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Announcements	

•  Miniproject	2	Released	
–  Poem	Genera?on	using	HMMs	
–  Due	March	10th	

•  Final	Exam	will	be	released	on	March	14th	
–  Take-home	(via	Moodle)	
–  Intended	to	take	3	hours	(shorter	than	homeworks)	
–  24-36	hour	window		
–  Open	book	of	everything	on	course	website	
–  No	collabora?on	
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Recap:	Linear	Models	

•  Linear	scoring	func?on	in	input	features:	

•  Some?mes	non-linear	transform	at	the	end	
– E.g.,	logis?c	Regression	
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f (x |w,b) = wT x − b

P(y =1| x,w,b) = τ ( f (x |w,b)) = 1
1+ exp − f (x |w,b){ }



Recap:	Mul?class	Logis?c	Regression	

4	

P(y =1| x,w,b)∝ ew
T x−b

Binary	LR:	

“Log	Linear”	Property:	

P(y = k | x,w,b)∝ ewk
T x−bkExtension	to	Mul?class:	

Keep	a	(wk,bk)		
for	each	class	

P(y = k | x,w,b) = ewk
T x−bk

ewm
T x−bm

m
∑

Mul?class	LR:	

y ∈ 0,1{ }
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P(y =1| x,w,b) = 1
1+ e−(w

T x−b)

Train	via	Gradient	Descent:	 ∂w − logP(y | x,w,b)
(x,y)∈S
∑

y ∈ 1,...,K{ }



Example:	HandwriYen	Digit	Recogni?on	

•  What	is	feature	representa?on	x?	
– Each	pixel	is	a	feature	
– Logis?c	regression	yields	≈80%	accuracy	

•  Can	we	do	beYer?	

Lecture	15:	Deep	Learning	 5	

P(y = 2 |     ,w,b)

P(y = 9 |     ,w,b)



Errors	In	Linear	Logis?c	Regression	

•  O`en	makes	mistakes	on	8’s:	

•  Shares	many	pixels	with	5’s	and	3’s:	

•  Linear	model	on	pixels	not	powerful	enough	
– E.g.,	doesn’t	capture	interac?ons	between	pixels	
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Feature	Engineering	

•  Linear	models	require	good	features	x	

•  Directed	edge	detec?on:	
–  (With	some	blurring)	
–  “Oriented	Gradients”	

•  Logis?c	regression	yields	≈90%	accuracy		
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BoYom	Le`	Edge	Top	Right	Edge	Le`	Edge	Top	Le`	Edge	



Comparing	8’s	vs	3’s	

•  New	feature	representa?on	beYer	
dis?nguishes	between	8’s	and	3’s:	
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Learn	Features	Automa?cally?	

•  Feature	engineering	is	tedious	
–  Don’t	know	which	ones	are	good	
–  Can	we	just	learn	them	automa?cally?	

•  Actually,	we	did!	
– From	convolu?onal	net	

•  Learns	features		
•  Learns	logis?c	regression	
•  “Deep	Learning”	
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Outline	For	Today	

•  Introduc?on	to	Deep	Learning	
– Learning	Features	for	Predic?ve	Modeling	

•  Deep	Convolu?onal	Networks	
– Very	popular	in	Computer	Vision	
	

•  Tips	for	Training	Deep	Networks	

•  Brief	Overview	of	other	Deep	Networks	
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Recap:	1	Layer	Neural	Network	

•  1	Neuron	
– Takes	input	x	
– Outputs	y	

	

•  ~Logis?c	Regression!	
– Gradient	Descent	

Σx	 y	

“Neuron”	
	
f(x|w,b)	=	wTx	–	b	
																=	w1*x1	+	w2*x2	+	w3*x3	–	b	
	

y	=	τ(	f(x)	)	
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Recap:	2	Layer	Neural	Network	

•  2	Layers	of	Neurons	
–  1st	Layer	takes	input	x	
–  2nd	Layer	takes	output	of	1st	layer	

•  Can	approximate	arbitrary	func?ons	
–  Provided	hidden	layer	is	large	enough	
–  “fat”	2-Layer	Network	

Σ
x	 y	

Σ	
Σ

Hidden	Layer	

Non-Linear!	
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Deep	Neural	Networks	

•  Why	prefer	Deep	over	a	“Fat”	2-Layer?	
– Compact	Model		

•  (exponen?ally	large	“fat”	model)	

Image	Source:	hYp://blog.peltarion.com/2014/06/22/deep-learning-and-deep-neural-networks-in-synapse/	
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Expressive	Power	
•  Deeper	networks	are	“exponen?ally	more	expressive”	than	

shallower	networks.	

•  Related	Example:	Boolean	Circuits	
–  Thought	Experiment:	How	many	gates	required	if	only	depth-2	circuits	

allowed?	
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hYp://en.wikipedia.org/wiki/Circuit_complexity	

x	 y	

Expressive)Power)
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AND	&	OR	as	Transfer	Func?ons	

•  Deep	networks	can	implement	AND	&	OR	
transfer	func?ons.	
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x	 y	Σ

AND f1, f2( ) =min f1, f2{ }

OR f1, f2( ) =max f1, f2{ } Used	in	prac?ce	



What	Happens	if	No	Transfer	Func?on?	

•  Just	linear	transforms?	

•  Deep	structure	collapses	to	linear	model!	
–  Linear	operators	are	associa?ve	&	commuta?ve	
–  Applying	a	linear	operator	to	a	linear	operator	yields	a	linear	operator	
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Σx	 y	

Σ	
x	 y	

Σ	
Σ



Recap:	Training	Neural	Networks	

•  Gradient	Descent!	**	
–  (Supervised	Learning)	

•  Parameters:	
–  (w11,b11,w12,b12,w2,b2)	

Σ
x	 y	

Σ	
Σ

**addi?onal	details	end	of	lecture	

∂w2 L yi,τ 2( )
i=1

N

∑ = ∂w2L yi,τ 2( )
i=1

N

∑ = ∂τ 2L yi,τ 2( )
i=1

N

∑ ∂w2τ 2 = ∂τ 2L yi,τ 2( )
i=1

N

∑ ∂ f2
τ 2∂w2 f2

f(x|w,b)	=	wTx	–	b	 y	=	τ(	f(x)	)	

∂w1m L yi,τ 2( )
i=1

N

∑ = ∂τ 2L yi,τ 2( )
i=1

N

∑ ∂ f2
τ 2∂w1m f2 = ∂τ 2L yi,τ 2( )

i=1

N

∑ ∂ f2
τ 2∂τ1m f2∂ f1m

τ1m∂w1m f1m

Backpropaga?on	=	Gradient	Descent	
	 	 	 				(lots	of	chain	rules)	
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Original	Biological	Inspira?on	
•  David	Hubel	&	Torsten	Wiesel	discovered	“simple	cells”	and	

“complex	cells”	in	the	1959	
–  Some	cells	ac?vate	for	simple	paSerns	

•  E.g.,	lines	at	certain	angles	
–  Some	cells	ac?vate	for	more	complex	paSerns	

•  Appear	to	take	ac?va?ons	of	simple	cells	as	input	
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Image	Source:		
hYps://cms.www.countway.harvard.edu/wp/wp-content/uploads/2013/09/0002595_ref.jpg	
hYps://cogni?veconsonance.files.wordpress.com/2013/05/c_fig5.jpg	



The	Brain	is	Hierarchical	
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Y LeCun
MA Ranzato

The Mammalian Visual Cortex is Hierarchical

[picture from Simon Thorpe]

[Gallant & Van Essen] 

The ventral (recognition) pathway in the visual cortex has multiple stages
Retina - LGN - V1 - V2 - V4 - PIT - AIT ....
Lots of intermediate representations

Image	Source:	hYp://www.cs.nyu.edu/~yann/talks/lecun-ranzato-icml2013.pdf	



But	Let’s	Not	Get	Carried	Away	

•  We	need	some	kind	of	wings	to	fly	
–  But	no	flapping		

	

•  Do	we	even	need	wings? 		
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No	Longer	Biologically	Inspired	
(for	the	most	part)	

•  Original	inspira?on	created	the	feed-forward	
network	

	

•  Field	is	now	called	“Deep	Learning”	
– Most	common	name	

•  Really	just	Automated	Feature	Learning	
–  Lots	of	op?miza?on	tricks	
–  And	architecture	tuning	
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E.g.,	Convolu?onal	Network	



Outline	For	Today	

•  Introduc?on	to	Deep	Learning	
– Learning	Features	for	Predic?ve	Modeling	

•  Deep	Convolu?onal	Networks	
– Very	popular	in	Computer	Vision	
	

•  Tips	for	Training	Deep	Networks	

•  Brief	Overview	of	other	Deep	Networks	
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Convolu?ons	

•  Images	typically	have	invariant	paYerns	
–  E.g.,	direc?onal	gradients	are	transla?onal	invariant:	

•  Apply	convolu?on	to	local	sliding	windows	
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Convolu?onal	Filters	

•  Applies	to	an	image	patch	x	
– Converts	local	window	into	single	value	
– Slide	across	image	
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-1	 0	 +1	

-1	 0	 +1	

-1	 0	 +1	

W	

x⊗W = Wijxij
ij
∑ Le`-to-Right	

Edge	Detector	

⊗W =

Local	Image	Patch	



•  Most	common	low-level	convolu?ons	for	
computer	vision	

•  Grey	=	0	
•  Light	=	posi?ve	
•  Dark	=	nega?ve	

Gabor	Filters	
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hYp://en.wikipedia.org/wiki/Gabor_filter	

-1	 0	 +1	

-1	 0	 +1	

-1	 0	 +1	

W	

Example	W:	



Gaussian	Blur	Filters	

•  Weights	decay	according	to	
				Gaussian	Distribu?on	
– Variance	term	controls	radius	

	
	
	
	

•  Black			=		0	
• White		=		Posi?ve	
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hYp://en.wikipedia.org/wiki/Gaussian_blur	

Example	W:	
Apply	per	RGB	Channel	



Deep	Convolu?onal	Networks	

•  Learn	layers	of	convolu?onal	filters	W		
– Apply	convolu?on	to	outputs	of	previous	layer	

•  Note:	convolu?ons	are	linear	operators	
– Need	non-linear	transform	
– Otherwise	all	layers	collapse	to	single	convolu?on		
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Image	Source:	hYp://cs.nyu.edu/~fergus/presenta?ons/nips2013_final.pdf	

⊗E.g.:	



Convolu?onal	Layer	

•  Current	Convolu?onal	Layer	consists	of:		

	

•  Main	modeling	concepts!	
–  Combine	them	to	create	convolu?onal	layer	
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⊗ =

Convolu?on	

max         , 0{ }=
Rec?linear	Transform	
•  Simplifies	Backprop	
•  Chain	rule	super	easy	
•  Also	easier	to	train	

max                     , 0{ }=⊗



Max	Pooling	

Lecture	15:	Deep	Learning	 30	

•  Assume	Convolu?on	Layer	is	eye	
detector	

•  How	to	make	detector	more	
robust	to	the	exact	loca?on	of	
the	eye?	

hYp://cs.nyu.edu/~fergus/tutorials/deep_learning_cvpr12/tutorial_p2_nnets_ranzato_short.pdf	



Max	Pooling	
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•  Maximum	response	from	a	
neighborhood	of	convolu?onal	
layer	outputs	

•  I.e.,	an	OR	gate!	

hYp://cs.nyu.edu/~fergus/tutorials/deep_learning_cvpr12/tutorial_p2_nnets_ranzato_short.pdf	



Alterna?ve:	L2	Pooling	
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•  L2	norm	of	a	neighborhood	of	
convolu?onal	layer	outputs	

•  So`er	version	of	max	pooling	
–  Harder	to	differen?ate	

fij
2

ij
∑



Local	Contrast	Normaliza?on	
•  Standardize	output	of	convolu?onal	layer	using	mean	&	

variability	es?mated	from	neighboring	outputs	

•  Simple	Example:	

•  Other	examples	in	references	below:	

Lecture	15:	Deep	Learning	 33	

f:	 fij =
fij −µij

σ ij

hYp://cs.nyu.edu/~fergus/tutorials/deep_learning_cvpr12/tutorial_p2_nnets_ranzato_short.pdf	
hYp://www.cs.toronto.edu/~fritz/absps/imagenet.pdf	

µij =mean fi ' j ' (i ', j ') close to (i, j){ }

σ ij
2 =mean fi ' j ' −µi ' j '( )

2
(i ', j ') close to (i, j){ } Biologically	Inspired!	
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hYp://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html	

Input	

8	Convolu?onal	
Filters	in	1st	Layer	

Rec?linear	
Transform	

Max	Pooling	



Deep	Convolu?onal	Networks	

•  Stack	mul?ple	layers	together	
•  Mul?class	logis?c	regression	at	top	
•  Train	using	gradient	descent	
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10	
filters	

7x7x3	Convolu?on	
3x3	Max	Pooling	
Down	Sample	4x	
25	x	25	x	10	

20	
filters	

5x5x10	Convolu?on	
3x3	Max	Pooling	
Down	Sample	4x	

6	x	6	x	20	

RGB	Input	Image	
100	x	100	x	3	

Input	
Image	Input	
Image	Input	
Image	

Logis?c	
Regression	
10	classes	



Down	Sampling	

•  Adjacent	Sliding	Window	Convolu?on		
–  Yields	output	of	same	dimensions	as	input	

•  Good	to	compress	into	fewer	pixels	
–  Skip	a	few	pixels	for	each	convolu?on	

•  “Stride”	
–  How	far	away	next	convolu?on	is	
–  No	Down	Sampling:	Stride	=	1	
–  Down	Sampling	2x:	Stride	=	2	
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Also	Max	Pooling	



Online	Demo	
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hYp://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html	



ImageNET	

•  Object	recogni?on	compe??on	(2012)	
– 1.5	Million	Labeled	Training	Examples	
– ≈1000	classes	
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hYp://www.image-net.org/	

Leopard	

Y LeCun
MA Ranzato

Object Recognition [Krizhevsky, Sutskever, Hinton 2012]

Y LeCun
MA Ranzato

Object Recognition [Krizhevsky, Sutskever, Hinton 2012]

Mushroom	

Y LeCun
MA Ranzato

Object Recognition [Krizhevsky, Sutskever, Hinton 2012]

Mite	



Deep	Convolu?onal	Net	for	ImageNET	

•  7	Hidden	Layers	
–  5	Convolu?onal	
–  2	Regular	

•  Mul?class	Logis?c	Regression	at	top	

•  Trained	using	stochas?c	gradient	descent	
–  And	a	lot	of	tricks	

•  Won	the	2012	ImageNET	compe??on	
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hYp://www.cs.toronto.edu/~fritz/absps/imagenet.pdf	
hYp://www.image-net.org/challenges/LSVRC/2012/results.html	
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hYp://www.image-net.org/	

Input	
Image	Input	
Image	Input	
Image	

hYp://www.cs.toronto.edu/~fritz/absps/imagenet.pdf	
hYp://`p.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf	

96	
filters	

RGB	Input	Image	
224	x	224	x	3	

7x7x3	Convolu?on	
3x3	Max	Pooling	
Down	Sample	4x	
55	x	55	x	96	

256	
filters	

5x5x96	Convolu?on	
3x3	Max	Pooling	
Down	Sample	4x	
13	x	13	x	256	

354	
filters	

3x3x256	Convolu?on	
13	x	13	x	354	

354	
filters	

3x3x354	Convolu?on	
13	x	13	x	354	

256	
filters	

3x3x354	Convolu?on	
3x3	Max	Pooling	
Down	Sample	2x	

6	x	6	x	256	

Standard	
4096	Units	

Standard	
4096	Units	

Logis?c	
Regression	

≈1000	Classes	



Visualizing	CNN	(Layer	1)	
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hYp://cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf	
hYp://cs.nyu.edu/~fergus/presenta?ons/nips2013_final.pdf	



Visualizing	CNN	(Layer	2)	
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Top	Image	Patches	Part	that	Triggered	Filter	
hYp://cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf	
hYp://cs.nyu.edu/~fergus/presenta?ons/nips2013_final.pdf	



Visualizing	CNN	(Layer	3)	
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Top	Image	Patches	Part	that	Triggered	Filter	
hYp://cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf	
hYp://cs.nyu.edu/~fergus/presenta?ons/nips2013_final.pdf	



Visualizing	CNN	(Layer	4)	
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Top	Image	Patches	Part	that	Triggered	Filter	

hYp://cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf	
hYp://cs.nyu.edu/~fergus/presenta?ons/nips2013_final.pdf	



Visualizing	CNN	(Layer	5)	
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hYp://cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf	
hYp://cs.nyu.edu/~fergus/presenta?ons/nips2013_final.pdf	

Top	Image	Patches	Part	that	Triggered	Filter	



Use	Hidden	Layers	as	Features	

•  Stack	hidden	layer	ac?va?ons	as	new	feature	representa?on	
•  Train	an	SVM	=)	
•  Generalize	to	other	datasets	
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Regression'

≈1000'Classes'



Failure	Cases	

Lecture	15:	Deep	Learning	 47	

hYp://arxiv.org/pdf/1312.6199v4.pdf	

(a) (b)

Figure 5: Adversarial examples generated for AlexNet [9].(Left) is a correctly predicted sample, (center) dif-
ference between correct image, and image predicted incorrectly magnified by 10x (values shifted by 128 and
clamped), (right) adversarial example. All images in the right column are predicted to be an “ostrich, Struthio

camelus”. Average distortion based on 64 examples is 0.006508. Plase refer to http://goo.gl/huaGPb
for full resolution images. The examples are strictly randomly chosen. There is not any postselection involved.

(a) (b)

Figure 6: Adversarial examples for QuocNet [10]. A binary car classifier was trained on top of the last layer
features without fine-tuning. The randomly chosen examples on the left are recognized correctly as cars, while
the images in the middle are not recognized. The rightmost column is the magnified absolute value of the
difference between the two images.

the original training set all the time. We used weight decay, but no dropout for this network. For
comparison, a network of this size gets to 1.6% errors when regularized by weight decay alone and
can be improved to around 1.3% by using carefully applied dropout. A subtle, but essential detail
is that we only got improvements by generating adversarial examples for each layer outputs which
were used to train all the layers above. The network was trained in an alternating fashion, maintain-
ing and updating a pool of adversarial examples for each layer separately in addition to the original
training set. According to our initial observations, adversarial examples for the higher layers seemed
to be significantly more useful than those on the input or lower layers. In our future work, we plan
to compare these effects in a systematic manner.

For space considerations, we just present results for a representative subset (see Table 1) of the
MNIST experiments we performed. The results presented here are consistent with those on a larger
variety of non-convolutional models. For MNIST, we do not have results for convolutional mod-
els yet, but our first qualitative experiments with AlexNet gives us reason to believe that convolu-
tional networks may behave similarly as well. Each of our models were trained with L-BFGS until
convergence. The first three models are linear classifiers that work on the pixel level with various
weight decay parameters �. All our examples use quadratic weight decay on the connection weights:
loss

decay

= �

P
w

2
i

/k added to the total loss, where k is the number of units in the layer. Three
of our models are simple linear (softmax) classifier without hidden units (FC10(�)). One of them,
FC10(1), is trained with extremely high � = 1 in order to test whether it is still possible to generate
adversarial examples in this extreme setting as well.Two other models are a simple sigmoidal neural
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(a) (b)

Figure 5: Adversarial examples generated for AlexNet [9].(Left) is a correctly predicted sample, (center) dif-
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camelus”. Average distortion based on 64 examples is 0.006508. Plase refer to http://goo.gl/huaGPb
for full resolution images. The examples are strictly randomly chosen. There is not any postselection involved.
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Figure 6: Adversarial examples for QuocNet [10]. A binary car classifier was trained on top of the last layer
features without fine-tuning. The randomly chosen examples on the left are recognized correctly as cars, while
the images in the middle are not recognized. The rightmost column is the magnified absolute value of the
difference between the two images.
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weight decay parameters �. All our examples use quadratic weight decay on the connection weights:
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FC10(1), is trained with extremely high � = 1 in order to test whether it is still possible to generate
adversarial examples in this extreme setting as well.Two other models are a simple sigmoidal neural
network with two hidden layers and a classifier. The last model, AE400-10, consists of a single layer
sparse autoencoder with sigmoid activations and 400 nodes with a Softmax classifier. This network
has been trained until it got very high quality first layer filters and this layer was not fine-tuned. The
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Outline	For	Today	

•  Introduc?on	to	Deep	Learning	
– Learning	Features	for	Predic?ve	Modeling	

•  Deep	Convolu?onal	Networks	
– Very	popular	in	Computer	Vision	
	

•  Tips	for	Training	Deep	Networks	

•  Brief	Overview	of	other	Deep	Networks	
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Training	Deep	Networks		

•  Deep	Networks	are	extremely	non-convex	
–  Hard	to	train	well	

•  Deep	Networks	have	extremely	high	capacity	
– Many	parameters,	easy	to	overfit	

•  Real	success	stories	only	in	the	last	10	years	
–  A	lot	of	(annotated)	data	
–  Increase	in	computa?onal	power	
–  BeYer	bag	of	tricks	
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Stochas?c	Gradient	Descent	+	Tricks!	

•  Some	related	to	choice	of	model/architecture	
–  Rec?linear	over	sigmoid	transfer	func?ons	
–  Local	contrast	normaliza?on	
–  Sparse	Connec?ons	that	enable	parallelism	
–  Ensemble	of	Deep	Networks	

•  Rest	are	op?miza?on	techniques	
–  Gradient	Clamping	
–  Mini-batching		
–  Momentum	
–  Adap?ve	Learning	Rates	
–  Random	Ini?aliza?on	
–  Dropout	
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Rec?linear	vs	Sigmoid	
(The	Vanishing	Gradient	Problem)	
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Gradient	Clamping	

•  Rec?linear	func?ons	can	grow	unbounded:	
– Gradients	can	get	very	large	
– Compounding	effect	in	lower	layers	

•  Opposite	of	the	vanishing	gradient	effect	with	sigmoids	
	
	

•  Solu?on:	clamp	gradients	
– E.g.,	clamp	norm	to	15	
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Dense	Convolu?onal	Networks	

•  Every	Convolu?onal	Layer	uses	every	output	from	
previous	layer	
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Sparse	Convolu?onal	Networks	
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Learning	Rate	&	Momentum	

•  If	valida?on	performance	plateaus	or	gets	worse	
–  Divide	learning	rate	by	2	

•  Momentum	is	a	weighted	combina?on	of	recent	
gradient	updates	
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w = w−η∂w
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Gradient	Descent	



Dropout	

•  Randomly	turn	off	nodes	during	training	

	

•  Choose	randomly	for	each	SGD	minibatch	
– Decorrelates	node	in	each	layer	
– Less	overfi{ng	
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Srivastava, Hinton, Krizhevsky, Sutskever and Salakhutdinov

(a) Standard Neural Net (b) After applying dropout.

Figure 1: Dropout Neural Net Model. Left: A standard neural net with 2 hidden layers. Right:
An example of a thinned net produced by applying dropout to the network on the left.
Crossed units have been dropped.

its posterior probability given the training data. This can sometimes be approximated quite
well for simple or small models (Xiong et al., 2011; Salakhutdinov and Mnih, 2008), but we
would like to approach the performance of the Bayesian gold standard using considerably
less computation. We propose to do this by approximating an equally weighted geometric
mean of the predictions of an exponential number of learned models that share parameters.

Model combination nearly always improves the performance of machine learning meth-
ods. With large neural networks, however, the obvious idea of averaging the outputs of
many separately trained nets is prohibitively expensive. Combining several models is most
helpful when the individual models are di↵erent from each other and in order to make
neural net models di↵erent, they should either have di↵erent architectures or be trained
on di↵erent data. Training many di↵erent architectures is hard because finding optimal
hyperparameters for each architecture is a daunting task and training each large network
requires a lot of computation. Moreover, large networks normally require large amounts of
training data and there may not be enough data available to train di↵erent networks on
di↵erent subsets of the data. Even if one was able to train many di↵erent large networks,
using them all at test time is infeasible in applications where it is important to respond
quickly.

Dropout is a technique that addresses both these issues. It prevents overfitting and
provides a way of approximately combining exponentially many di↵erent neural network
architectures e�ciently. The term “dropout” refers to dropping out units (hidden and
visible) in a neural network. By dropping a unit out, we mean temporarily removing it from
the network, along with all its incoming and outgoing connections, as shown in Figure 1.
The choice of which units to drop is random. In the simplest case, each unit is retained with
a fixed probability p independent of other units, where p can be chosen using a validation
set or can simply be set at 0.5, which seems to be close to optimal for a wide range of
networks and tasks. For the input units, however, the optimal probability of retention is
usually closer to 1 than to 0.5.
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Outline	For	Today	

•  Introduc?on	to	Deep	Learning	
– Learning	Features	for	Predic?ve	Modeling	

•  Deep	Convolu?onal	Networks	
– Very	popular	in	Computer	Vision	
	

•  Tips	for	Training	Deep	Networks	

•  Brief	Overview	of	other	Deep	Networks	
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Unsupervised	Deep	Learning	

•  Supervised	=	Learn	Feature	Encoding	
–  Uses	supervised	label	as	signal	

•  Unsupervised	=	Also	Learn	Decoding	
–  Uses	reconstruc?on	error	as	signal	
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Unsupervised	Deep	Learning	

•  “Deep”	dimensionality	reduc?on	
–  Can	think	of	matrix	factoriza?on	as	“shallow”	linear	
dimensionality	reduc?on	

•  Encoding:	convert	image	to	features	
– Matrix	Factoriza?on:	z	=	Ux	

•  Decoding:	convert	features	to	image	
– Matrix	Factoriza?on:	x	=	UTz	
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Deep	Belief	Networks	

•  Genera?ve	Model	

•  Encodes	image	as	distribu?on	over	hidden	
state	ac?va?ons	

•  Can	sample	images	given	a	se{ng	of	hidden	
states	
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Deep	Recurrent	Networks	

•  Sequence	Predic?on	
– x	&	y	are	sequences	
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ing such functions is difficult and often doesn’t capture
the rich complexity present in noisy utterances. Our ap-
proach instead learns the function f(x) using a broad
class of nonlinear function approximators – neural net-
works. Such models adapt to model the nonlinear rela-
tionships between noisy and clean data present in given
training data. Furthermore, we can construct various net-
work architectures to model the temporal structure of
speech, as well as enhance the nonlinear capacity of the
model by building deep multilayer function approxima-
tors.

Given the noisy utterance x, the neural network out-
puts a prediction ŷ =f(x) of the clean utterance y. The
error of the output is measured via squared error,

||ŷ � y||2, (1)

where || · || is the `2 norm between two vectors. The
neural network learns parameters to minimize this error
on a given training set. Such noise removal functions are
often studied in the context of specific feature types, such
as cepstra. Our model is instead agnostic as to the type of
features present in y and can thus be applied to any sort
of speech feature without modification.

2.1. Single Layer Denoising Autoencoder

A neural network which attempts to reconstruct a clean
version of its own noisy input is known in the literature
as a denoising autoencoder (DAE) [7]. A single hidden
layer DAE outputs its prediction ŷ using a linear recon-
struction layer and single hidden layer of the form,

ŷ = V h

(1)(x) + c (2)

h

(1)(x) = �(W (1)
x+ b

(1)) (3)

The weight matrices V and W

(1) along with the bias vec-
tors c and b

(1) parameters of the model. The hidden layer
representation h

(1)(x) is a nonlinear function of the input
vector x because �()̇ is a point-wise nonlinearity. We use
the logistic function �(z) = 1

1+ez in our work.
Because an utterance x is variable-length and train-

ing an autoencoder with high-dimensional input is expen-
sive, it is typical to train a DAE using a small temporal
context window. This increases computational efficiency
and saves the model from needing to re-learn the same
denoising function at each point in time. Furthermore,
this technique allows the model to handle large variation
in utterance durations without the need to zero pad inputs
to some maximum length. Ultimately the entire clean ut-
terance prediction ŷ is created by applying the DAE at
each time sample of the input utterance – much in the
same way as a convolutional filter.

2.2. Recurrent Denoising Autoencoder

The conventional DAE assumes that only short context
regions are needed to reconstruct a clean signal, and thus
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Figure 1: Deep Recurrent Denoising Autoencoder. A
model with 3 hidden layers that takes 3 frames of noisy
input features and predicts a clean version of the center
frame

considers small temporal windows of the utterance inde-
pendently. Intuitively this seems a bad assumption since
speech and noise signals are highly correlated at both
long and short timescales. To address this issue we add
temporally recurrent connections to the model, yielding
a recurrent denoising autoencoder (RDAE). A recurrent
network computes hidden activations using both the input
features for the current time step xt and the hidden rep-
resentation from the previous time step h

(1)(xt�1). The
full equation for the hidden activation at time t is thus,

h

(1)(xt) = �(W (1)
xt + b

(1) + Uh

(1)(xt�1)), (4)

which builds upon the DAE (Equation 3) by adding a
weight matrix U which connects hidden units for the cur-
rent time step to hidden unit activations in the previous
time step. The RDAE thus does not assume independence
of each input window x but instead models temporal de-
pendence which we expect to exist in noisy speech utter-
ances.

2.3. Deep Architectures

A single layer RDAE is a nonlinear function, but perhaps
not a sufficiently expressive model to capture the com-
plexities of noise environments and channel distortions.
We thus make the model more nonlinear and add free
parameters by adding additional hidden layers. Indeed,
much of the recent success of neural network acoustic
models is driven by deep neural networks – those with
more than one hidden layer. Our models naturally ex-
tend to using multiple hidden layers, yielding the deep
denoising autoencoder (DDAE) and the deep recurrent
denoising autoencoder (DRDAE). Figure 1 shows a DR-
DAE with 3 hidden layers. Note that recurrent connec-
tions are only used in the middle hidden layer in DRDAE
architectures.

With multiple hidden layers we denote the ith hidden
layer’s activation in response to input as h

(i)(xt). Deep



Deep	Recursive	Networks	

•  Input:	parse	tree	
•  Output:	sen?ment		

•  Recursively	instan?ate	model	on	parse	tree		
–  Each	node	takes	the	outputs	of	its	children,	and	computes	
hidden	layer	ac?va?ons	as	output	

–  Logis?c	regression	at	the	top	

Lecture	15:	Deep	Learning	 62	

hYp://nlp.stanford.edu/sen?ment/	

Recursive Deep Models for Semantic Compositionality
Over a Sentiment Treebank

Richard Socher, Alex Perelygin, Jean Y. Wu, Jason Chuang,
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Stanford University, Stanford, CA 94305, USA
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Abstract

Semantic word spaces have been very use-
ful but cannot express the meaning of longer
phrases in a principled way. Further progress
towards understanding compositionality in
tasks such as sentiment detection requires
richer supervised training and evaluation re-
sources and more powerful models of com-
position. To remedy this, we introduce a
Sentiment Treebank. It includes fine grained
sentiment labels for 215,154 phrases in the
parse trees of 11,855 sentences and presents
new challenges for sentiment composition-
ality. To address them, we introduce the
Recursive Neural Tensor Network. When
trained on the new treebank, this model out-
performs all previous methods on several met-
rics. It pushes the state of the art in single
sentence positive/negative classification from
80% up to 85.4%. The accuracy of predicting
fine-grained sentiment labels for all phrases
reaches 80.7%, an improvement of 9.7% over
bag of features baselines. Lastly, it is the only
model that can accurately capture the effects
of negation and its scope at various tree levels
for both positive and negative phrases.

1 Introduction

Semantic vector spaces for single words have been
widely used as features (Turney and Pantel, 2010).
Because they cannot capture the meaning of longer
phrases properly, compositionality in semantic vec-
tor spaces has recently received a lot of attention
(Mitchell and Lapata, 2010; Socher et al., 2010;
Zanzotto et al., 2010; Yessenalina and Cardie, 2011;
Socher et al., 2012; Grefenstette et al., 2013). How-
ever, progress is held back by the current lack of
large and labeled compositionality resources and
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Figure 1: Example of the Recursive Neural Tensor Net-
work accurately predicting 5 sentiment classes, very neg-
ative to very positive (– –, –, 0, +, + +), at every node of a
parse tree and capturing the negation and its scope in this
sentence.

models to accurately capture the underlying phe-
nomena presented in such data. To address this need,
we introduce the Stanford Sentiment Treebank and
a powerful Recursive Neural Tensor Network that
can accurately predict the compositional semantic
effects present in this new corpus.

The Stanford Sentiment Treebank is the first cor-
pus with fully labeled parse trees that allows for a
complete analysis of the compositional effects of
sentiment in language. The corpus is based on
the dataset introduced by Pang and Lee (2005) and
consists of 11,855 single sentences extracted from
movie reviews. It was parsed with the Stanford
parser (Klein and Manning, 2003) and includes a
total of 215,154 unique phrases from those parse
trees, each annotated by 3 human judges. This new
dataset allows us to analyze the intricacies of senti-
ment and to capture complex linguistic phenomena.
Fig. 1 shows one of the many examples with clear
compositional structure. The granularity and size of



Recap:	Deep	Learning	

•  Hierarchies	(or	layers)	of	non-linear	transforms	
–  O`en	interpreted	as	feature	learning	
–  Some?mes	makes	sense/visualizable	

•  Supervised	training	at	the	top	layer	
–  Unsupervised	also	possible	(less	successful)	

•  Train	using	stochas?c	gradient	descent	
–  But	requires	a	lot	of	addi?onal	tricks	
–  Also	requires	sufficient	training	data	

•  Nowhere	close	to	general	human	cogni?on	
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Resources	
•  hYps://www.tensorflow.org/	
•  hYp://caffe.berkeleyvision.org/	
•  hYp://deeplearning.net/so`ware/theano/	
•  hYp://torch.ch/	
•  hYps://code.google.com/p/cuda-convnet/	
•  hYp://cs.nyu.edu/~fergus/tutorials/deep_learning_cvpr12/	
•  hYp://deeplearning.net/tutorial/	
•  hYp://deeplearning.stanford.edu/tutorial/	
•  hYp://nlp.stanford.edu/sen?ment/	
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Next	Week	

•  Recent	Applica?ons	

•  Survey	of	Advanced	Topics	

•  Tonight:	Recita?on	on	Advanced	Op?miza?on	
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