Machine Learning & Data Mining
CS/CNS/EE 155

Lecture 15:
Deep Learning
Announcements

• Miniproject 2 Released
 – Poem Generation using HMMs
 – Due March 10th

• Final Exam will be released on March 14th
 – Take-home (via Moodle)
 – Intended to take 3 hours (shorter than homeworks)
 – 24-36 hour window
 – Open book of everything on course website
 – No collaboration
Recap: Linear Models

• Linear scoring function in input features:
 \[f(x \mid w, b) = w^T x - b \]

• Sometimes non-linear transform at the end
 – E.g., logistic Regression
 \[
 P(y = 1 \mid x, w, b) = \tau(f(x \mid w, b)) = \frac{1}{1 + \exp\{-f(x \mid w, b)\}}
 \]
Recap: Multiclass Logistic Regression

Binary LR: \[P(y = 1 \mid x, w, b) = \frac{1}{1 + e^{- (w^T x - b)}} \quad y \in \{0, 1\} \]

“Log Linear” Property: \[P(y = 1 \mid x, w, b) \propto e^{w^T x - b} \]

Extension to Multiclass: \[P(y = k \mid x, w, b) \propto e^{w_k^T x - b_k} \quad \text{Keep a } (w_k, b_k) \text{ for each class} \]

Multiclass LR: \[P(y = k \mid x, w, b) = \frac{e^{w_k^T x - b_k}}{\sum_m e^{w_m^T x - b_m}} \quad y \in \{1, \ldots, K\} \]

Train via Gradient Descent: \[\partial_w \sum_{(x,y) \in S} - \log P(y \mid x, w, b) \]
Example: Handwritten Digit Recognition

\[P(y = 2 \mid \begin{array}{c} 2 \\ \end{array}, w, b) \]

\[P(y = 9 \mid \begin{array}{c} 9 \\ \end{array}, w, b) \]

- What is feature representation \(x \)?
 - Each pixel is a feature
 - Logistic regression yields \(\approx 80\% \) accuracy
 - Can we do better?
Errors In Linear Logistic Regression

• Often makes mistakes on 8’s:

• Shares many pixels with 5’s and 3’s:

• Linear model on pixels not powerful enough
 – E.g., doesn’t capture interactions between pixels

http://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html
Feature Engineering

• Linear models require good features x

• Directed edge detection:
 – (With some blurring)
 – “Oriented Gradients”

• Logistic regression yields $\approx 90\%$ accuracy

http://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html
Comparing 8’s vs 3’s

- New feature representation better distinguishes between 8’s and 3’s:

http://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html
Learn Features Automatically?

• Feature engineering is tedious
 – Don’t know which ones are good
 – Can we just learn them automatically?

• Actually, we did!
 – From convolutional net
 • Learns features
 • Learns logistic regression
 • “Deep Learning”

http://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html
Outline For Today

• Introduction to Deep Learning
 – Learning Features for Predictive Modeling

• Deep Convolutional Networks
 – Very popular in Computer Vision

• Tips for Training Deep Networks

• Brief Overview of other Deep Networks
Outline For Today

• Introduction to Deep Learning
 – Learning Features for Predictive Modeling

• Deep Convolutional Networks
 – Very popular in Computer Vision

• Tips for Training Deep Networks

• Brief Overview of other Deep Networks
Recap: 1 Layer Neural Network

• 1 Neuron
 – Takes input x
 – Outputs y

\[
f(x \mid w, b) = w^T x - b = w_1 x_1 + w_2 x_2 + w_3 x_3 - b
\]

• ~Logistic Regression!
 – Gradient Descent
Recap: 2 Layer Neural Network

- 2 Layers of Neurons
 - 1st Layer takes input x
 - 2nd Layer takes output of 1st layer

- Can approximate arbitrary functions
 - Provided hidden layer is large enough
 - “fat” 2-Layer Network

Lecture 15: Deep Learning
Deep Neural Networks

• Why prefer Deep over a “Fat” 2-Layer?
 – Compact Model
 • (exponentially large “fat” model)

Expressive Power

• Deeper networks are “exponentially more expressive” than shallower networks.

• Related Example: Boolean Circuits
 – Thought Experiment: How many gates required if only depth-2 circuits allowed?

http://en.wikipedia.org/wiki/Circuit_complexity
AND & OR as Transfer Functions

- Deep networks can implement AND & OR transfer functions.

\[
\text{AND} (f_1, f_2) = \min \{ f_1, f_2 \}
\]

\[
\text{OR} (f_1, f_2) = \max \{ f_1, f_2 \}
\] Used in practice
What Happens if No Transfer Function?

• Just linear transforms?

• Deep structure collapses to linear model!
 – Linear operators are associative & commutative
 – Applying a linear operator to a linear operator yields a linear operator
Recap: Training Neural Networks

• Gradient Descent! **
 – (Supervised Learning)

• Parameters:
 – \((w_{11}, b_{11}, w_{12}, b_{12}, w_2, b_2)\)

\[
\partial_{w_2} \sum_{i=1}^{N} L(y_i, \tau_2) = \sum_{i=1}^{N} \partial_{w_2} L(y_i, \tau_2) = \sum_{i=1}^{N} \partial_{\tau_2} L(y_i, \tau_2) \partial_{w_2} \tau_2 = \sum_{i=1}^{N} \partial_{\tau_2} L(y_i, \tau_2) \partial_{f_2} \tau_2 \partial_{w_2} f_2
\]

\[
\partial_{w_{1m}} \sum_{i=1}^{N} L(y_i, \tau_2) = \sum_{i=1}^{N} \partial_{\tau_2} L(y_i, \tau_2) \partial_{f_2} \tau_2 \partial_{w_{1m}} f_2 = \sum_{i=1}^{N} \partial_{\tau_2} L(y_i, \tau_2) \partial_{f_2} \tau_2 \partial_{\tau_{1m}} f_2 \partial_{f_{1m}} \tau_{1m} \partial_{w_{1m}} f_{1m}
\]

**additional details end of lecture

Backpropagation = Gradient Descent
(lots of chain rules)
Original Biological Inspiration

- David Hubel & Torsten Wiesel discovered “simple cells” and “complex cells” in the 1959
 - Some cells activate for simple patterns
 - E.g., lines at certain angles
 - Some cells activate for more complex patterns
 - Appear to take activations of simple cells as input

Image Source:
https://cognitiveconsonance.files.wordpress.com/2013/05/c_fig5.jpg
The Brain is Hierarchical

The Mammalian Visual Cortex is Hierarchical

The ventral (recognition) pathway in the visual cortex has multiple stages:
- Retina
- LGN
- V1
- V2
- V4
- PIT
- AIT

Lots of intermediate representations.

But Let’s Not Get Carried Away

• We need some kind of wings to fly
 – But no flapping

• Do we even need wings?
No Longer Biologically Inspired
(for the most part)

• Original inspiration created the feed-forward network

• Field is now called “Deep Learning”
 – Most common name

• Really just Automated Feature Learning
 – Lots of optimization tricks
 – And architecture tuning
 E.g., Convolutional Network
Outline For Today

• Introduction to Deep Learning
 – Learning Features for Predictive Modeling

• **Deep Convolutional Networks**
 – Very popular in Computer Vision

• Tips for Training Deep Networks

• Brief Overview of other Deep Networks
Convolutions

• Images typically have invariant patterns
 – E.g., directional gradients are translational invariant:
 ![Image 1](http://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html)

• Apply convolution to local sliding windows
Convolutional Filters

- Applies to an image patch x
 - Converts local window into single value
 - Slide across image

$$x \otimes W = \sum_{ij} W_{ij} x_{ij}$$

![Local Image Patch](image)

![Left-to-Right Edge Detector](image)
Gabor Filters

• Most common low-level convolutions for computer vision

Example W:

- Grey = 0
- Light = positive
- Dark = negative

http://en.wikipedia.org/wiki/Gabor_filter
Gaussian Blur Filters

- Weights decay according to Gaussian Distribution
 - Variance term controls radius

Example W:
Apply per RGB Channel

- Black = 0
- White = Positive

http://en.wikipedia.org/wiki/Gaussian_blur
Deep Convolutional Networks

• Learn layers of convolutional filters W
 – Apply convolution to outputs of previous layer

 E.g.:

 ![Example](image1.png) ![Example](image2.png)

• **Note:** convolutions are linear operators
 – Need non-linear transform
 – Otherwise all layers collapse to single convolution

Convolutional Layer

• Current Convolutional Layer consists of:

\[
\begin{align*}
8 \otimes \begin{array}{c}
\text{Image}
\end{array} = \\
\max \left\{ \begin{array}{c}
\text{Image}
\end{array} , 0 \right\} = \\
\end{align*}
\]

Convolution

Rectilinear Transform
• Simplifies Backprop
• Chain rule super easy
• Also easier to train

• Main modeling concepts!
 – Combine them to create convolutional layer

\[
\max \left\{ \begin{array}{c}
8 \otimes \begin{array}{c}
\text{Image}
\end{array} , 0 \right\} =
\]

Max Pooling

• Assume Convolution Layer is eye detector

• How to make detector more robust to the exact location of the eye?

Max Pooling

• Maximum response from a neighborhood of convolutional layer outputs

• I.e., an OR gate!

Alternative: L2 Pooling

- L2 norm of a neighborhood of convolutional layer outputs
- Softer version of max pooling
 - Harder to differentiate

\[\sqrt{\sum_{ij} f_{ij}^2} \]
Local Contrast Normalization

- Standardize output of convolutional layer using mean & variability estimated from neighboring outputs

- Simple Example:

\[f_{ij} = \frac{f_{ij} - \mu_{ij}}{\sigma_{ij}} \]

\[\mu_{ij} = \text{mean}\{f_{i',j'} | (i', j') \text{ close to } (i, j)\} \]

\[\sigma_{ij}^2 = \text{mean}\{(f_{i',j'} - \mu_{i',j'})^2 | (i', j') \text{ close to } (i, j)\} \]

- Other examples in references below:

Input

8 Convolutional Filters in 1st Layer

Rectilinear Transform

Max Pooling

http://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html
Deep Convolutional Networks

- Stack multiple layers together
- Multiclass logistic regression at top
- Train using gradient descent

Images:
- RGB Input Image 100 x 100 x 3
- 7x7x3 Convolution 3x3 Max Pooling Down Sample 4x 25 x 25 x 10
- 5x5x10 Convolution 3x3 Max Pooling Down Sample 4x 6 x 6 x 20
- Logistic Regression 10 classes
Down Sampling

• Adjacent Sliding Window Convolution
 – Yields output of same dimensions as input

• Good to compress into fewer pixels
 – Skip a few pixels for each convolution

• “Stride”
 – How far away next convolution is
 – No Down Sampling: Stride = 1
 – Down Sampling 2x: Stride = 2

Also Max Pooling
Online Demo

http://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html
ImageNET

• Object recognition competition (2012)
 – 1.5 Million Labeled Training Examples
 – ≈ 1000 classes

Leopard

Mushroom

Mite

http://www.image-net.org/
Deep Convolutional Net for ImageNET

• 7 Hidden Layers
 – 5 Convolutional
 – 2 Regular

• Multiclass Logistic Regression at top

• Trained using stochastic gradient descent
 – And a lot of tricks

• Won the 2012 ImageNET competition

http://www.image-net.org/challenges/LSVRC/2012/results.html
RGB Input Image 224 x 224 x 3

7x7x3 Convolution 3x3 Max Pooling Down Sample 4x 55 x 55 x 96

5x5x96 Convolution 3x3 Max Pooling Down Sample 4x 13 x 13 x 256

3x3x256 Convolution 13 x 13 x 354

Logistic Regression ≈1000 Classes

Standard 4096 Units

Standard 4096 Units

3x3x354 Convolution 3x3 Max Pooling Down Sample 2x 6 x 6 x 256

3x3x354 Convolution 13 x 13 x 354

Visualizing CNN (Layer 1)

Visualizing CNN (Layer 2)

Part that Triggered Filter

Top Image Patches

Visualizing CNN (Layer 3)

Part that Triggered Filter

Top Image Patches

Visualizing CNN (Layer 4)

<table>
<thead>
<tr>
<th>Part that Triggered Filter</th>
<th>Top Image Patches</th>
</tr>
</thead>
</table>

Visualizing CNN (Layer 5)

Part that Triggered Filter

Top Image Patches

Use Hidden Layers as Features

- Stack hidden layer activations as new feature representation
- Train an SVM =)
- Generalize to other datasets
Failure Cases

Predicts Correctly
Predicts Incorrectly

Predicts Correctly
Predicts Incorrectly

Outline For Today

• Introduction to Deep Learning
 – Learning Features for Predictive Modeling

• Deep Convolutional Networks
 – Very popular in Computer Vision

• Tips for Training Deep Networks

• Brief Overview of other Deep Networks
Training Deep Networks

• Deep Networks are extremely non-convex
 – Hard to train well

• Deep Networks have extremely high capacity
 – Many parameters, easy to overfit

• Real success stories only in the last 10 years
 – A lot of (annotated) data
 – Increase in computational power
 – Better bag of tricks
Stochastic Gradient Descent + Tricks!

• Some related to choice of model/architecture
 – Rectilinear over sigmoid transfer functions
 – Local contrast normalization
 – Sparse Connections that enable parallelism
 – Ensemble of Deep Networks

• Rest are optimization techniques
 – Gradient Clamping
 – Mini-batching
 – Momentum
 – Adaptive Learning Rates
 – Random Initialization
 – Dropout

http://yyue.blogspot.com/2015/01/a-brief-overview-of-deep-learning.html
Rectilinear vs Sigmoid
(The Vanishing Gradient Problem)

\[\partial_{w_{1m}} L(y, \tau_2) \]
\[= \partial_{\tau_2} L(y, \tau_2) \partial_{f_2} \tau_2 \partial_{w_{1m}} f_2 \]
\[= \partial_{\tau_2} L(y, \tau_2) \partial_{f_2} \tau_2 \partial_{\tau_{1m}} f_2 \partial_{f_{1m}} \tau_{1m} \partial_{w_{1m}} f_{1m} \]

\[f_{1m} = w_{1m}^T x \]

Large \(f \) \(\Rightarrow \) vanishing gradient
Compounded with more layers
Gradient Clamping

• Rectilinear functions can grow unbounded:
 – Gradients can get very large
 – Compounding effect in lower layers
 • Opposite of the vanishing gradient effect with sigmoids

• Solution: clamp gradients
 – E.g., clamp norm to 15

http://yyue.blogspot.com/2015/01/a-brief-overview-of-deep-learning.html
Dense Convolutional Networks

- Every Convolutional Layer uses every output from previous layer
Sparse Convolutional Networks

RGB Input Image
100 x 100 x 3

7x7x3 Convolution
3x3 Max Pooling
Down Sample 4x
25 x 25 x 10
Split Across 2 machines

5 filters

10 filters

5x5x5 Convolution
3x3 Max Pooling
Down Sample 4x
6 x 6 x 20
Split Across 2 Machines

Logistic Regression
10 classes
Learning Rate & Momentum

\[w = w - \eta \partial_w \] \hspace{1cm} \text{Gradient Descent}

- If validation performance plateaus or gets worse
 - Divide learning rate by 2

\[w = w - \eta \partial_w + \gamma m_w \] \hspace{1cm} \text{Momentum}

- Momentum is a weighted combination of recent gradient updates

Dropout

• Randomly turn off nodes during training

• Choose randomly for each SGD minibatch
 – Decorrelates node in each layer
 – Less overfitting

Outline For Today

• Introduction to Deep Learning
 – Learning Features for Predictive Modeling

• Deep Convolutional Networks
 – Very popular in Computer Vision

• Tips for Training Deep Networks

• Brief Overview of other Deep Networks
Unsupervised Deep Learning

• **Supervised** = Learn Feature Encoding
 – Uses supervised label as signal

• **Unsupervised** = Also Learn Decoding
 – Uses reconstruction error as signal

![Diagram](http://research.google.com/archive/unsupervised_icml2012.html)

Lecture 15: Deep Learning
Unsupervised Deep Learning

• “Deep” dimensionality reduction
 – Can think of matrix factorization as “shallow” linear dimensionality reduction

• Encoding: convert image to features
 – Matrix Factorization: $z = Ux$

• Decoding: convert features to image
 – Matrix Factorization: $x = U^T z$
Deep Belief Networks

• Generative Model

• Encodes image as distribution over hidden state activations

• Can sample images given a setting of hidden states

http://www.cs.toronto.edu/~hinton/adi/
Deep Recurrent Networks

• Sequence Prediction
 – x & y are sequences

![Deep Recurrent Denoising Autoencoder Diagram]

http://www1.icsi.berkeley.edu/~vinyals/Files/rnn_denoise_2012.pdf
Deep Recursive Networks

• Input: parse tree
• Output: sentiment

• Recursively instantiate model on parse tree
 – Each node takes the outputs of its children, and computes hidden layer activations as output
 – Logistic regression at the top

http://nlp.stanford.edu/sentiment/
Recap: Deep Learning

• Hierarchies (or layers) of non-linear transforms
 – Often interpreted as feature learning
 – Sometimes makes sense/visualizable

• Supervised training at the top layer
 – Unsupervised also possible (less successful)

• Train using stochastic gradient descent
 – But requires a lot of additional tricks
 – Also requires sufficient training data

• Nowhere close to general human cognition
Resources

- https://www.tensorflow.org/
- http://caffe.berkeleyvision.org/
- http://deeplearning.net/software/theano/
- http://torch.ch/
- https://code.google.com/p/cuda-convnet/
- http://cs.nyu.edu/~fergus/tutorials/deep_learning_cvpr12/
- http://deeplearning.net/tutorial/
- http://deeplearning.stanford.edu/tutorial/
- http://nlp.stanford.edu/sentiment/
Next Week

• Recent Applications

• Survey of Advanced Topics

• **Tonight:** Recitation on Advanced Optimization