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Lecture 13:
Latent Factor Models &
Non-Negative Matrix Factorization
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Announcements

* Homework 6 Released
— Due Tuesday March 15t

 Miniproject 2 to be released next week
— Due March 8th
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Today

 Some useful matrix properties
— Useful for homework

e Latent Factor Models

— Low-rank models with missing values

* Non-negative matrix factorization



Recap: Orthogonal Matrix

* A matrix U is orthogonal if UUT = UTU = |
— Forany columnu: u'u=1
— For any two columns u, u’: u'u’ =0
— U is a rotation matrix, and UTis the inverse rotation
— If x¥’ = U"x, then x = UX’
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Recap: Orthogonal Matrix
* Any subset of columns of U defines a subspace

1 T
X = UI:K’x

Transform into new coordinates
Treat U, as new axes

pFOjULK (x) = UI:KUZKX

Project x onto U, in original space
“Low Rank” Subspace

Lecture 13: Latent Factor Models & Non-Negative Matrix Factorization 5



Recap: Singular Value Decomposition

X = [xl,...,xN] e Re”"

X = UZV
T '\ Orthogonal

Orthogonal  Diagonal

N

R
EH'xi —U, U, xX, H

i=1
|II

“Residua
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SVD

U,.  is the K-dim
subspace with
smallest residual



Recap: SVD & PCA

XX' =UAU" PCA
/

Orthogonal Diagonal

X = UZV SVD
T '\ Orthogonal

Orthogonal  Diagonal
xx7 = (UZVT)(UZVT)T ~USVTVEUT =USUT
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Recap: Eigenfaces

* Each col of U’ is an “Eigenface”

 Each col of V'T = coefficients of a student

Avg
Face
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Matrix Norms

o= | 2X0 = [ D00
ij d

, = Ead = trace(\/XTX)
d

* Frobenius Norm |x

* Trace Norm |x

X=UxV'

Each o, is guaranteed to be non-negative o,
By convention: 0,20,2..20,20
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Properties of Matrix Norms

|x ;m = trace(XTX) = trace((UZVT)T UZVT)
= trace(VZZVT) = trace(ZzVTV)
= trace(Zz) = 203
d
X=UzV'
Each o, is guaranteed to be non-negative o
By convention: 0,20,2..20,20 s o,
trace(ABC) = trace(BCA) = trace(CAB) _ oy |
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Properties of Matrix Norms

x|, = trace(\/(UZVT ) Usv’ ) - trace(\/VZ U'usv’ )

= trace(\/ vasv?! ) = trace( vrv? ) = trace(VZVT)

= trace(ZVTV) = trace(Z) = Ead
d

T
X=U2V
Each o, is guaranteed to be non-negative o
By convention: 0,20,2..20,20 s o,
trace(ABC) = trace(BCA) = trace(CAB) _ oy |
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Frobenius Norm = Squared Norm

e Matrix version of L2 Norm:

2 2 2
b= 2% = D0
ij d

X

* Useful for regularizing matrix models

X=Uxv" ==
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Recall: L1 & Sparsity

e w is sparse if mostly O’s:
— Small LO Norm

||w||0 - E l[wd;é()]
d

 Why not LO Regularization?

N
— Not continuous! argmin A w||, + ¥ (, - wal.)2

i=1

* L1 induces sparsity | v .
_ . argm1n)t|w|+z(yl.—w xl.)
— And is continuous! w i1

Omitting b &

for simplicity |



Trace Norm = L1 of Eigenvalues

e A matrix X is considered low rank if it has few non-
zero singular values:

X

= E 1 Not continuous!
Rank [Ud>0]
d

X

— Ead — trace(« /XTX) aka “spectral sparsity”
d

X=Uxv" ==
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Other Useful Properties

e Cauchy Schwarz:

2
F

(A,B) =trace(A”B)’ <(A,A)(B, B) = trace(A” A)trace(B" B) = | A[ || B
*  AM-GM Inequality:

Jll8] = IAF |8 =(JAF +[BF) e for any norm
 Orthogonal Transformation Invariance of Norms:

A, =]Al, LA =]Al. If U is a full-rank orthogonal matrix
 Trace Norm of Diagonals

||A||* = E|Aﬁ| If A'is a square diagonal matrix
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Recap: SVD & PCA

e SVD: X=UxV"
e PCA: xXx' =uz*u’

e The first K columns of U are the best rank-K
subspace that minimizes the Frobenius norm
residual:

HX B Ul:KUfKX

2

Fro
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Latent Factor Models
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Netflix Problem

N Movies N

_ Vv

T

“Latent Factors”

Y

M Users

\

* Y, =rating user i gives to movie | Y, = UV

* Solve using SVD!
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The Color Purple

Geared
toward <

L S

&

Sense and
Sensibility

O

Example

Serious

| Amadeus |

Braveheart

£

b 4

| Lethal Weapon|

IlOcear{sﬂ . m :

5 4

females

G5 o

The Princess
Diaries

The Lion King

Escapist

Miniproject 2: create your own.

Geared

Independence| | @

Day

males

Dumb and
Dumber

Gus

http://www2.research.att.com/~volinsky/papers/ieeecomputer.pdf
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Actual Netflix Problem

N Movies

Y T

™~ “Latent Factors”

M Users

(missing values)

 Many missing values!
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Collaborative Filtering

* M Users, N Items
* Small subset of user/item pairs have ratings
* Most are missing

* Applicable to any user/item rating problem

— Amazon, Pandora, etc.

* Goal: Predict the missing values.

Lecture 13: Latent Factor Models & Non-Negative Matrix Factorization
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Latent Factor Formulation

* Only labels, no features S ={v;1

* Learn a latent representation over users U
and movies V such that:

2 2 T \2
Fro + Fro + E(yij - ui vj)
i

. A
—||U
ar%?1n2(||

14

Lecture 13: Latent Factor Models & Non-Negative Matrix Factorization

22



Connection to Trace Norm

* Suppose we consider all U,V that achieve perfect
reconstruction: Y=UV'

* Find U,V with lowest complexity:
VI,

 Complexity equivalent to trace norm:

+
Fro

argmln (HU
y=uv"

[¥]. - min—(JuT]

y=uv' )

\V

) Prove in homework!
Fro Fro
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Proof (One Direction)

we wil prove: ], =min=(Jal,, +I8[,,) v =uzv"
SVD
Choose: A=U\/§, B=VJX
Then:  min(laf}, 5L, ) <3 {|lov=], +[vv=]
%(trace U\/_ +trace((V\/_) (V\/E)))
%(trace \/_U U\/_ + trace \/_V V\/_))

(trace(x/ix/_ |+ trace(VEVE ))

(trace(Z) + trace(Z)) = trace(Z) =||Y|,

Lecture 13: Latent Factor Models & Non-Negative Matrix Factorization
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Interpreting Model

* Latent-Factor Model Objective

2 T 2
Fro +2(yij _ui Vj)
]

v

2
+
Fro

A
— U
ar%$1n2(||

e Related to:

argvrvnin;L”W + E(YU- —wl..)z Find the best low-rank
i

approximation to Y!

W|. = min 1 Ul +|v|[ Equivalent when U,V = rank of W
|| ||”< || ||Fr0 || ||Fr0

w=uv’ 9
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User/Movie Symmetry

2
+
Fro

argmin&(“U
vy 2

v

2 T 2
Fro +E(yij_ui Vj)
i

* |f we knew V, then linear regression to learn U
— Treat V as features

* |f we knew U, then linear regression to learn V

— Treat U as features
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Optimization

otV

ar%%lin%(HU im)+za)ij(ylj —ul.ij)2 w, €{0,1}
, -

* Only train over observed y;

* Two ways to Optimize
— Gradient Descent
— Alternating optimization
* Closed Form (for each sub-problem)

— Homework question

Lecture 13: Latent Factor Models & Non-Negative Matrix Factorization
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Gradient Calculation

argmin — (”U +
uy

F) Ea) ( U—uv)

Fro

d, = Ay, —Ea)l] ](yl]—u V. )

Closed Form Solution (assummg V fixed):

o g o

Lecture 13: Latent Factor Models & Non-Negative Matrix Factorization
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Gradient Descent Options

* Stochastic Gradient Descent
— Update all model parameters for single data point

* Alternating SGD:

— Update a single column of parameters at a time

U, =u,—10d,

d, =AU, =V, (y.j —ul.ij)
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Alternating Optimization

* |nitialize U & V randomly
* Loop

— Choose next u; or v,
— Solve optimally:

-1
U, = ()LIK + Ea)ljvjvf) (Ea)ijyijvj)
j j
* (assuming all other variables fixed)

Lecture 13: Latent Factor Models & Non-Negative Matrix Factorization
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Tradeoffs

* Alternating optimization much faster in terms of
Hiterations

— But requires inverting a matrix:

-1
(zwzjyij"j)
J

T
U, = ()LIK +Ewijvjvj
j

* Gradient descent faster for high-dim problems
— Also allows for streaming data

U, =u, — naui

Lecture 13: Latent Factor Models & Non-Negative Matrix Factorization
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http://www2.research.att.com/~volinsky/papers/ieeecomputer.pdf
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Recap: Collaborative Filtering

* Goal: predict every user/item rating
* Challenge: only a small subset observed

* Assumption: there exists a low-rank subspace
that captures all the variability in describing
different users and items

Lecture 13: Latent Factor Models & Non-Negative Matrix Factorization
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Aside: Multitask Learning

m m N
* M Tasks: 5 ={(xi,yi )}-_1
A 1 r 32 '
argwrlmnER(W) + 5;2()@ — mei)
Regularizer

* Example: personalized recommender system

— One task per user:

o
ah &k &b
L
ah Gk ah
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How to Regularize?

2 m my1 Y
argvtglin%R(W)+%;2(yi—w£xi) 5" = {('xi’yi )}l .
* Standard L2 Norm:

arg;nin%”W”z + Ez(yi — wixi)z = 2

Bl 3o -t |

* Decomposes to independent tasks
— For each task, learn D parameters
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How to Regularize?

N
argv?i“%R(W”%;z(%—wixi)z §" = {0},

* Trace Norm:

arggﬁn%”W‘L + Ez(yi -W, X, )2

 Induces W to have low rank across all task
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Recall: Trace Norm & Latent Factor Models

* Suppose we consider all U,V that achieve perfect
reconstruction: W=UV'

* Find U,V with lowest complexity:
VI:.)

e Claim: complexity equivalent to trace norm:

VI, )

2
+|
Fro

argminl(HU

w=uvT 2

2
+
Fro

W] = min~(ju

w=uv’ D
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How to Regularize?

N
argvglin%R(WH%;Z(yi—w;xi)z §" = {(X,-,y,- )}. 1

* Latent Factor Approach

V)5 2 Do)

+
Fro

argmm (”U
uyv

* Learns a feature projection x’ = Vx

* Learns a K dimensional model per task

Lecture 13: Latent Factor Models & Non-Negative Matrix Factorization
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Tradeoff

* D*N parameters:

argVIVninE %”wm ||2 + %E(yi — wnTlxl. )2}

m ]

e D*K+ N*K parameters:

V)5 2 Sl wva)

— Statistically more efficient
— Great if low-rank assumption is a good one

.|_
Fro

argmm (”U
uyv

Lecture 13: Latent Factor Models & Non-Negative Matrix Factorization
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Multitask Learning

M Tasks: S§" = {(xl.,y;”)}?v

)3 2 Do V)

m i

argmin — (”U
uyv

+Hv

Fro

Example: personalized recommender system

— One task per user:

— If x is topic feature representation
* Vis subspace of correlated topics

* Projects multiple topics together
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Reduction to Collaborative Filtering

argnvnn (”U e + Fm) zz(yl - U Vx) NG ={(xi’y;n)}if\=’l
* Suppose each x. is single indicator x, = e, 0

=] 1
e Then: in =V A 0

* Exactly Collaborative Filtering!

VI ) +5 2 S0 -

_|_
Fro

argmin — (“U
uyv
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Latent Factor Multitask Learning vs
Collaborative Filtering

VI ) +5 2 206 -

* Projects x into low-dimensional subspace Vx

_|_
Fro

argmin — (”U
uy

* Learns low-dimensional model per task

V)5 2307 i)

* Creates low dimensional feature for each movie

_|_
Fro

argmin — (”U
uy

* Learns low-dimensional model per user
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General Bilinear Models

Fm) E(yi _ZiTUTV)Ci)2 S = {('xi’zi,yi)}

i

argmin — (”U
uyv

+ ||V

Fro

Users described by features z
ltems described by features x

Learn a projection of z and x into common
low-dimensional space

— Linear model in low dimensional space
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Why are Bilinear Models Useful?

aI‘gI}/llIl (||U 4| Fm) EE( —U v) \L;:: QI/IXXKK

1 5 U: MxK

ar%rj/nn (||U oo T |V 12%) + Egz(y, - u,flei) V: DxK

ogmin (0T, IV, ey So-dvrva) U
S= {(xi’zi,yi)}
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Story So Far: Latent Factor Models

2 1

3 DUV ) s = ()

l

2
Fro

argmin + (“U
vy 2

+|V

* Simplest Case: reduces to SVD of matrix Y
— No missing values
— (z,x) indicator features

* General Case: projects high-dimensional
feature representation into low-dimensional
linear model
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Non-Negative Matrix Factorization
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Limitations of PCA & SVD

All features
non-negative

PCA/SVD
Solution

Better Solution?

Lecture 13: Latent Factor Models & Non-Negative Matrix Factorization
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Non-Negative Matrix Factorization
N K N
_ v

Y I

™~ “Latent Factors”

* Assume Y is non-negative
* Find non-negative U & V
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CS 155 Non-Negative Face Basis

1.03 0.76 0.16 0.00 0.43 0.74 1.16 0.32

0.28 0.00 0.79 0.54
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CS 155 Eigenface Basis

-13.1664 , -27.5141 -25.3403 , -42.383 11.728 , 24.1556 16.6788 , 5.5092

3.2845 , -29.9722 8.5987 , 40.4183 -2.4102 , -20.5946 25.5004 , 29.0106
: c o

12,6747 , -13.4101 ; ’ 23.686 , -7.2213
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Aside: Non-Orthogonal Projections

* If columns of A are not orthogonal, ATA#
— How to reverse transformation x’=ATx?
— Solution: Pseudoinverse!

T
A=U2V Intuition: use the rank-K orthogonal
SVD basis that spans A.
T T AT T T
AT =VZU ATA x=UZ"V'VZU x

Pseudoinverse T
- Ul:KUI:Kx

- . {1/0 it o>0
: -0 o = .
0 - 0 o 0  otherwise
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Objective Fun

ction

argmmzé(yl],u V)

U=0,V=0

* Squared Loss:
— Penalizes squared distance

* Generalized Relative Entropy
— Aka, unnormalized KL divergence
— Penalizes ratio

* Train using gradient descent

http://hebb.mit.edu/people/seung/papers/nmfconverge.pdf
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E(a,b)=alog%—a+b
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SVD/PCA vs NNMF

 SVD/PCA: * NNMF:
— Finds the best — Finds best set of non-
orthogonal basis faces negative basis faces
* Basis faces can be neg. — Non-negative coeffs
— Coeffs can be negative « Often non-overlapping
— Often trickier to visualize — Easier to visualize
— Better reconstructions — Requires more basis
with fewer basis faces faces for good
* Basis faces capture the reconstructions

most variations
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Non-Negative Latent Factor Models

2
+
Fro

v

. A >
argmin [ ) Zf (7 UVE) 5= {20}

e Simplest Case: reduces to NNMF of matrix Y
— No missing values
— (z,x) indicator features

* General Case: projects high-dimensional non-
negative features into low-dimensional non-
negative linear model
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Modeling NBA Gameplay Using
Non-Negative Spatial
Latent Factor Models

Lecture 13: Latent Factor Models & Non-Negative Matrix Factorization
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Fine-Grained
Spatial Models

 Discretize court

— 1x1 foot cells
— 2000 cells

* 1 weight per cell
— 2000 weights

F (x):

40 feet
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Fine-Grained
Spatial Models

 Discretize court

But most players haven’t
played that much!

F (X):

40 feet
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~

M

Locatlon Factors

/

Player Factors

D
-

N
N
N

h

-

i

N.J

Visualizing location factors L

»

-

L}

.

#

L

—

Tim
Duncan

John
Wall

Dion
Waiters

Kawhi
Leonard

Carmelo Dirk
Anthony  Nowitzki

Kyrie
Irving

Visualizing players B, L

Shawn eremy David
Marion Lin Lee

http://www.yisongyue.com/publications/icdm2014_bball_predict.pdf
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Training Data

—

1.1"

o — \
o SN RS ‘;E_ .
Y . ) e T ' “1ra
. ..-“ %) v ...,""'?'

STATS SportsvVU
2012/2013 Season, 630 Games,

80K Possessions, 380 frames per possession
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Prediction

* Game state: x

— Coordinates of all players
— Who is the ball handler

* Event:y

— Ball handler will shoot

— Ball handler will pass (to whom?)
— Ball handler will hold onto the ball
— 6 possibilities

* Goal: Learn P(y]|x)

http://www.yisongyue.com/publications/icdm2014_bball_predict.pdf
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Logistic Regression
(Simple Version: Just for Shooting)

_ expiF(y1x)} Z(x|F)= exp{ F(y'lx)
POy = Z(x|F) y‘E{Es,L} { }

r F (x '=§ Shot
F(y'Ix) =4 &)y ? 0

D K
F, y'=1l Hold on to ball E\ K
M - M Location Factors
/ \ Player Factors

Offset or bias \
1

— %)=
Ply=s1x) 1+exp{—Fg(x)+Fl}
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Learning the Model

* Given training data: 7(:@)}
Player I

Configuration What Happened
Next
* Learn parameters of model:
. Ay
argmm—HF;H + E K(y,F; (x)—FL)

R 2 (x.y)ES! , '

1 T

I+exp{-F,(x)+F,} Log Loss

P(y=slx)=
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Optimization via Gradient Descent

. A
argmin Z([B] +[L]) + > £(5.Bfu L - F.)

B=0.L=0.F, 2 o

dlog P(ylx)
aLi =A’1Li_ 2 gaLy

(x,y) i

D K D
dlog P(ylx) hi'(
aLi ) (1[y=S] ) P(S | x))Bb(x) M L§cation Fact
\

http://www.yisongyue.com/publications/icdm2014_bball_predict.pdf
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Where are Players Likely to Receive Passes?

Enforce Non-Negativity
(Accuracy Worse)
(More Interpretable)

Locatlon Factors

PIayer Factors

9(.

5(] ) 5(]

Tony Dirk LeBron Monta Manu David Jose Chandler Goran Joachim
Parker Nowitzki James Ellis Ginobili Lee Calderon Parsons Dragic Noah

http://www.yisongyue.com/publications/icdm2014_bball_predict.pdf
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How do passes tend to flow?

H H o Locahon .

Source Location Factors

http://www.yisongyue.com/publications/icdm2014_bball_predict.pdf
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How do passes tend to flow?

\

Target Location Factors

™S

Source Location Factors

QT

Passing From “X”

I

Passing To “X”

> (

http://www.yisongyue.com/publications/icdm2014_bball_predict.pdf
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Tensor Latent Factor Models

Lecture 13: Latent Factor Models & Non-Negative Matrix Factorization
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Tensor Factorization

K

4

(Missing Values)

Lecture 13: Latent Factor Models & Non-Negative Matrix Factorization
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Tri-Linear Model

2 2
+ +
Fro Fro

v

W

argmin([u M DYIERCERERI)

+ Prediction via 3-way dot product: (a.b.c)= Y abc

— Related to Hadamard Product ¢

 Example: online advertising Solve using
. Gradient Descent
— User profile z
— Item description x

— Query g

Lecture 13: Latent Factor Models & Non-Negative Matrix Factorization
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Summary: Latent Factor Models

Learns a low-rank model of a matrix of observations Y

— Dimensions of Y can have various semantics

Can tolerate missing values in Y

Can also use features
N

N Movies K
A ¢

T

 Widely used in industry

M Users

Lecture 13: Latent Factor Models & Non-Negative Matrix Factorization
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Next Week

* Embeddings

* Deep Learning

* Next Thursday: Recitation on Advanced
Optimization Techniques

Lecture 13: Latent Factor Models & Non-Negative Matrix Factorization
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