
  labelings	
  of	
  points,	
  
there	
  exists	
  some	
  h	
  that	
  classifies	
  perfectly.	
  

11	
  

Shattering

Definition: A set of points is shattered by a hypothesis class H if for all
possible binary labelings of the points, there exists some h ∈ H that can
represent the corresponding labeling function

Consider 3 points (in any positions) in 2D and some possible labelings

In 2D, 3 points can always be shattered by linear separators
.. no matter how they are positioned

Now how about 4 points in 2D?

For some labelings of 4 points in 2D, a linear separator doesn’t exist

The hypothesis class of linear separator can shatter maximum 3 points in 2D

(CS5350/6350) Learning Theory September 27, 2011 9 / 14

Slide	
  Material	
  Borrowed	
  From	
  Piyush	
  Rai:	
  	
  
hbps://www.cs.utah.edu/~piyush/teaching/27-­‐9-­‐print.pdf	
  

In	
  2D,	
  any	
  3	
  points	
  can	
  always	
  be	
  shaHered	
  by	
  linear	
  models!	
  



Shabering	
  

•  DefiniGon:	
  A	
  set	
  of	
  points	
  is	
  shaHered	
  by	
  H	
  if	
  
for	
  all	
  possible	
  binary	
  labelings	
  of	
  points,	
  
there	
  exists	
  some	
  h	
  that	
  classifies	
  perfectly.	
  

12	
  

Slide	
  Material	
  Borrowed	
  From	
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In	
  2D,	
  linear	
  models	
  cannot	
  shaHer	
  4	
  points!	
  

Shattering

Definition: A set of points is shattered by a hypothesis class H if for all
possible binary labelings of the points, there exists some h ∈ H that can
represent the corresponding labeling function

Consider 3 points (in any positions) in 2D and some possible labelings

In 2D, 3 points can always be shattered by linear separators
.. no matter how they are positioned

Now how about 4 points in 2D?

For some labelings of 4 points in 2D, a linear separator doesn’t exist
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(CS5350/6350) Learning Theory September 27, 2011 9 / 14



VC	
  Dimension	
  

•  VC(H)	
  =	
  most	
  #	
  points	
  that	
  can	
  be	
  shabered	
  
–  If	
  H	
  is	
  linear	
  models	
  in	
  2D	
  feature	
  space:	
  

•  VC(H)	
  =	
  3	
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Structured	
  PredicCon	
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•  Part-­‐of-­‐Speech	
  Tagging	
  
–  Given	
  a	
  sequence	
  of	
  words	
  x,	
  predict	
  sequence	
  of	
  tags	
  y.	
  

–  Dependencies	
  from	
  tag-­‐tag	
  transiCons	
  in	
  Markov	
  model.	
  

	
  

à	
  Similarly	
  for	
  other	
  sequence	
  labeling	
  problems,	
  e.g.,	
  RNA	
  Intron/
Exon	
  Tagging.	
  

The rain wet the cat x Det N V Det N 
y 

Examples of Complex Output Spaces 

15	
  



Examples of Complex Output Spaces 

•  Natural Language Parsing 
–  Given a sequence of words x, predict the parse tree y. 
–  Dependencies from structural constraints, since y has to be a 

tree. 

The dog chased the cat 
x 

S 

VP NP 

Det N V 

NP 

Det N 

y 
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Examples of Complex Output Spaces 

•  Information Retrieval 
–  Given a query x, predict a ranking y. 
–  Dependencies between results (e.g. avoid redundant hits) 
–  Loss function over rankings (e.g. Average Precision) 

SVM 
x 1.  Kernel-Machines 

2.  SVM-Light 
3.  Learning with Kernels 
4.  SV Meppen Fan Club 
5.  Service Master & Co. 
6.  School of Volunteer Management 
7.  SV Mattersburg Online 
… 

y 

17	
  



General Formula (Linear Models) 

•  Assume scoring function F 
 
 
•  Assume F is linear: 
 

h(x;w) = argmax
y∈Y (x)

F(x, y;w)

F(x, y;w) = wTΨ(x, y)

18	
  



Example	
  1	
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h(x;w) = argmax
y∈Y (x)

F(x, y;w) F(x, y;w) = wTΨ(x, y)

Ψ(x, y) = yxBinary	
  ClassificaGon:	
  
Y (x) = −1,+1{ }

F(x, y;w) = y(wTx)

h(x;w) = argmax
y∈ −1,+1{ }

y wTx( )



Examples	
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h(x;w) = argmax
y∈Y (x)

F(x, y;w) F(x, y;w) = wTΨ(x, y)

1st	
  Order	
  Sequences:	
   Ψ(x, y) = φ(y j, y j−1 | x)
j
∑

Y (x) = all	
  possible	
  output	
  sequences	
  

F(x, y;w) = wT φ(y j, y j−1 | x)
j
∑

Solve	
  using	
  Viterbi!	
  



Examples	
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h(x;w) = argmax
y∈Y (x)

F(x, y;w) F(x, y;w) = wTΨ(x, y)

Integer	
  Linear	
  Program:	
   Ψ(x, y) = y jφ j x( )
j
∑

Y (x) = Feasible	
  se]ngs	
  of	
  y	
  

F(x, y;w) = yTc c =
wTφ1(x)
wTφ 2 (x)
!

!

"

#
#
#
#

$

%

&
&
&
&

h(x;w) = argmax
y∈Y (x)

yTc

Each	
  yj	
  	
  	
  	
  	
  {0,1}	
  ∈



Structured Prediction Learning Problem 

•  Efficient Inference/Prediction  

–  Viterbi in sequence labeling 
–  CKY Parser for parse trees 
–  Sorting for ranking 

•  Efficient Learning/Training   
–  Learn parameters w from training data {xi,yi}i=1..N  

–  Structural SVM: Hinge Loss Minimization 
–  Conditional Random Fields: Log Loss Minimization 
–  Structured Perceptron, etc… 

h(x;w) = argmax
y

wTΨ(y,x)

22	
  



Perceptron	
  Learning	
  Algorithm	
  

•  w1	
  =	
  0,	
  b1	
  =	
  0	
  
•  For	
  t	
  =	
  1	
  ….	
  

– Receive	
  example	
  (x,y)	
  
–  If	
  h(x|wt)	
  =	
  y	
  

•  [wt+1,	
  bt+1]	
  =	
  [wt,	
  bt]	
  
– Else	
  

• wt+1=	
  wt	
  +	
  yx	
  
• bt+1	
  =	
  bt	
  +	
  y	
  

23	
  

S = (xi, yi ){ }i=1
N

y ∈ +1,−1{ }

Training	
  Set:	
  

Go	
  through	
  training	
  set	
  	
  
in	
  arbitrary	
  order	
  
(e.g.,	
  randomly)	
  

h(x |w) = sign(wT x − b)



Structured	
  Perceptron	
  

•  w1	
  =	
  0	
  
•  For	
  t	
  =	
  1	
  ….	
  

– Receive	
  example	
  (x,y)	
  
–  If	
  h(x|wt)	
  =	
  y	
  

• wt+1	
  =	
  wt	
  
– Else	
  

• wt+1=	
  wt	
  +	
  Ψ(x,y)	
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S = (xi, yi ){ }i=1
N

Training	
  Set:	
  

Go	
  through	
  training	
  set	
  	
  
in	
  arbitrary	
  order	
  
(e.g.,	
  randomly)	
  

h(x |w) = argmax
y '

wTΨ(x, y ')



Conventional SVMs 
•  Input: x (high dimensional point) 
•  Target: y (either +1 or -1) 
•  Prediction: sign(wTx) 
 
 

•  Training:  

 

  subject to: 
 
 
 
 
 

•  The sum of slacks         upper bounds the 0/1 loss! 

∑
=

+
N

i
i

w N
Cw

1

2

, 2
1minarg ξ

ξ

ii
T xwi ξ−≥⋅∀ 1)(y   : i

∑
i

iξ

25	
  



Conventional SVMs 
•  Input: x (high dimensional point) 
•  Target: y (either +1 or -1) 
•  Prediction: sign(wTx) 
 
 

•  Training:  

 

  subject to: 
 
 
 
 
 

•  The sum of slacks         upper bounds the 0/1 loss! 

∑
=

+
N

i
i

w N
Cw

1

2

, 2
1minarg ξ

ξ

ii
T xwi ξ−≥⋅∀ 1)(y   : i

∑
i

iξ
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2
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3

f(x)	
  

Lo
ss
	
  

0/1	
  Loss	
  

Hinge	
  Loss	
  

Target	
  y	
  

L(yi, f (xi )) =max(0,1− yi f (xi )) = ξi

argmin
w,b,ξ

1
2
wTw+ C

N
ξi

i
∑

∀i : yi w
T xi − b( ) ≥1−ξi

∀i :ξi ≥ 0
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Structural SVM 
•  Let x denote a structured input (sentence) 
•  Let y denote a structured output (POS tags) 

•  Standard objective function: 

•  Constraints are defined for each incorrect labeling y’ 
over each x. 

∑+
i

iN
Cw ξ2

2
1

[Tsochantaridis et al., 2005] 

∀i,∀y ' ≠ y(i) :    wTΨ(y(i),x(i) ) ≥ wTΨ(y ',x(i) )+Δi (y ')−ξi

Score(y(i))	
   Score(y’)	
   Loss(y’)	
   Slack	
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Interpreting Constraints 
 
 
 
 
 
 
 

 
Suppose for incorrect y’: 

 
Then: 

∑+
i

iN
Cw ξ2

2
1

∀i,∀y ' ≠ y(i) :    wTΨ(y(i),x(i) ) ≥ wTΨ(y ',x(i) )+Δi (y ')−ξi

)'(75.0 yΔ≥≥iξ

Score(y(i))	
   Score(y’)	
   Loss(y’)	
   Slack	
  

[Tsochantaridis et al., 2005] 28	
  



Crowdsourcing	
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Acquiring	
  Labels	
  from	
  Annotators	
  

30	
  

Figure 5: Showing the questionnaire given to users after they
completed the clustering task.

Figure 6: Showing the tagging task for generating the second
feature representation described in Section 4.1.2.

Paris. Figure 5 shows our closing questionnaire. Since our goal is
to collect high-quality usage data from engaged users, we discarded
any results if the user reported that the instructions were unclear or
that the clusterings were useless. Overall, we retained approximately
80% of the user-generated clusterings for a total of 218.

5.2 Feature Tagging
We developed a tagging task to construct the second feature rep-

resentation described in Section 4.1.2. Figure 6 shows our tagging
interface. For each of the 250 attractions, we asked five human
annotators to select which of 39 pre-specified tags (shown in Figure
6) should be associated with that attraction. Annotators were asked
to select all tags that apply. We considered allowing users to spec-
ify their own tags, but that setup would dramatically increase the
complexity of the data processing due to matching tags with similar
meanings or spelling deviations.

We used this tagging data to construct a 39-dimensional binary
feature representation of the 250 attractions (with each dimension
corresponding to a tag). For each attraction, any tag that was se-
lected by at least 3/5 annotators received a positive value in the
corresponding binary feature, or otherwise a zero value.

6. RELATED WORK
Our work is motivated by recent advancements in the HCI com-

munity studying how to incorporate machine learning with rich user

interactions. In particular, we focused on learning from clustering
interactions [9, 2, 5]. In contrast to previous work, we aim to de-
velop a systematic approach to model the variability of similarity
functions contained within a user population.

The modeling approach most similar to LCC is Bayesian “crowd-
clustering” [13]. One key difference is that [13] assumes there is a
global (or consensus) set of atomic clusters (which different users
may merge into varying higher-level clusters). As such, [13] focuses
on recovering these atomic clusters from many higher-level partial
clusterings. In contrast, we focus on more subjective user tasks,
which are unlikely to yield agreed-upon atomic clusterings (e.g.,
organizing attractions in Paris based on personal interests).

Another related modeling approach is Bayesian clustered tensor
factorization (BCTF) [27]. One key difference is that, for BCTF,
pairwise relationships are not modeled symmetrically, which results
in non-metric per-task transform matrices. In contrast, our collab-
orative clustering problem is naturally modeled using symmetric
pairwise interactions that can be personalized to individual users
using a metric transform.

The actual term “collaborative clustering” is not new, and has
been used to refer to other clustering problems. For instance [14]
studied the problem where the input data is distributed across many
machines, and the machines must “collaborate” to arrive at a con-
sensus clustering. Another example is [12], who studied how to
combine ensembles of clusterings to make more robust predictions.
In contrast, we use the term as an analogue to collaborative filter-
ing. Another related work is [19], which uses latent representations
to predict multiple non-redundant clusterings (for one task). In
contrast, we focus on learning latent representations to capture the
clustering variability of a user population.

6.1 Connection to Tensor Factorization
Our approach (6) can be viewed as a tensor factorization problem

with missing values [1]. We can represent our training data Y (1) as
a 3-tensor Y ,

Y
mij

=

⇢

y
mij

if (i, j) 2 ¯Y
m

? otherwise , (17)

where ? denotes a missing value (i.e., user m did not cluster item i
and/or item j).

Analogous to low-rank matrix (2-tensor) factorization approaches
for collaborative filtering, our problem can be viewed as finding a
low-rank 3-tensor factorization for collaborative clustering that has
minimal reconstruction error on Y . In particular, our model can be
viewed as a restricted form of the PARAFAC decomposition [1]:

Y
mij

⇡
D

X

d=1

�
d

u
md

x
id

x
jd

+ b,

where each x
i

and u
m

are unit vectors, and �
d

are positive weights.
Each x

i

corresponds to an item representation, and each u
m

corre-
sponds to the diagonal of a user transform U

m

. In our model, rather
than constraining x

i

and u
m

to be unit vectors and controlling for
magnitude via �, we instead control the magnitudes of x

i

and u
m

(or U
m

) via regularization penalties R
x

and R
u

.11 We also enforce
u
m

� 0 to enforce each user model to be a metric transform.

6.2 Connection to Metric Learning
The problem of estimating user transforms U

m

and V
m

is related
to (multi-task) metric learning problems under pairwise constraints

11The relationship between our latent factor model and the
PARAFAC decomposition is analogous to that of bi-Gaussian latent
factor models and the SVD in collaborative filtering [26, 22].



How	
  Reliable	
  are	
  Annotators?	
  

•  If	
  we	
  knew	
  what	
  the	
  labels	
  were	
  
– Can	
  judge	
  workers	
  on	
  label	
  quality	
  

•  If	
  we	
  knew	
  who	
  the	
  good	
  workers	
  were	
  
– Can	
  create	
  labels	
  from	
  their	
  annotaCons	
  

•  Chicken	
  and	
  egg	
  problem!	
  

31	
  



Worker	
  Reliability	
  as	
  Latent	
  Variable	
  

•  Let	
  zm	
  denote	
  the	
  reliability	
  of	
  worker	
  m	
  

32	
  

yi =
1
zm

m
∑

yimzm
m
∑

EsGmated	
  label	
  

zm =
1
N

L(yi, yim )
i
∑



Differing	
  AmbiguiCes	
  Across	
  Tasks	
  

•  Oven	
  collecCng	
  annotaCons	
  for	
  many	
  tasks	
  

•  Some	
  tasks	
  are	
  harder	
  than	
  others	
  

•  How	
  many	
  labels	
  to	
  collect	
  for	
  each	
  task?	
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Structured	
  AnnotaCons	
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hbp://arxiv.org/pdf/1506.02106v4.pdf	
  

Original image FCN Segmentation

Levels of supervision

Full
supervision

Image-level
supervision

Point-level
supervision

Objectness
prior

Figure 2: (a) Overview of our semantic segmentation train-
ing framework. (b) Different levels of training supervision
for semantic segmentation models. For full supervision, the
class label of every pixel is provided. For image-level su-
pervision, the class labels are known but their locations are
not. We introduce point-level supervision, where each class
label is only associated with one or a few pixel(s), corre-
sponding to humans pointing to objects of that class. We in-
clude an objectness prior in our training loss function along-
side point-level supervision to accurately infer the object
extent.

trained by optimizing the sum of per-pixel cross-entropy
terms [5, 22]. Let I be the set of pixels in the image.
Let s

ic

be the CNN score for pixel i and class c. Let
S
ic

= exp(s
ic

)/
P

N

k=1 exp(sik) be the softmax probability
of class c at pixel i. Given a ground truth map G indicating
that pixel i belongs to class G

i

, the loss on a single training
image is:

L
pix

(S,G) = �
X

i2I
log(S

iGi) (1)

The loss is simply zero for pixels where the ground truth
label is not defined (for example, in the case of pixels de-
fined as “difficult” on the boundary of objects in PASCAL
VOC [8]).

Image-level supervision. In this case, the only informa-
tion available during training are the sets L ✓ {1, . . . N} of
classes present in the image and L0 ✓ {1, . . . N} of classes
not present in the image (Fig. 2). The CNN model can be
trained with a different cross-entropy loss:

L
img

(S,L, L0
) = � 1

|L|
X

c2L

log(S
tcc)�

1

|L0|
X

c2L

0

log(1�S
tcc)

with t
c

= argmax

i2I
S
ic

(2)

The first part of Eqn. (2), corresponding to c 2 L, is used
in [28]. It encourages each class in L to have high proba-
bility on at least one pixel in the image. We extend this loss

to include the second summation over c 2 L0. This corre-
sponds to the fact that no pixels should have high probabil-
ity for classes that are not present in the image. We found
this simple extension to be very effective in practice.

Point-level supervision. We study the intermediate case
where the object classes are known for a small set of super-
vised pixels I

s

, whereas other pixels are just known to be-
long to some class in L. In this case, we generalize Eqn. (1)
and Eqn. (2) to:

L
point

(S,G,L, L0
) = L

img

(S,L, L0
)�

X

i2Is

↵
i

log(S
iGi) (3)

Here, ↵
i

determines the relative importance of each super-
vised pixel. We experiment with several formulations for
↵
i

. (1), for each class we ask the user to either determine
that the class is not present in the image or to point to one
object instance. In this case, |I

s

| = |L| and ↵
i

is uniform
for every point; (2), we ask multiple annotators to do the
same task as (1), and we set ↵

i

to be the confidence of the
accuracy of the annotator that provided the point; (3), we
ask the annotator(s) to point to every instance of the classes
in the image, and ↵

i

corresponds to the order of the points:
the first point is more likely to correspond to the largest ob-
ject instance and thus deserves a higher weight ↵

i

.

Objectness prior. One issue with training models with
very few or no supervised pixels is correctly inferring the
spatial extent of the objects. In general, weakly supervised
methods are prone to local minima: they focus on only a
small part of the target object, or predict all pixels as belong-
ing to the background class [28]. To alleviate this problem,
we introduce an additional term in our training objective
based on an objectness prior (Fig. 2). Objectness provides
a probability for whether each pixel belongs to any object
class [2] (e.g., bird, car, sheep), as opposed to background
(e.g., sky, water, grass). These probabilities have been pre-
viously used in the weakly supervised semantic segmenta-
tion before as unary potentials in graphical models [37] or
during inference following a CNN segmentation [29]. To
the best of our knowledge, we are the first to incorporate
them directly into CNN training.

We calculate the per-pixel objectness prior by assign-
ing each pixel the average objectness score of all windows
containing it. These scores are obtained by using the pre-
trained objectness model from the released code of [2].
The objectness model is pre-trained on 50 images randomly
sampled from a variety of different datasets (e.g., INRIA
Person, Caltech 101) that do not overlap with PASCAL
VOC 2007-2012.

Let P
i

be the probability that pixel i belongs to an object.
Let O be the classes corresponding to objects, with the other
classes corresponding to backgrounds. In PASCAL VOC,
O are the 20 object classes, and there is a single generic

Original image FCN Segmentation

Levels of supervision

Full
supervision

Image-level
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Point-level
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Objectness
prior

Figure 2: (a) Overview of our semantic segmentation train-
ing framework. (b) Different levels of training supervision
for semantic segmentation models. For full supervision, the
class label of every pixel is provided. For image-level su-
pervision, the class labels are known but their locations are
not. We introduce point-level supervision, where each class
label is only associated with one or a few pixel(s), corre-
sponding to humans pointing to objects of that class. We in-
clude an objectness prior in our training loss function along-
side point-level supervision to accurately infer the object
extent.

trained by optimizing the sum of per-pixel cross-entropy
terms [5, 22]. Let I be the set of pixels in the image.
Let s

ic

be the CNN score for pixel i and class c. Let
S
ic

= exp(s
ic

)/
P

N

k=1 exp(sik) be the softmax probability
of class c at pixel i. Given a ground truth map G indicating
that pixel i belongs to class G

i

, the loss on a single training
image is:

L
pix

(S,G) = �
X

i2I
log(S

iGi) (1)

The loss is simply zero for pixels where the ground truth
label is not defined (for example, in the case of pixels de-
fined as “difficult” on the boundary of objects in PASCAL
VOC [8]).

Image-level supervision. In this case, the only informa-
tion available during training are the sets L ✓ {1, . . . N} of
classes present in the image and L0 ✓ {1, . . . N} of classes
not present in the image (Fig. 2). The CNN model can be
trained with a different cross-entropy loss:

L
img

(S,L, L0
) = � 1

|L|
X

c2L

log(S
tcc)�

1

|L0|
X

c2L

0

log(1�S
tcc)

with t
c

= argmax

i2I
S
ic

(2)

The first part of Eqn. (2), corresponding to c 2 L, is used
in [28]. It encourages each class in L to have high proba-
bility on at least one pixel in the image. We extend this loss

to include the second summation over c 2 L0. This corre-
sponds to the fact that no pixels should have high probabil-
ity for classes that are not present in the image. We found
this simple extension to be very effective in practice.

Point-level supervision. We study the intermediate case
where the object classes are known for a small set of super-
vised pixels I

s

, whereas other pixels are just known to be-
long to some class in L. In this case, we generalize Eqn. (1)
and Eqn. (2) to:

L
point

(S,G,L, L0
) = L

img

(S,L, L0
)�

X

i2Is

↵
i

log(S
iGi) (3)

Here, ↵
i

determines the relative importance of each super-
vised pixel. We experiment with several formulations for
↵
i

. (1), for each class we ask the user to either determine
that the class is not present in the image or to point to one
object instance. In this case, |I

s

| = |L| and ↵
i

is uniform
for every point; (2), we ask multiple annotators to do the
same task as (1), and we set ↵

i

to be the confidence of the
accuracy of the annotator that provided the point; (3), we
ask the annotator(s) to point to every instance of the classes
in the image, and ↵

i

corresponds to the order of the points:
the first point is more likely to correspond to the largest ob-
ject instance and thus deserves a higher weight ↵

i

.

Objectness prior. One issue with training models with
very few or no supervised pixels is correctly inferring the
spatial extent of the objects. In general, weakly supervised
methods are prone to local minima: they focus on only a
small part of the target object, or predict all pixels as belong-
ing to the background class [28]. To alleviate this problem,
we introduce an additional term in our training objective
based on an objectness prior (Fig. 2). Objectness provides
a probability for whether each pixel belongs to any object
class [2] (e.g., bird, car, sheep), as opposed to background
(e.g., sky, water, grass). These probabilities have been pre-
viously used in the weakly supervised semantic segmenta-
tion before as unary potentials in graphical models [37] or
during inference following a CNN segmentation [29]. To
the best of our knowledge, we are the first to incorporate
them directly into CNN training.

We calculate the per-pixel objectness prior by assign-
ing each pixel the average objectness score of all windows
containing it. These scores are obtained by using the pre-
trained objectness model from the released code of [2].
The objectness model is pre-trained on 50 images randomly
sampled from a variety of different datasets (e.g., INRIA
Person, Caltech 101) that do not overlap with PASCAL
VOC 2007-2012.

Let P
i

be the probability that pixel i belongs to an object.
Let O be the classes corresponding to objects, with the other
classes corresponding to backgrounds. In PASCAL VOC,
O are the 20 object classes, and there is a single generic

Figure 4: Example squiggles collected.

compare this supervision setting to human points, we need
to collect both actual human squiggles and annotation times.
We extend the user interface shown in Fig. 3 by asking an-
notators to draw one squiggle on the extent of the target
class. Fig. 4 shows some collected data.

Error rates. Workers incorrectly labeled an object class
as absent only 0.11% of the time. 6.3% of the clicks were
on the wrong object class, and an additional 1.4% were on
“difficult” pixels.

Annotation times. As before, it takes 18.5 seconds to an-
notate the classes not present in the image. For every class
that is present, it takes 10.9 seconds to draw a free-form
squiggle on the target class. Therefore, the labeling cost of
the squiggles task is 18.5 + 1.5 ⇥ 10.9 = 34.9 seconds
per image. This is 1.58⇥ more expensive than obtaining
1Point point-level supervision and 1.75⇥ more expensive
than image-level labels.

Box-level supervision. A common intermediate between
image-level labels and pixel-wise segmentations is to obtain
bounding box annotations around each object instance. We
use the bounding boxes provided with the PASCAL VOC
dataset, and estimate the annotation times from literature.

Timing greatly depends on the setup. [18] reports 7 sec-
onds to draw a bounding box. However, they do not exam-
ine their quality, and carry out their study on rather easy
datasets with mainly large centered objects (MSRC, IIS,
iCoSeg). [32] reports 10.2 seconds with high AMT er-
ror rates. [36] reports 25.5 seconds for drawing and 42.4
seconds with quality verification. The protocol of [36]
has been used for producing the official annotations of the
ILSVRC [31], which is currently the most popular dataset
for object class detection and is of comparable difficulty to
PASCAL VOC. Its bounding boxes are high quality and pre-
cisely match the object extent. Hence, in this paper we as-
sume it takes 26 seconds to draw a precise bounding box
without quality verification. On average, there are a total of
2.8 instances per image over all classes. Therefore, anno-
tating them takes 18.5 + 2.8⇥ 26 = 91.3 seconds. This is
4.1⇥ more expensive than point-level supervision.

Full supervision. For segmentation annotation, the au-
thors of the COCO dataset report 22 worker hours per 1000
segmentations, so 79 seconds per segmentation [21]. Thus
to segment all instances it takes 18.5 + 2.8 ⇥ 79 = 239.7
seconds, more than 10⇥ the cost of point supervision.

In Section 5 we compare the accuracy of the models
trained with different levels of supervision.

5. Experiments

We empirically demonstrate the effectiveness of our
point-level supervision and objectness prior.

5.1. Setup

CNN architecture. We use the state-of-the-art fully con-
volutional network model as in [22]. Briefly, the architec-
ture is based on the VGG 16-layer net [34], with all fully
connected layers converted to convolutional layers. The last
classifier layer is discarded and replaced with a 1x1 convo-
lution layer with channel dimension N = 21 equal to the
number of object classes. The final modification is the ad-
dition of a deconvolution layer to bilinearly upsample the
output to pixel-level dense predictions.2

CNN training. We train following a procedure similar
to [22]. We use stochastic gradient descent with a fixed
learning rate of 10

�5, doubling the learning rate for bi-
ases, and with a minibatch of 20 images, momentum of 0.9
and weight decay 0.0005. The network is initialized with
weights pre-trained for a 1000-way classification task of the
ILSVRC 2012 dataset [34, 31, 22].3 In the fully supervised
case, we zero-initialize the classifier weights [22], and for
all the weakly supervised cases we follow [28] to initialize
them with weights learned by the original VGG network for
classes common to both PASCAL and ILSVRC. We back-
propagate through all layers to fine-tune the network, and
train for 50,000 iterations. We build directly upon the pub-
licly available implementation of [22, 19].

Dataset. We train and evaluate on the PASCAL VOC
2012 segmentation dataset [8] augmented with extra anno-
tations from [14]. There are 10,582 training images, 1,449
validation images and 1,456 test images. We report the
mean intersection over union (mIOU), averaged over 21
classes. Table 5a gives the performances of our models on
the validation set of PASCAL VOC 2012.

5.2. Point-level supervision

Baseline. We begin by establishing a baseline segmenta-
tion model trained from image-level labels with no addi-
tional information. We base our model on [28], which trains
a similar fully convolutional network and obtains 25.1%

2[22] introduces additional refinement by decreasing the stride of the
output layers from 32 pixels to 8 pixels, which improves their results from
59.7% to 62.7% mIOU on the PASCAL VOC 2011 validation set. We use
the original model with stride of 32 for simplicity.

3This is standard in the literature [5, 22, 28, 26, 29, 11]. We do not
consider the cost of collecting those annotations; including them would
not change our overall conclusions.
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-- 0.44 0.4 0.33 0.2 

0 25 10 15 20 # Shown 

Average Likes 

hbp://homes.di.unimi.it/~cesabian/Pubblicazioni/ml-­‐02.pdf	
  



Analysis	
  (IntuiCon)	
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a(t +1) = argmax
k

µk + 2 ln t( ) / tk

With	
  high	
  probability	
  (**):	
  

**	
  Proof	
  of	
  Theorem	
  1	
  in	
  hbp://homes.di.unimi.it/~cesabian/Pubblicazioni/ml-­‐02.pdf	
  

µa(t+1) + 2 ln t( ) / ta(t+1) ≥ µ1 + 2 ln t( ) / t1 ≥ µ1

Value	
  of	
  
Best	
  Arm	
  

Upper	
  Confidence	
  Bound	
  of	
  Best	
  Arm	
  

µa(t+1) ≥ µa(t+1) − 2 ln t( ) / ta(t+1) The	
  true	
  value	
  is	
  greater	
  than	
  	
  
the	
  lower	
  confidence	
  bound.	
  

µ1 −µa(t+1) ≤ 2 2 ln t( ) / ta(t+1) Bound	
  on	
  regret	
  at	
  Cme	
  t+1	
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1

500	
  IteraCons	
   2000	
  IteraCons	
  

5000	
  IteraCons	
   25000	
  IteraCons	
  

	
  158	
  	
  	
  145	
  	
  	
  	
  89	
  	
  	
  	
  34	
  	
  	
  	
  74	
   	
  913	
  	
  	
  676	
  	
  	
  139	
  	
  	
  	
  82	
  	
  	
  195	
  

2442	
  	
  	
  1401	
  	
  	
  713	
  	
  	
  	
  131	
  	
  	
  318	
   	
  20094	
  	
  	
  	
  2844	
  	
  	
  1418	
  	
  	
  181	
  	
  	
  468	
  



How	
  Oven	
  Sub-­‐OpCmal	
  Arms	
  Get	
  Played	
  

•  An	
  arm	
  never	
  gets	
  selected	
  if:	
  

•  The	
  number	
  of	
  Cmes	
  selected:	
  
–  Prove	
  using	
  Hoeffding’s	
  Inequality	
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µk + 2 ln t( ) / tk ≤ µ1

Bound	
  grows	
  	
  
slowly	
  with	
  Cme	
   Shrinks	
  quickly	
  

with	
  #trials	
  

Theorem	
  1	
  in	
  hbp://homes.di.unimi.it/~cesabian/Pubblicazioni/ml-­‐02.pdf	
  

O ln t
µ1 −µk( )2

"

#
$
$

%

&
'
'



Regret	
  Guarantee	
  

•  With	
  high	
  probability:	
  	
  
– UCB1	
  accumulates	
  regret	
  at	
  most:	
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Theorem	
  1	
  in	
  hbp://homes.di.unimi.it/~cesabian/Pubblicazioni/ml-­‐02.pdf	
  

R(T ) =O K
ε
lnT

!

"
#

$

%
&

#AcCons	
  

Gap	
  between	
  best	
  &	
  2nd	
  best	
  
ε	
  =	
  μ1	
  –	
  μ2	
  

Time	
  Horizon	
  



Extensions	
  

•  Contextual	
  Bandits	
  
– Features	
  of	
  environment	
  

•  Dependent-­‐Arms	
  Bandits	
  
– Features	
  of	
  acCons/classes	
  

•  Dueling	
  Bandits	
  
– Learn	
  from	
  pairwise	
  feedback	
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Recap:	
  MAB	
  &	
  UCB1	
  

•  InteracCve	
  se]ng	
  
– Receives	
  reward/label	
  while	
  making	
  predicCon	
  

•  Must	
  balance	
  explore/exploit	
  

•  Sub-­‐linear	
  regret	
  is	
  good	
  
– Average	
  regret	
  converges	
  to	
  0	
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Reinforcement	
  Learning	
  

77	
  



AcCons	
  Impact	
  State	
  

•  In	
  MAB:	
  
– AcCons	
  do	
  not	
  impact	
  state	
  
– Constant	
  reward	
  funcCon	
  

•  Reinforcement	
  Learning	
  
– AcCons	
  effect	
  state	
  you’re	
  in	
  
– Reward	
  funcCon	
  depends	
  on	
  state	
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Video	
  Demo	
  
(Deep	
  Reinforcement	
  Learning	
  for	
  Atari)	
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hbps://www.youtube.com/watch?v=iqXKQf2BOSE	
  	
  



What	
  is	
  State?	
  

80	
  

Extended Data Figure 2 | Visualization of learned value functions on two
games, Breakout and Pong. a, A visualization of the learned value function on
the game Breakout. At time points 1 and 2, the state value is predicted to be ,17
and the agent is clearing the bricks at the lowest level. Each of the peaks in
the value function curve corresponds to a reward obtained by clearing a brick.
At time point 3, the agent is about to break through to the top level of bricks and
the value increases to ,21 in anticipation of breaking out and clearing a
large set of bricks. At point 4, the value is above 23 and the agent has broken
through. After this point, the ball will bounce at the upper part of the bricks
clearing many of them by itself. b, A visualization of the learned action-value
function on the game Pong. At time point 1, the ball is moving towards the
paddle controlled by the agent on the right side of the screen and the values of

all actions are around 0.7, reflecting the expected value of this state based on
previous experience. At time point 2, the agent starts moving the paddle
towards the ball and the value of the ‘up’ action stays high while the value of the
‘down’ action falls to 20.9. This reflects the fact that pressing ‘down’ would lead
to the agent losing the ball and incurring a reward of 21. At time point 3,
the agent hits the ball by pressing ‘up’ and the expected reward keeps increasing
until time point 4, when the ball reaches the left edge of the screen and the value
of all actions reflects that the agent is about to receive a reward of 1. Note,
the dashed line shows the past trajectory of the ball purely for illustrative
purposes (that is, not shown during the game). With permission from Atari
Interactive, Inc.

LETTER RESEARCH

Macmillan Publishers Limited. All rights reserved©2015

hbp://www.nature.com/nature/journal/v518/n7540/pdf/nature14236.pdf	
  

Reward	
  of	
  each	
  acGon	
  varies	
  depending	
  on	
  state!	
  
	
  
AcGon	
  at	
  current	
  state	
  impacts	
  future	
  states!	
  
	
  
Much	
  harder	
  to	
  do	
  exploraGon!	
  



Non-­‐Convex	
  OpCmizaCon	
  

81	
  



Recall:	
  Hidden	
  Markov	
  Models	
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Y1	
  

X1	
  

Y2	
  

X2	
  

YM	
  

XM	
  

…	
  

…	
  

P x, y( ) = P(End | yM ) P(yi | yi−1)
i=1

M

∏ P(xi | yi )
i=1

M

∏

OpConal	
  

Y0	
   YEnd	
  



Recall:	
  EM	
  Algorithm	
  for	
  HMMs	
  

•  If	
  we	
  had	
  y’s	
  è	
  max	
  likelihood.	
  
•  If	
  we	
  had	
  (A,O)	
  è	
  predict	
  y’s	
  
	
  

1.  IniCalize	
  A	
  and	
  O	
  arbitrarily	
  

2.  Predict 	
  prob.	
  of	
  y’s	
  for	
  each	
  training	
  x	
  

3.  Use	
  y’s	
  to	
  esCmate	
  new	
  (A,O)	
  

4.  Repeat	
  back	
  to	
  Step	
  1	
  unCl	
  convergence	
  

83	
  hbp://en.wikipedia.org/wiki/Baum%E2%80%93Welch_algorithm	
  

ExpectaGon	
  Step	
  

MaximizaGon	
  Step	
  

Chicken	
  vs	
  Egg!	
  



Recall:	
  EM	
  Algorithm	
  for	
  HMMs	
  

•  If	
  we	
  had	
  y’s	
  è	
  max	
  likelihood.	
  
•  If	
  we	
  had	
  (A,O)	
  è	
  predict	
  y’s	
  
	
  

1.  IniCalize	
  A	
  and	
  O	
  arbitrarily	
  

2.  Predict 	
  prob.	
  of	
  y’s	
  for	
  each	
  training	
  x	
  

3.  Use	
  y’s	
  to	
  esCmate	
  new	
  (A,O)	
  

4.  Repeat	
  back	
  to	
  Step	
  1	
  unCl	
  convergence	
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  hbp://en.wikipedia.org/wiki/Baum%E2%80%93Welch_algorithm	
  

ExpectaGon	
  Step	
  

MaximizaGon	
  Step	
  

Chicken	
  vs	
  Egg!	
  

Non-­‐Convex	
  OpGmizaGon	
  Problem!	
  
Converges	
  to	
  local	
  opCmum.	
  

Can	
  We	
  Train	
  HMMs	
  OpGmally?	
  



InspiraCon	
  from	
  Dimensionality	
  ReducCon	
  

•  Find	
  best	
  rank	
  K	
  approximaCon	
  to	
  Y:	
  

•  Non-­‐convex	
  opCmizaCon	
  problem!	
  
– Due	
  to	
  non-­‐convex	
  feasible	
  region	
  

•  But	
  opGmally	
  solved	
  via	
  SVD!	
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argmin
U∈RNxK ,V∈RMxK

Y −UVT

2

2



Spectral	
  Learning	
  of	
  HMMs	
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P(y j | y j−1) = A P(x j | y j ) =OWant	
  to	
  	
  
EsGmate:	
  

∑t = E x j+t x j( )
T"

#$
%
&'= E E x j+t x j( )

T
y j"

#$
%
&'

"
#$

%
&'

                             = E E x j+t y j"
#

%
&E x j( )

T
y j"

#$
%
&'

"
#$

%
&'

                             = E OAtky j( ) Oy j( )
T"

#$
%
&'

                             =OAtE y j y j( )
T"

#$
%
&'O

T

                             =OAtZOT

Treat	
  each	
  xj	
  	
  and	
  yj	
  	
  
as	
  indicator	
  vector	
  

hbp://www.cs.cmu.edu/~ggordon/spectral-­‐learning/	
  



Spectral	
  Learning	
  of	
  HMMs	
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Σt	
   O	
  

At	
   Z	
   OT	
  

=	
  

hbp://www.cs.cmu.edu/~ggordon/spectral-­‐learning/	
  

A =UT ∑2 UT ∑1( )
−1

OpGmal	
  SoluGon:	
  

(requires	
  a	
  lot	
  of	
  data)	
  

Rank-­‐K	
  SVD	
  of	
  Σ1	
  	
  	
  



…and	
  many	
  more	
  topics!	
  

•  ProbabilisCc	
  Models	
  
•  RepresentaCon	
  Learning	
  

–  Deep	
  learning	
  is	
  the	
  most	
  visible	
  example	
  

•  Causal	
  Reasoning	
  
•  ML	
  +	
  Game	
  Theory	
  
•  ML	
  +	
  Systems	
  

–  Large	
  Scale	
  Machine	
  Learning	
  

•  Etc	
  …	
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CS	
  159	
  

•  Special	
  Topics	
  in	
  Machine	
  Learning	
  
–  Taught	
  Every	
  Spring	
  Term	
  
–  Topics	
  Rotate	
  

•  Next	
  Term:	
  	
  
–  “Online	
  Learning,	
  InteracCve	
  Machine	
  Learning,	
  and	
  
Learning	
  from	
  Human	
  Feedback”	
  

•  Paper	
  Reading	
  &	
  PresenCng	
  +	
  Final	
  Project	
  
–  Graded	
  on	
  parCcipaCon	
  and	
  final	
  project	
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