
Machine	
 Learning	
 &	
 Data	
 Mining	

CS/CNS/EE	
 155	

Lecture	
 17:	

Survey	
 of	
 Advanced	
 Topics	

1	

What	
 We	
 Covered	

2	

Basic	
 Supervised	
 Learning	

•  Training	
 Data:	

•  Model	
 Class:	

•  Loss	
 FuncCon:	

•  Learning	
 ObjecCve:	
 	

S = (xi, yi){ }i=1
N

f (x |w,b) = wT x − b

L(a,b) = (a− b)2

Linear	
 Models	

Squared	
 Loss	

x ∈ RD

y ∈ −1,+1{ }

argmin
w,b

L yi, f (xi |w,b)()
i=1

N

∑

OpCmizaCon	
 Problem	

3	

Basic	
 Unsupervised	
 Learning	

4	

=	
 X’	
 U’	

V’T	

Sequence	
 PredicCon	

5	

ϕ j (a,b | x) =
ϕ1

j (a | x)
ϕ2 (a,b)

!

"

#
#

$

%

&
&

x1	
 x2	

y1	
 y2	
 yM	
 …	

x3	

ϕ2 (y
2, y1)

y0	

ϕ2 (y

1, y0)

ϕ1(y
1 | x1) ϕ1(y

2 | x2) ϕ1(y
M | xM)

y3	

ϕ2 (y
3, y2)

x3	

ϕ1(y
3 | x3)

Intro	
 to	
 Deep	
 Learning	

6	

Lecture'16:'Deep'Learning' 40'

h4p://www.image9net.org/'

Input'
Image'Input'
Image'Input'
Image'

h4p://www.cs.toronto.edu/~fritz/absps/imagenet.pdf'
h4p://Bp.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf'

96'
filters'

RGB'Input'Image'
224'x'224'x'3'

7x7x3'ConvoluRon'
3x3'Max'Pooling'
Down'Sample'4x'
55'x'55'x'96'

256'
filters'

5x5x96'ConvoluRon'
3x3'Max'Pooling'
Down'Sample'4x'
13'x'13'x'256'

354'
filters'

3x3x256'ConvoluRon'
13'x'13'x'354'

354'
filters'

3x3x354'ConvoluRon'
13'x'13'x'354'

256'
filters'

3x3x354'ConvoluRon'
3x3'Max'Pooling'
Down'Sample'2x'

6'x'6'x'256'

Standard'
4096'Units'

Standard'
4096'Units'

LogisRc'
Regression'

≈1000'Classes'

Simple	
 OpCmizaCon	
 Algorithms	

•  StochasCc	
 Gradient	
 Descent	

•  EM	
 algorithm	
 (for	
 HMMs)	

7	

Other	
 Basic	
 Concepts	
 	

•  Cross	
 ValidaCon	

•  Overfi]ng	

•  Bias-­‐Variance	
 Tradeoff	

8	

Learning	
 Theory	
 	

9	

GeneralizaCon	
 Bounds	

•  Formal	
 characterizaCon	
 of	
 overfi]ng	

•  Example	
 result:	

10	

Eout (h) ≤ Ein (h)+O
log(1 /δ)

N
"

#
$

%

&
'

Trained	
 Model	
 Training	
 Size	

Training	
 Error	
 Test	
 Error	

With	
 Prob.	
 ≥	
 1-­‐δ	
 :	

Make	
 rigorous!	

Shabering	

•  DefiniGon:	
 A	
 set	
 of	
 points	
 is	
 shaHered	
 by	
 H	
 if	

for	
 all	
 possible	
 binary	
 labelings	
 of	
 points,	

there	
 exists	
 some	
 h	
 that	
 classifies	
 perfectly.	

11	

Shattering

Definition: A set of points is shattered by a hypothesis class H if for all
possible binary labelings of the points, there exists some h ∈ H that can
represent the corresponding labeling function

Consider 3 points (in any positions) in 2D and some possible labelings

In 2D, 3 points can always be shattered by linear separators
.. no matter how they are positioned

Now how about 4 points in 2D?

For some labelings of 4 points in 2D, a linear separator doesn’t exist

The hypothesis class of linear separator can shatter maximum 3 points in 2D

(CS5350/6350) Learning Theory September 27, 2011 9 / 14

Slide	
 Material	
 Borrowed	
 From	
 Piyush	
 Rai:	
 	

hbps://www.cs.utah.edu/~piyush/teaching/27-­‐9-­‐print.pdf	

In	
 2D,	
 any	
 3	
 points	
 can	
 always	
 be	
 shaHered	
 by	
 linear	
 models!	

Shabering	

•  DefiniGon:	
 A	
 set	
 of	
 points	
 is	
 shaHered	
 by	
 H	
 if	

for	
 all	
 possible	
 binary	
 labelings	
 of	
 points,	

there	
 exists	
 some	
 h	
 that	
 classifies	
 perfectly.	

12	

Slide	
 Material	
 Borrowed	
 From	
 Piyush	
 Rai:	
 	

hbps://www.cs.utah.edu/~piyush/teaching/27-­‐9-­‐print.pdf	

In	
 2D,	
 linear	
 models	
 cannot	
 shaHer	
 4	
 points!	

Shattering

Definition: A set of points is shattered by a hypothesis class H if for all
possible binary labelings of the points, there exists some h ∈ H that can
represent the corresponding labeling function

Consider 3 points (in any positions) in 2D and some possible labelings

In 2D, 3 points can always be shattered by linear separators
.. no matter how they are positioned

Now how about 4 points in 2D?

For some labelings of 4 points in 2D, a linear separator doesn’t exist

The hypothesis class of linear separator can shatter maximum 3 points in 2D

(CS5350/6350) Learning Theory September 27, 2011 9 / 14

VC	
 Dimension	

•  VC(H)	
 =	
 most	
 #	
 points	
 that	
 can	
 be	
 shabered	

–  If	
 H	
 is	
 linear	
 models	
 in	
 2D	
 feature	
 space:	

•  VC(H)	
 =	
 3	

13	

Eout (h) ≤ Ein (h)+O
log 2N

VC(H)
+1

"

#
$

%

&
'+ log

1
δ

"

#
$
%

&
'

N

"

#

$
$
$
$

%

&

'
'
'
'

With	
 Prob.	
 ≥	
 1-­‐δ	
 :	

Structured	
 PredicCon	

14	

•  Part-­‐of-­‐Speech	
 Tagging	

–  Given	
 a	
 sequence	
 of	
 words	
 x,	
 predict	
 sequence	
 of	
 tags	
 y.	

–  Dependencies	
 from	
 tag-­‐tag	
 transiCons	
 in	
 Markov	
 model.	

	

à	
 Similarly	
 for	
 other	
 sequence	
 labeling	
 problems,	
 e.g.,	
 RNA	
 Intron/
Exon	
 Tagging.	

The rain wet the cat x Det N V Det N
y

Examples of Complex Output Spaces

15	

Examples of Complex Output Spaces

•  Natural Language Parsing
–  Given a sequence of words x, predict the parse tree y.
–  Dependencies from structural constraints, since y has to be a

tree.

The dog chased the cat
x

S

VP NP

Det N V

NP

Det N

y

16	

Examples of Complex Output Spaces

•  Information Retrieval
–  Given a query x, predict a ranking y.
–  Dependencies between results (e.g. avoid redundant hits)
–  Loss function over rankings (e.g. Average Precision)

SVM
x 1.  Kernel-Machines

2.  SVM-Light
3.  Learning with Kernels
4.  SV Meppen Fan Club
5.  Service Master & Co.
6.  School of Volunteer Management
7.  SV Mattersburg Online
…

y

17	

General Formula (Linear Models)

•  Assume scoring function F

•  Assume F is linear:

h(x;w) = argmax
y∈Y (x)

F(x, y;w)

F(x, y;w) = wTΨ(x, y)

18	

Example	
 1	

19	

h(x;w) = argmax
y∈Y (x)

F(x, y;w) F(x, y;w) = wTΨ(x, y)

Ψ(x, y) = yxBinary	
 ClassificaGon:	

Y (x) = −1,+1{ }

F(x, y;w) = y(wTx)

h(x;w) = argmax
y∈ −1,+1{ }

y wTx()

Examples	

20	

h(x;w) = argmax
y∈Y (x)

F(x, y;w) F(x, y;w) = wTΨ(x, y)

1st	
 Order	
 Sequences:	
 Ψ(x, y) = φ(y j, y j−1 | x)
j
∑

Y (x) = all	
 possible	
 output	
 sequences	

F(x, y;w) = wT φ(y j, y j−1 | x)
j
∑

Solve	
 using	
 Viterbi!	

Examples	

21	

h(x;w) = argmax
y∈Y (x)

F(x, y;w) F(x, y;w) = wTΨ(x, y)

Integer	
 Linear	
 Program:	
 Ψ(x, y) = y jφ j x()
j
∑

Y (x) = Feasible	
 se]ngs	
 of	
 y	

F(x, y;w) = yTc c =
wTφ1(x)
wTφ 2 (x)
!

!

"

#
#
#
#

$

%

&
&
&
&

h(x;w) = argmax
y∈Y (x)

yTc

Each	
 yj	
 	
 	
 	
 	
 {0,1}	
 ∈

Structured Prediction Learning Problem

•  Efficient Inference/Prediction

–  Viterbi in sequence labeling
–  CKY Parser for parse trees
–  Sorting for ranking

•  Efficient Learning/Training
–  Learn parameters w from training data {xi,yi}i=1..N

–  Structural SVM: Hinge Loss Minimization
–  Conditional Random Fields: Log Loss Minimization
–  Structured Perceptron, etc…

h(x;w) = argmax
y

wTΨ(y,x)

22	

Perceptron	
 Learning	
 Algorithm	

•  w1	
 =	
 0,	
 b1	
 =	
 0	

•  For	
 t	
 =	
 1	
 ….	

– Receive	
 example	
 (x,y)	

–  If	
 h(x|wt)	
 =	
 y	

•  [wt+1,	
 bt+1]	
 =	
 [wt,	
 bt]	

– Else	

• wt+1=	
 wt	
 +	
 yx	

• bt+1	
 =	
 bt	
 +	
 y	

23	

S = (xi, yi){ }i=1
N

y ∈ +1,−1{ }

Training	
 Set:	

Go	
 through	
 training	
 set	
 	

in	
 arbitrary	
 order	

(e.g.,	
 randomly)	

h(x |w) = sign(wT x − b)

Structured	
 Perceptron	

•  w1	
 =	
 0	

•  For	
 t	
 =	
 1	
 ….	

– Receive	
 example	
 (x,y)	

–  If	
 h(x|wt)	
 =	
 y	

• wt+1	
 =	
 wt	

– Else	

• wt+1=	
 wt	
 +	
 Ψ(x,y)	

24	

S = (xi, yi){ }i=1
N

Training	
 Set:	

Go	
 through	
 training	
 set	
 	

in	
 arbitrary	
 order	

(e.g.,	
 randomly)	

h(x |w) = argmax
y '

wTΨ(x, y ')

Conventional SVMs
•  Input: x (high dimensional point)
•  Target: y (either +1 or -1)
•  Prediction: sign(wTx)

•  Training:

 subject to:

•  The sum of slacks upper bounds the 0/1 loss!

∑
=

+
N

i
i

w N
Cw

1

2

, 2
1minarg ξ

ξ

ii
T xwi ξ−≥⋅∀ 1)(y : i

∑
i

iξ

25	

Conventional SVMs
•  Input: x (high dimensional point)
•  Target: y (either +1 or -1)
•  Prediction: sign(wTx)

•  Training:

 subject to:

•  The sum of slacks upper bounds the 0/1 loss!

∑
=

+
N

i
i

w N
Cw

1

2

, 2
1minarg ξ

ξ

ii
T xwi ξ−≥⋅∀ 1)(y : i

∑
i

iξ
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

f(x)	

Lo
ss
	

0/1	
 Loss	

Hinge	
 Loss	

Target	
 y	

L(yi, f (xi)) =max(0,1− yi f (xi)) = ξi

argmin
w,b,ξ

1
2
wTw+ C

N
ξi

i
∑

∀i : yi w
T xi − b() ≥1−ξi

∀i :ξi ≥ 0

26	

Structural SVM
•  Let x denote a structured input (sentence)
•  Let y denote a structured output (POS tags)

•  Standard objective function:

•  Constraints are defined for each incorrect labeling y’
over each x.

∑+
i

iN
Cw ξ2

2
1

[Tsochantaridis et al., 2005]

∀i,∀y ' ≠ y(i) : wTΨ(y(i),x(i)) ≥ wTΨ(y ',x(i))+Δi (y ')−ξi

Score(y(i))	
 Score(y’)	
 Loss(y’)	
 Slack	

27	

Interpreting Constraints

Suppose for incorrect y’:

Then:

∑+
i

iN
Cw ξ2

2
1

∀i,∀y ' ≠ y(i) : wTΨ(y(i),x(i)) ≥ wTΨ(y ',x(i))+Δi (y ')−ξi

)'(75.0 yΔ≥≥iξ

Score(y(i))	
 Score(y’)	
 Loss(y’)	
 Slack	

[Tsochantaridis et al., 2005] 28	

Crowdsourcing	

29	

Acquiring	
 Labels	
 from	
 Annotators	

30	

Figure 5: Showing the questionnaire given to users after they
completed the clustering task.

Figure 6: Showing the tagging task for generating the second
feature representation described in Section 4.1.2.

Paris. Figure 5 shows our closing questionnaire. Since our goal is
to collect high-quality usage data from engaged users, we discarded
any results if the user reported that the instructions were unclear or
that the clusterings were useless. Overall, we retained approximately
80% of the user-generated clusterings for a total of 218.

5.2 Feature Tagging
We developed a tagging task to construct the second feature rep-

resentation described in Section 4.1.2. Figure 6 shows our tagging
interface. For each of the 250 attractions, we asked five human
annotators to select which of 39 pre-specified tags (shown in Figure
6) should be associated with that attraction. Annotators were asked
to select all tags that apply. We considered allowing users to spec-
ify their own tags, but that setup would dramatically increase the
complexity of the data processing due to matching tags with similar
meanings or spelling deviations.

We used this tagging data to construct a 39-dimensional binary
feature representation of the 250 attractions (with each dimension
corresponding to a tag). For each attraction, any tag that was se-
lected by at least 3/5 annotators received a positive value in the
corresponding binary feature, or otherwise a zero value.

6. RELATED WORK
Our work is motivated by recent advancements in the HCI com-

munity studying how to incorporate machine learning with rich user

interactions. In particular, we focused on learning from clustering
interactions [9, 2, 5]. In contrast to previous work, we aim to de-
velop a systematic approach to model the variability of similarity
functions contained within a user population.

The modeling approach most similar to LCC is Bayesian “crowd-
clustering” [13]. One key difference is that [13] assumes there is a
global (or consensus) set of atomic clusters (which different users
may merge into varying higher-level clusters). As such, [13] focuses
on recovering these atomic clusters from many higher-level partial
clusterings. In contrast, we focus on more subjective user tasks,
which are unlikely to yield agreed-upon atomic clusterings (e.g.,
organizing attractions in Paris based on personal interests).

Another related modeling approach is Bayesian clustered tensor
factorization (BCTF) [27]. One key difference is that, for BCTF,
pairwise relationships are not modeled symmetrically, which results
in non-metric per-task transform matrices. In contrast, our collab-
orative clustering problem is naturally modeled using symmetric
pairwise interactions that can be personalized to individual users
using a metric transform.

The actual term “collaborative clustering” is not new, and has
been used to refer to other clustering problems. For instance [14]
studied the problem where the input data is distributed across many
machines, and the machines must “collaborate” to arrive at a con-
sensus clustering. Another example is [12], who studied how to
combine ensembles of clusterings to make more robust predictions.
In contrast, we use the term as an analogue to collaborative filter-
ing. Another related work is [19], which uses latent representations
to predict multiple non-redundant clusterings (for one task). In
contrast, we focus on learning latent representations to capture the
clustering variability of a user population.

6.1 Connection to Tensor Factorization
Our approach (6) can be viewed as a tensor factorization problem

with missing values [1]. We can represent our training data Y (1) as
a 3-tensor Y ,

Y
mij

=

⇢

y
mij

if (i, j) 2 ¯Y
m

? otherwise , (17)

where ? denotes a missing value (i.e., user m did not cluster item i
and/or item j).

Analogous to low-rank matrix (2-tensor) factorization approaches
for collaborative filtering, our problem can be viewed as finding a
low-rank 3-tensor factorization for collaborative clustering that has
minimal reconstruction error on Y . In particular, our model can be
viewed as a restricted form of the PARAFAC decomposition [1]:

Y
mij

⇡
D

X

d=1

�
d

u
md

x
id

x
jd

+ b,

where each x
i

and u
m

are unit vectors, and �
d

are positive weights.
Each x

i

corresponds to an item representation, and each u
m

corre-
sponds to the diagonal of a user transform U

m

. In our model, rather
than constraining x

i

and u
m

to be unit vectors and controlling for
magnitude via �, we instead control the magnitudes of x

i

and u
m

(or U
m

) via regularization penalties R
x

and R
u

.11 We also enforce
u
m

� 0 to enforce each user model to be a metric transform.

6.2 Connection to Metric Learning
The problem of estimating user transforms U

m

and V
m

is related
to (multi-task) metric learning problems under pairwise constraints

11The relationship between our latent factor model and the
PARAFAC decomposition is analogous to that of bi-Gaussian latent
factor models and the SVD in collaborative filtering [26, 22].

How	
 Reliable	
 are	
 Annotators?	

•  If	
 we	
 knew	
 what	
 the	
 labels	
 were	

– Can	
 judge	
 workers	
 on	
 label	
 quality	

•  If	
 we	
 knew	
 who	
 the	
 good	
 workers	
 were	

– Can	
 create	
 labels	
 from	
 their	
 annotaCons	

•  Chicken	
 and	
 egg	
 problem!	

31	

Worker	
 Reliability	
 as	
 Latent	
 Variable	

•  Let	
 zm	
 denote	
 the	
 reliability	
 of	
 worker	
 m	

32	

yi =
1
zm

m
∑

yimzm
m
∑

EsGmated	
 label	

zm =
1
N

L(yi, yim)
i
∑

Differing	
 AmbiguiCes	
 Across	
 Tasks	

•  Oven	
 collecCng	
 annotaCons	
 for	
 many	
 tasks	

•  Some	
 tasks	
 are	
 harder	
 than	
 others	

•  How	
 many	
 labels	
 to	
 collect	
 for	
 each	
 task?	

33	

Structured	
 AnnotaCons	

34	

hbp://arxiv.org/pdf/1506.02106v4.pdf	

Original image FCN Segmentation

Levels of supervision

Full
supervision

Image-level
supervision

Point-level
supervision

Objectness
prior

Figure 2: (a) Overview of our semantic segmentation train-
ing framework. (b) Different levels of training supervision
for semantic segmentation models. For full supervision, the
class label of every pixel is provided. For image-level su-
pervision, the class labels are known but their locations are
not. We introduce point-level supervision, where each class
label is only associated with one or a few pixel(s), corre-
sponding to humans pointing to objects of that class. We in-
clude an objectness prior in our training loss function along-
side point-level supervision to accurately infer the object
extent.

trained by optimizing the sum of per-pixel cross-entropy
terms [5, 22]. Let I be the set of pixels in the image.
Let s

ic

be the CNN score for pixel i and class c. Let
S
ic

= exp(s
ic

)/
P

N

k=1 exp(sik) be the softmax probability
of class c at pixel i. Given a ground truth map G indicating
that pixel i belongs to class G

i

, the loss on a single training
image is:

L
pix

(S,G) = �
X

i2I
log(S

iGi) (1)

The loss is simply zero for pixels where the ground truth
label is not defined (for example, in the case of pixels de-
fined as “difficult” on the boundary of objects in PASCAL
VOC [8]).

Image-level supervision. In this case, the only informa-
tion available during training are the sets L ✓ {1, . . . N} of
classes present in the image and L0 ✓ {1, . . . N} of classes
not present in the image (Fig. 2). The CNN model can be
trained with a different cross-entropy loss:

L
img

(S,L, L0
) = � 1

|L|
X

c2L

log(S
tcc)�

1

|L0|
X

c2L

0

log(1�S
tcc)

with t
c

= argmax

i2I
S
ic

(2)

The first part of Eqn. (2), corresponding to c 2 L, is used
in [28]. It encourages each class in L to have high proba-
bility on at least one pixel in the image. We extend this loss

to include the second summation over c 2 L0. This corre-
sponds to the fact that no pixels should have high probabil-
ity for classes that are not present in the image. We found
this simple extension to be very effective in practice.

Point-level supervision. We study the intermediate case
where the object classes are known for a small set of super-
vised pixels I

s

, whereas other pixels are just known to be-
long to some class in L. In this case, we generalize Eqn. (1)
and Eqn. (2) to:

L
point

(S,G,L, L0
) = L

img

(S,L, L0
)�

X

i2Is

↵
i

log(S
iGi) (3)

Here, ↵
i

determines the relative importance of each super-
vised pixel. We experiment with several formulations for
↵
i

. (1), for each class we ask the user to either determine
that the class is not present in the image or to point to one
object instance. In this case, |I

s

| = |L| and ↵
i

is uniform
for every point; (2), we ask multiple annotators to do the
same task as (1), and we set ↵

i

to be the confidence of the
accuracy of the annotator that provided the point; (3), we
ask the annotator(s) to point to every instance of the classes
in the image, and ↵

i

corresponds to the order of the points:
the first point is more likely to correspond to the largest ob-
ject instance and thus deserves a higher weight ↵

i

.

Objectness prior. One issue with training models with
very few or no supervised pixels is correctly inferring the
spatial extent of the objects. In general, weakly supervised
methods are prone to local minima: they focus on only a
small part of the target object, or predict all pixels as belong-
ing to the background class [28]. To alleviate this problem,
we introduce an additional term in our training objective
based on an objectness prior (Fig. 2). Objectness provides
a probability for whether each pixel belongs to any object
class [2] (e.g., bird, car, sheep), as opposed to background
(e.g., sky, water, grass). These probabilities have been pre-
viously used in the weakly supervised semantic segmenta-
tion before as unary potentials in graphical models [37] or
during inference following a CNN segmentation [29]. To
the best of our knowledge, we are the first to incorporate
them directly into CNN training.

We calculate the per-pixel objectness prior by assign-
ing each pixel the average objectness score of all windows
containing it. These scores are obtained by using the pre-
trained objectness model from the released code of [2].
The objectness model is pre-trained on 50 images randomly
sampled from a variety of different datasets (e.g., INRIA
Person, Caltech 101) that do not overlap with PASCAL
VOC 2007-2012.

Let P
i

be the probability that pixel i belongs to an object.
Let O be the classes corresponding to objects, with the other
classes corresponding to backgrounds. In PASCAL VOC,
O are the 20 object classes, and there is a single generic

Original image FCN Segmentation

Levels of supervision

Full
supervision

Image-level
supervision

Point-level
supervision

Objectness
prior

Figure 2: (a) Overview of our semantic segmentation train-
ing framework. (b) Different levels of training supervision
for semantic segmentation models. For full supervision, the
class label of every pixel is provided. For image-level su-
pervision, the class labels are known but their locations are
not. We introduce point-level supervision, where each class
label is only associated with one or a few pixel(s), corre-
sponding to humans pointing to objects of that class. We in-
clude an objectness prior in our training loss function along-
side point-level supervision to accurately infer the object
extent.

trained by optimizing the sum of per-pixel cross-entropy
terms [5, 22]. Let I be the set of pixels in the image.
Let s

ic

be the CNN score for pixel i and class c. Let
S
ic

= exp(s
ic

)/
P

N

k=1 exp(sik) be the softmax probability
of class c at pixel i. Given a ground truth map G indicating
that pixel i belongs to class G

i

, the loss on a single training
image is:

L
pix

(S,G) = �
X

i2I
log(S

iGi) (1)

The loss is simply zero for pixels where the ground truth
label is not defined (for example, in the case of pixels de-
fined as “difficult” on the boundary of objects in PASCAL
VOC [8]).

Image-level supervision. In this case, the only informa-
tion available during training are the sets L ✓ {1, . . . N} of
classes present in the image and L0 ✓ {1, . . . N} of classes
not present in the image (Fig. 2). The CNN model can be
trained with a different cross-entropy loss:

L
img

(S,L, L0
) = � 1

|L|
X

c2L

log(S
tcc)�

1

|L0|
X

c2L

0

log(1�S
tcc)

with t
c

= argmax

i2I
S
ic

(2)

The first part of Eqn. (2), corresponding to c 2 L, is used
in [28]. It encourages each class in L to have high proba-
bility on at least one pixel in the image. We extend this loss

to include the second summation over c 2 L0. This corre-
sponds to the fact that no pixels should have high probabil-
ity for classes that are not present in the image. We found
this simple extension to be very effective in practice.

Point-level supervision. We study the intermediate case
where the object classes are known for a small set of super-
vised pixels I

s

, whereas other pixels are just known to be-
long to some class in L. In this case, we generalize Eqn. (1)
and Eqn. (2) to:

L
point

(S,G,L, L0
) = L

img

(S,L, L0
)�

X

i2Is

↵
i

log(S
iGi) (3)

Here, ↵
i

determines the relative importance of each super-
vised pixel. We experiment with several formulations for
↵
i

. (1), for each class we ask the user to either determine
that the class is not present in the image or to point to one
object instance. In this case, |I

s

| = |L| and ↵
i

is uniform
for every point; (2), we ask multiple annotators to do the
same task as (1), and we set ↵

i

to be the confidence of the
accuracy of the annotator that provided the point; (3), we
ask the annotator(s) to point to every instance of the classes
in the image, and ↵

i

corresponds to the order of the points:
the first point is more likely to correspond to the largest ob-
ject instance and thus deserves a higher weight ↵

i

.

Objectness prior. One issue with training models with
very few or no supervised pixels is correctly inferring the
spatial extent of the objects. In general, weakly supervised
methods are prone to local minima: they focus on only a
small part of the target object, or predict all pixels as belong-
ing to the background class [28]. To alleviate this problem,
we introduce an additional term in our training objective
based on an objectness prior (Fig. 2). Objectness provides
a probability for whether each pixel belongs to any object
class [2] (e.g., bird, car, sheep), as opposed to background
(e.g., sky, water, grass). These probabilities have been pre-
viously used in the weakly supervised semantic segmenta-
tion before as unary potentials in graphical models [37] or
during inference following a CNN segmentation [29]. To
the best of our knowledge, we are the first to incorporate
them directly into CNN training.

We calculate the per-pixel objectness prior by assign-
ing each pixel the average objectness score of all windows
containing it. These scores are obtained by using the pre-
trained objectness model from the released code of [2].
The objectness model is pre-trained on 50 images randomly
sampled from a variety of different datasets (e.g., INRIA
Person, Caltech 101) that do not overlap with PASCAL
VOC 2007-2012.

Let P
i

be the probability that pixel i belongs to an object.
Let O be the classes corresponding to objects, with the other
classes corresponding to backgrounds. In PASCAL VOC,
O are the 20 object classes, and there is a single generic

Figure 4: Example squiggles collected.

compare this supervision setting to human points, we need
to collect both actual human squiggles and annotation times.
We extend the user interface shown in Fig. 3 by asking an-
notators to draw one squiggle on the extent of the target
class. Fig. 4 shows some collected data.

Error rates. Workers incorrectly labeled an object class
as absent only 0.11% of the time. 6.3% of the clicks were
on the wrong object class, and an additional 1.4% were on
“difficult” pixels.

Annotation times. As before, it takes 18.5 seconds to an-
notate the classes not present in the image. For every class
that is present, it takes 10.9 seconds to draw a free-form
squiggle on the target class. Therefore, the labeling cost of
the squiggles task is 18.5 + 1.5 ⇥ 10.9 = 34.9 seconds
per image. This is 1.58⇥ more expensive than obtaining
1Point point-level supervision and 1.75⇥ more expensive
than image-level labels.

Box-level supervision. A common intermediate between
image-level labels and pixel-wise segmentations is to obtain
bounding box annotations around each object instance. We
use the bounding boxes provided with the PASCAL VOC
dataset, and estimate the annotation times from literature.

Timing greatly depends on the setup. [18] reports 7 sec-
onds to draw a bounding box. However, they do not exam-
ine their quality, and carry out their study on rather easy
datasets with mainly large centered objects (MSRC, IIS,
iCoSeg). [32] reports 10.2 seconds with high AMT er-
ror rates. [36] reports 25.5 seconds for drawing and 42.4
seconds with quality verification. The protocol of [36]
has been used for producing the official annotations of the
ILSVRC [31], which is currently the most popular dataset
for object class detection and is of comparable difficulty to
PASCAL VOC. Its bounding boxes are high quality and pre-
cisely match the object extent. Hence, in this paper we as-
sume it takes 26 seconds to draw a precise bounding box
without quality verification. On average, there are a total of
2.8 instances per image over all classes. Therefore, anno-
tating them takes 18.5 + 2.8⇥ 26 = 91.3 seconds. This is
4.1⇥ more expensive than point-level supervision.

Full supervision. For segmentation annotation, the au-
thors of the COCO dataset report 22 worker hours per 1000
segmentations, so 79 seconds per segmentation [21]. Thus
to segment all instances it takes 18.5 + 2.8 ⇥ 79 = 239.7
seconds, more than 10⇥ the cost of point supervision.

In Section 5 we compare the accuracy of the models
trained with different levels of supervision.

5. Experiments

We empirically demonstrate the effectiveness of our
point-level supervision and objectness prior.

5.1. Setup

CNN architecture. We use the state-of-the-art fully con-
volutional network model as in [22]. Briefly, the architec-
ture is based on the VGG 16-layer net [34], with all fully
connected layers converted to convolutional layers. The last
classifier layer is discarded and replaced with a 1x1 convo-
lution layer with channel dimension N = 21 equal to the
number of object classes. The final modification is the ad-
dition of a deconvolution layer to bilinearly upsample the
output to pixel-level dense predictions.2

CNN training. We train following a procedure similar
to [22]. We use stochastic gradient descent with a fixed
learning rate of 10

�5, doubling the learning rate for bi-
ases, and with a minibatch of 20 images, momentum of 0.9
and weight decay 0.0005. The network is initialized with
weights pre-trained for a 1000-way classification task of the
ILSVRC 2012 dataset [34, 31, 22].3 In the fully supervised
case, we zero-initialize the classifier weights [22], and for
all the weakly supervised cases we follow [28] to initialize
them with weights learned by the original VGG network for
classes common to both PASCAL and ILSVRC. We back-
propagate through all layers to fine-tune the network, and
train for 50,000 iterations. We build directly upon the pub-
licly available implementation of [22, 19].

Dataset. We train and evaluate on the PASCAL VOC
2012 segmentation dataset [8] augmented with extra anno-
tations from [14]. There are 10,582 training images, 1,449
validation images and 1,456 test images. We report the
mean intersection over union (mIOU), averaged over 21
classes. Table 5a gives the performances of our models on
the validation set of PASCAL VOC 2012.

5.2. Point-level supervision

Baseline. We begin by establishing a baseline segmenta-
tion model trained from image-level labels with no addi-
tional information. We base our model on [28], which trains
a similar fully convolutional network and obtains 25.1%

2[22] introduces additional refinement by decreasing the stride of the
output layers from 32 pixels to 8 pixels, which improves their results from
59.7% to 62.7% mIOU on the PASCAL VOC 2011 validation set. We use
the original model with stride of 32 for simplicity.

3This is standard in the literature [5, 22, 28, 26, 29, 11]. We do not
consider the cost of collecting those annotations; including them would
not change our overall conclusions.

AcCve	
 Learning	

35	

Crowdsourcing	

36	

Y LeCun
MA Ranzato

Object Recognition [Krizhevsky, Sutskever, Hinton 2012]

“Mushroom”	

Labeled and Unlabeled data

Human expert/
Special equipment/

Experiment

“Crystal” “Needle” “Empty”

Cheap and abundant ! Expensive and scarce !

“0” “1” “2” …

“Sports”
“News”
“Science”

…

Unlabeled	

Labeled	

IniCally	
 Empty	

Repeat	

Passive	
 Learning	

37	

Y LeCun
MA Ranzato

Object Recognition [Krizhevsky, Sutskever, Hinton 2012]

“Mushroom”	

Labeled and Unlabeled data

Human expert/
Special equipment/

Experiment

“Crystal” “Needle” “Empty”

Cheap and abundant ! Expensive and scarce !

“0” “1” “2” …

“Sports”
“News”
“Science”

…

Unlabeled	

Labeled	

IniCally	
 Empty	

Repeat	

Random	

AcCve	
 Learning	

38	

Y LeCun
MA Ranzato

Object Recognition [Krizhevsky, Sutskever, Hinton 2012]

“Mushroom”	

Labeled and Unlabeled data

Human expert/
Special equipment/

Experiment

“Crystal” “Needle” “Empty”

Cheap and abundant ! Expensive and scarce !

“0” “1” “2” …

“Sports”
“News”
“Science”

…

Unlabeled	

Labeled	

IniCally	
 Empty	

Repeat	

Choose	

AcCve	
 Learning	

39	

Y LeCun
MA Ranzato

Object Recognition [Krizhevsky, Sutskever, Hinton 2012]

“Mushroom”	

Labeled and Unlabeled data

Human expert/
Special equipment/

Experiment

“Crystal” “Needle” “Empty”

Cheap and abundant ! Expensive and scarce !

“0” “1” “2” …

“Sports”
“News”
“Science”

…

Unlabeled	

Labeled	

IniCally	
 Empty	

Goal:	
 Maximize	
 Accuracy	
 with	
 Minimal	
 Cost	

Repeat	

Choose	

Comparison	
 with	
 Passive	
 Learning	

•  ConvenConal	
 Supervised	
 Learning	
 is	
 considered	

“Passive”	
 Learning	

•  Unlabeled	
 training	
 set	
 sampled	
 according	
 to	
 test	

distribuCon	

•  So	
 we	
 label	
 it	
 at	
 random	
 	

–  Very	
 Expensive!	

40	

Simple	
 Example	

•  1	
 feature	

•  Learn	
 threshold	
 funcCon	

41	

True	
 Model	

Passive	
 Learning	

Sample	
 from	
 distribuCon	

Learned	
 Model	

Simple	
 Example	

•  1	
 feature	

•  Learn	
 threshold	
 funcCon	

42	

True	
 Model	

AcGve	
 Learning	

Binary	
 Search	

Comparison	
 with	
 Passive	
 Learning	

•  #	
 samples	
 to	
 be	
 within	
 ε	
 of	
 true	
 model	

•  Passive	
 Learning:	

•  AcCve	
 Learning:	

43	

O 1
ε

!

"
#
$

%
&

O log 1
ε

!

"
#

$

%
&

Simple'Example'

•  1'feature'
•  Learn'threshold'func7on'

39'

True'Model'
Passive'Learning'
Sample'from'distribu7on'

Learned'Model'Simple'Example'

•  1'feature'
•  Learn'threshold'func7on'

40'

True'Model'
Ac#ve&Learning&
Binary'Search'

MulC-­‐Armed	
 Bandits	

44	

Problems	
 with	
 Crowdsourcing	

•  Assumes	
 you	
 can	
 label	
 by	
 proxy	

– E.g.,	
 have	
 someone	
 else	
 label	
 objects	
 in	
 images	

•  But	
 someCmes	
 you	
 can’t!	

– Personalized	
 recommender	
 systems	

•  Need	
 to	
 ask	
 the	
 user	
 whether	
 content	
 is	
 interesCng	

– Personalized	
 medicine	

•  Need	
 to	
 try	
 treatment	
 on	
 paCent	

– Requires	
 actual	
 target	
 domain	

45	

Personalized	
 Labels	

46	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Sports	

Unlabeled	

Labeled	

IniCally	
 Empty	

Choose	

Repeat	

What	
 is	
 Cost?	

Real	
 System	

End	
 User	

Formal	
 DefiniCon	

•  K	
 acCons/classes	

•  Each	
 acCon	
 has	
 an	
 average	
 reward:	
 μk	

–  Unknown	
 to	
 us	

–  Assume	
 WLOG	
 that	
 u1	
 is	
 largest	

•  For	
 t	
 =	
 1…T	

–  Algorithm	
 chooses	
 acCon	
 a(t)	

–  Receives	
 random	
 reward	
 y(t)	

•  ExpectaCon	
 μa(t)	

	

•  Goal:	
 minimize	
 Tu1	
 –	
 (μa(1)	
 +	
 μa(2)	
 +	
 …	
 +	
 μa(T))	

47	

Basic	
 Se]ng	

K	
 classes	

No	
 features	

Algorithm	
 Simultaneously	

Predicts	
 &	
 Receives	
 Labels	

If	
 we	
 had	
 perfect	
 informaCon	
 to	
 start	
 Expected	
 Reward	
 of	
 Algorithm	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Sports	

-- -- -- -- --

0 0 0 1 0 # Shown

Average Likes : 0

InteracCve	
 PersonalizaCon	

(5	
 Classes,	
 No	
 features)	

48	

-- -- -- 0 --

0 0 0 1 0 # Shown

Average Likes : 0

InteracCve	
 PersonalizaCon	

(5	
 Classes,	
 No	
 features)	

49	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Sports	

-- -- -- 0 --

0 0 1 1 0 # Shown

Average Likes : 0

InteracCve	
 PersonalizaCon	

(5	
 Classes,	
 No	
 features)	

50	

	
 	
 	
 	
 	
 	
 	
 	
 	
 PoliCcs	

-- -- 1 0 --

0 0 1 1 0 # Shown

Average Likes : 1

InteracCve	
 PersonalizaCon	

(5	
 Classes,	
 No	
 features)	

51	

	
 	
 	
 	
 	
 	
 	
 	
 	
 PoliCcs	

-- -- 1 0 --

0 0 1 1 1 # Shown

Average Likes : 1

InteracCve	
 PersonalizaCon	

(5	
 Classes,	
 No	
 features)	

52	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 World	

-- -- 1 0 0

0 0 1 1 1 # Shown

Average Likes : 1

InteracCve	
 PersonalizaCon	

(5	
 Classes,	
 No	
 features)	

53	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 World	

-- -- 1 0 0

0 1 1 1 1 # Shown

Average Likes : 1

InteracCve	
 PersonalizaCon	

(5	
 Classes,	
 No	
 features)	

54	

	
 	
 	
 	
 	
 	
 	
 Economy	

-- 1 1 0 0

0 1 1 1 1 # Shown

Average Likes : 2

InteracCve	
 PersonalizaCon	

(5	
 Classes,	
 No	
 features)	

55	

	
 	
 	
 	
 	
 	
 	
 Economy	
 …	

-- 0.44 0.4 0.33 0.2

0 25 10 15 20 # Shown

Average Likes : 24

What	
 should	
 Algorithm	
 Recommend?	

56	

Exploit: Explore: Best:

	
 	
 	
 	
 	
 	
 	
 	
 	
 PoliCcs	
 	
 	
 	
 	
 	
 	
 	
 Economy	
 	
 	
 	
 	
 	
 	
 	
 	
 Celebrity	

How	
 to	
 OpGmally	
 Balance	
 Explore/Exploit	
 Tradeoff?	

Characterized	
 by	
 the	
 MulC-­‐Armed	
 Bandit	
 Problem	
 	

()

R(T) = OPT()− ALG()

•  Opportunity cost of not knowing preferences
•  “no-regret” if R(T)/T è 0

–  Efficiency measured by convergence rate

Regret:

Time Horizon

(OPT) = + () + () …

(ALG) = () () () ++ …

57	

Recap:	
 The	
 MulC-­‐Armed	
 Bandit	
 Problem	

•  K	
 acCons/classes	

•  Each	
 acCon	
 has	
 an	
 average	
 reward:	
 μk	

–  All	
 unknown	
 to	
 us	

–  Assume	
 WLOG	
 that	
 u1	
 is	
 largest	

•  For	
 t	
 =	
 1…T	

–  Algorithm	
 chooses	
 acCon	
 a(t)	

–  Receives	
 random	
 reward	
 y(t)	

•  ExpectaCon	
 μa(t)	

•  Goal:	
 minimize	
 Tu1	
 –	
 (μa(1)	
 +	
 μa(2)	
 +	
 …	
 +	
 μa(T))	

58	

Basic	
 Se]ng	

K	
 classes	

No	
 features	

Algorithm	
 Simultaneously	

Predicts	
 &	
 Receives	
 Labels	

Regret	

The	
 MoCvaCng	
 Problem	

•  Slot	
 Machine	
 =	
 One-­‐Armed	
 Bandit	

	

	

•  Goal:	
 Minimize	
 regret	
 From	
 pulling	
 subopCmal	
 arms	

59	

hbp://en.wikipedia.org/wiki/MulC-­‐armed_bandit	

Each	
 Arm	
 Has	
 	

Different	
 Payoff	

ImplicaCons	
 of	
 Regret	

•  If	
 R(T)	
 grows	
 linearly	
 w.r.t.	
 T:	

–  Then	
 R(T)/T	
 è	
 constant	
 >	
 0	

–  I.e.,	
 we	
 converge	
 to	
 predicCng	
 something	
 subopCmal	

•  If	
 R(T)	
 is	
 sub-­‐linear	
 w.r.t.	
 T:	

–  Then	
 R(T)/T	
 è	
 0	

–  I.e.,	
 we	
 converge	
 to	
 predicCng	
 the	
 opCmal	
 acCon	

60	

R(T) = OPT()− ALG()Regret:

Experimental	
 Design	

•  How	
 to	
 split	
 trials	
 to	
 collect	
 informaCon	

•  StaGc	
 Experimental	
 Design	
 	

–  Standard	
 pracCce	

–  (pre-­‐planned)	

61	

hbp://en.wikipedia.org/wiki/Design_of_experiments	

Treatment	
 Placebo	
 Treatment	
 Placebo	
 Treatment	

…	

SequenCal	
 Experimental	
 Design	

•  Adapt	
 experiments	
 based	
 on	
 outcomes	

62	

Treatment	
 Placebo	
 Treatment	
 Treatment	

…	

Treatment	

SequenCal	
 Experimental	
 Design	
 Mabers	

63	

hbp://www.nyCmes.com/2010/09/19/health/research/19trial.html	

SequenCal	
 Experimental	
 Design	

•  MAB	
 models	
 sequenCal	
 experimental	
 design!	

•  Each	
 treatment	
 has	
 hidden	
 expected	
 value	

– Need	
 to	
 run	
 trials	
 to	
 gather	
 informaCon	

–  “ExploraCon”	

•  In	
 hindsight,	
 should	
 always	
 have	
 used	
 treatment	

with	
 highest	
 expected	
 value	

•  Regret	
 =	
 opportunity	
 cost	
 of	
 exploraGon	

64	

basic	

Online	
 AdverCsing	

65	

Largest	
 Use-­‐Case	

of	
 MulC-­‐Armed	

Bandit	
 Problems	

The	
 UCB1	
 Algorithm	

66	

hbp://homes.di.unimi.it/~cesabian/Pubblicazioni/ml-­‐02.pdf	

-- 0.44 0.4 0.33 0.2

0 25 10 15 20 # Shown

Average Likes

Confidence	
 Intervals	

67	

**	
 hbp://www.cs.utah.edu/~jeffp/papers/Chern-­‐Hoeff.pdf	

	
 	
 	
 	
 	
 hbp://en.wikipedia.org/wiki/Hoeffding%27s_inequality	

•  Maintain	
 Confidence	
 Interval	
 for	
 Each	
 AcCon	

–  Oven	
 derived	
 using	
 Chernoff-­‐Hoeffding	
 bounds	
 (**)	

=	
 [0.1,	
 0.3]	
 =	
 [0.25,	
 0.55]	
 Undefined	

UCB1	
 Confidence	
 Interval	

68	

µk ±
2 ln t
tk

hbp://homes.di.unimi.it/~cesabian/Pubblicazioni/ml-­‐02.pdf	

Expected	
 Reward	

EsCmated	
 from	
 data	

Total	
 IteraCons	
 so	
 far	
 	

(70	
 in	
 example	
 below)	

-- 0.44 0.4 0.33 0.2

0 25 10 15 20 # Shown

Average Likes

#Cmes	
 acCon	
 k	
 was	
 chosen	

The	
 UCB1	
 Algorithm	

•  At	
 each	
 iteraCon	

–  Play	
 arm	
 with	
 highest	
 Upper	
 Confidence	
 Bound:	

69	

hbp://homes.di.unimi.it/~cesabian/Pubblicazioni/ml-­‐02.pdf	

-- 0.44 0.4 0.33 0.2

0 25 10 15 20 # Shown

Average Likes

argmax
k

µk + 2 ln t() / tk

Balancing	
 Explore/Exploit	

“OpGmism	
 in	
 the	
 Face	
 of	
 Uncertainty”	

70	

argmax
k

µk + 2 ln t() / tk

ExploitaCon	
 Term	
 ExploraCon	
 Term	

-- 0.44 0.4 0.33 0.2

0 25 10 15 20 # Shown

Average Likes

hbp://homes.di.unimi.it/~cesabian/Pubblicazioni/ml-­‐02.pdf	

Analysis	
 (IntuiCon)	

71	

a(t +1) = argmax
k

µk + 2 ln t() / tk

With	
 high	
 probability	
 (**):	

**	
 Proof	
 of	
 Theorem	
 1	
 in	
 hbp://homes.di.unimi.it/~cesabian/Pubblicazioni/ml-­‐02.pdf	

µa(t+1) + 2 ln t() / ta(t+1) ≥ µ1 + 2 ln t() / t1 ≥ µ1

Value	
 of	

Best	
 Arm	

Upper	
 Confidence	
 Bound	
 of	
 Best	
 Arm	

µa(t+1) ≥ µa(t+1) − 2 ln t() / ta(t+1) The	
 true	
 value	
 is	
 greater	
 than	
 	

the	
 lower	
 confidence	
 bound.	

µ1 −µa(t+1) ≤ 2 2 ln t() / ta(t+1) Bound	
 on	
 regret	
 at	
 Cme	
 t+1	

72	

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

500	
 IteraCons	
 2000	
 IteraCons	

5000	
 IteraCons	
 25000	
 IteraCons	

	
 158	
 	
 	
 145	
 	
 	
 	
 89	
 	
 	
 	
 34	
 	
 	
 	
 74	
 	
 913	
 	
 	
 676	
 	
 	
 139	
 	
 	
 	
 82	
 	
 	
 195	

2442	
 	
 	
 1401	
 	
 	
 713	
 	
 	
 	
 131	
 	
 	
 318	
 	
 20094	
 	
 	
 	
 2844	
 	
 	
 1418	
 	
 	
 181	
 	
 	
 468	

How	
 Oven	
 Sub-­‐OpCmal	
 Arms	
 Get	
 Played	

•  An	
 arm	
 never	
 gets	
 selected	
 if:	

•  The	
 number	
 of	
 Cmes	
 selected:	

–  Prove	
 using	
 Hoeffding’s	
 Inequality	

73	

µk + 2 ln t() / tk ≤ µ1

Bound	
 grows	
 	

slowly	
 with	
 Cme	
 Shrinks	
 quickly	

with	
 #trials	

Theorem	
 1	
 in	
 hbp://homes.di.unimi.it/~cesabian/Pubblicazioni/ml-­‐02.pdf	

O ln t
µ1 −µk()2

"

#
$
$

%

&
'
'

Regret	
 Guarantee	

•  With	
 high	
 probability:	
 	

– UCB1	
 accumulates	
 regret	
 at	
 most:	

74	

Theorem	
 1	
 in	
 hbp://homes.di.unimi.it/~cesabian/Pubblicazioni/ml-­‐02.pdf	

R(T) =O K
ε
lnT

!

"
#

$

%
&

#AcCons	

Gap	
 between	
 best	
 &	
 2nd	
 best	

ε	
 =	
 μ1	
 –	
 μ2	

Time	
 Horizon	

Extensions	

•  Contextual	
 Bandits	

– Features	
 of	
 environment	

•  Dependent-­‐Arms	
 Bandits	

– Features	
 of	
 acCons/classes	

•  Dueling	
 Bandits	

– Learn	
 from	
 pairwise	
 feedback	

75	

Recap:	
 MAB	
 &	
 UCB1	

•  InteracCve	
 se]ng	

– Receives	
 reward/label	
 while	
 making	
 predicCon	

•  Must	
 balance	
 explore/exploit	

•  Sub-­‐linear	
 regret	
 is	
 good	

– Average	
 regret	
 converges	
 to	
 0	

76	

Reinforcement	
 Learning	

77	

AcCons	
 Impact	
 State	

•  In	
 MAB:	

– AcCons	
 do	
 not	
 impact	
 state	

– Constant	
 reward	
 funcCon	

•  Reinforcement	
 Learning	

– AcCons	
 effect	
 state	
 you’re	
 in	

– Reward	
 funcCon	
 depends	
 on	
 state	

78	

Video	
 Demo	

(Deep	
 Reinforcement	
 Learning	
 for	
 Atari)	

79	

hbps://www.youtube.com/watch?v=iqXKQf2BOSE	
 	

What	
 is	
 State?	

80	

Extended Data Figure 2 | Visualization of learned value functions on two
games, Breakout and Pong. a, A visualization of the learned value function on
the game Breakout. At time points 1 and 2, the state value is predicted to be ,17
and the agent is clearing the bricks at the lowest level. Each of the peaks in
the value function curve corresponds to a reward obtained by clearing a brick.
At time point 3, the agent is about to break through to the top level of bricks and
the value increases to ,21 in anticipation of breaking out and clearing a
large set of bricks. At point 4, the value is above 23 and the agent has broken
through. After this point, the ball will bounce at the upper part of the bricks
clearing many of them by itself. b, A visualization of the learned action-value
function on the game Pong. At time point 1, the ball is moving towards the
paddle controlled by the agent on the right side of the screen and the values of

all actions are around 0.7, reflecting the expected value of this state based on
previous experience. At time point 2, the agent starts moving the paddle
towards the ball and the value of the ‘up’ action stays high while the value of the
‘down’ action falls to 20.9. This reflects the fact that pressing ‘down’ would lead
to the agent losing the ball and incurring a reward of 21. At time point 3,
the agent hits the ball by pressing ‘up’ and the expected reward keeps increasing
until time point 4, when the ball reaches the left edge of the screen and the value
of all actions reflects that the agent is about to receive a reward of 1. Note,
the dashed line shows the past trajectory of the ball purely for illustrative
purposes (that is, not shown during the game). With permission from Atari
Interactive, Inc.

LETTER RESEARCH

Macmillan Publishers Limited. All rights reserved©2015

hbp://www.nature.com/nature/journal/v518/n7540/pdf/nature14236.pdf	

Reward	
 of	
 each	
 acGon	
 varies	
 depending	
 on	
 state!	

	

AcGon	
 at	
 current	
 state	
 impacts	
 future	
 states!	

	

Much	
 harder	
 to	
 do	
 exploraGon!	

Non-­‐Convex	
 OpCmizaCon	

81	

Recall:	
 Hidden	
 Markov	
 Models	

82	

Y1	

X1	

Y2	

X2	

YM	

XM	

…	

…	

P x, y() = P(End | yM) P(yi | yi−1)
i=1

M

∏ P(xi | yi)
i=1

M

∏

OpConal	

Y0	
 YEnd	

Recall:	
 EM	
 Algorithm	
 for	
 HMMs	

•  If	
 we	
 had	
 y’s	
 è	
 max	
 likelihood.	

•  If	
 we	
 had	
 (A,O)	
 è	
 predict	
 y’s	

	

1.  IniCalize	
 A	
 and	
 O	
 arbitrarily	

2.  Predict 	
 prob.	
 of	
 y’s	
 for	
 each	
 training	
 x	

3.  Use	
 y’s	
 to	
 esCmate	
 new	
 (A,O)	

4.  Repeat	
 back	
 to	
 Step	
 1	
 unCl	
 convergence	

83	
 hbp://en.wikipedia.org/wiki/Baum%E2%80%93Welch_algorithm	

ExpectaGon	
 Step	

MaximizaGon	
 Step	

Chicken	
 vs	
 Egg!	

Recall:	
 EM	
 Algorithm	
 for	
 HMMs	

•  If	
 we	
 had	
 y’s	
 è	
 max	
 likelihood.	

•  If	
 we	
 had	
 (A,O)	
 è	
 predict	
 y’s	

	

1.  IniCalize	
 A	
 and	
 O	
 arbitrarily	

2.  Predict 	
 prob.	
 of	
 y’s	
 for	
 each	
 training	
 x	

3.  Use	
 y’s	
 to	
 esCmate	
 new	
 (A,O)	

4.  Repeat	
 back	
 to	
 Step	
 1	
 unCl	
 convergence	

84	
 hbp://en.wikipedia.org/wiki/Baum%E2%80%93Welch_algorithm	

ExpectaGon	
 Step	

MaximizaGon	
 Step	

Chicken	
 vs	
 Egg!	

Non-­‐Convex	
 OpGmizaGon	
 Problem!	

Converges	
 to	
 local	
 opCmum.	

Can	
 We	
 Train	
 HMMs	
 OpGmally?	

InspiraCon	
 from	
 Dimensionality	
 ReducCon	

•  Find	
 best	
 rank	
 K	
 approximaCon	
 to	
 Y:	

•  Non-­‐convex	
 opCmizaCon	
 problem!	

– Due	
 to	
 non-­‐convex	
 feasible	
 region	

•  But	
 opGmally	
 solved	
 via	
 SVD!	

85	

argmin
U∈RNxK ,V∈RMxK

Y −UVT

2

2

Spectral	
 Learning	
 of	
 HMMs	

86	

P(y j | y j−1) = A P(x j | y j) =OWant	
 to	
 	

EsGmate:	

∑t = E x j+t x j()
T"

#$
%
&'= E E x j+t x j()

T
y j"

#$
%
&'

"
#$

%
&'

 = E E x j+t y j"
#

%
&E x j()

T
y j"

#$
%
&'

"
#$

%
&'

 = E OAtky j() Oy j()
T"

#$
%
&'

 =OAtE y j y j()
T"

#$
%
&'O

T

 =OAtZOT

Treat	
 each	
 xj	
 	
 and	
 yj	
 	

as	
 indicator	
 vector	

hbp://www.cs.cmu.edu/~ggordon/spectral-­‐learning/	

Spectral	
 Learning	
 of	
 HMMs	

87	

Σt	
 O	

At	
 Z	
 OT	

=	

hbp://www.cs.cmu.edu/~ggordon/spectral-­‐learning/	

A =UT ∑2 UT ∑1()
−1

OpGmal	
 SoluGon:	

(requires	
 a	
 lot	
 of	
 data)	

Rank-­‐K	
 SVD	
 of	
 Σ1	
 	
 	

…and	
 many	
 more	
 topics!	

•  ProbabilisCc	
 Models	

•  RepresentaCon	
 Learning	

–  Deep	
 learning	
 is	
 the	
 most	
 visible	
 example	

•  Causal	
 Reasoning	

•  ML	
 +	
 Game	
 Theory	

•  ML	
 +	
 Systems	

–  Large	
 Scale	
 Machine	
 Learning	

•  Etc	
 …	

88	

CS	
 159	

•  Special	
 Topics	
 in	
 Machine	
 Learning	

–  Taught	
 Every	
 Spring	
 Term	

–  Topics	
 Rotate	

•  Next	
 Term:	
 	

–  “Online	
 Learning,	
 InteracCve	
 Machine	
 Learning,	
 and	

Learning	
 from	
 Human	
 Feedback”	

•  Paper	
 Reading	
 &	
 PresenCng	
 +	
 Final	
 Project	

–  Graded	
 on	
 parCcipaCon	
 and	
 final	
 project	

89	

