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Announcements	
  

•  Homework	
  6	
  Released	
  
– Due	
  Tuesday	
  March	
  1st	
  

•  Miniproject	
  2	
  to	
  be	
  released	
  next	
  week	
  
– Due	
  March	
  8th	
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Today	
  

•  Some	
  useful	
  matrix	
  proper:es	
  
– Useful	
  for	
  homework	
  

•  Latent	
  Factor	
  Models	
  
– Low-­‐rank	
  models	
  with	
  missing	
  values	
  

•  Non-­‐nega:ve	
  matrix	
  factoriza:on	
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Recap:	
  Orthogonal	
  Matrix	
  

•  A	
  matrix	
  U	
  is	
  orthogonal	
  if	
  UUT	
  =	
  UTU	
  =	
  I	
  
–  For	
  any	
  column	
  u:	
  	
  uTu	
  =	
  1	
  
–  For	
  any	
  two	
  columns	
  u,	
  u’:	
  	
  uTu’	
  =	
  0	
  
–  U	
  is	
  a	
  rota:on	
  matrix,	
  and	
  UT	
  is	
  the	
  inverse	
  rota:on	
  
–  If	
  x’	
  =	
  UTx,	
  then	
  x	
  =	
  Ux’	
  

4	
  

Principal)Component)Analysis)

Lecture)12:)Clustering)&)Dimensionality)Reduc<on) 44)

Principal)Component)Analysis)Lecture)12:)Clustering)&)Dimensionality)Reduc<on)

44)

x	
  

x’	
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Recap:	
  Orthogonal	
  Matrix	
  

•  Any	
  subset	
  of	
  columns	
  of	
  U	
  defines	
  a	
  subspace	
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1

T x

Principal)Component)Analysis)
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u1u1
T x

x ' =U1:K
T x

projU1:K x( ) =U1:KU1:K
T x

Transform	
  into	
  new	
  coordinates	
  
Treat	
  U1:K	
  as	
  new	
  axes	
  

Project	
  x	
  onto	
  U1:K	
  in	
  original	
  space	
  
“Low	
  Rank”	
  Subspace	
  



Recap:	
  Singular	
  Value	
  Decomposi:on	
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X =UΣVT

Orthogonal	
  

Diagonal	
  Orthogonal	
  

X = x1,..., xN[ ]∈ ReD×N

xi −U1:KU1:K
T xi

2

i=1

N

∑
“Residual”	
  

U1:K	
  is	
  the	
  K-­‐dim	
  
subspace	
  with	
  	
  
smallest	
  residual	
  

SVD	
  



Recap:	
  SVD	
  &	
  PCA	
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XXT = UΣVT( ) UΣVT( )
T
=UΣVTVΣUT =UΣ2UT

XXT =UΛUT PCA	
  

X =UΣVT

Orthogonal	
  

Diagonal	
  Orthogonal	
  

SVD	
  

Orthogonal	
   Diagonal	
  



Recap:	
  Eigenfaces	
  

•  Each	
  col	
  of	
  U’	
  is	
  an	
  “Eigenface”	
  
•  Each	
  col	
  of	
  V’T	
  =	
  coefficients	
  of	
  a	
  student	
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=	
  

Principal)Component)Analysis)

Lecture)12:)Clustering)&)Dimensionality)Reduc<on) 44)

X’	
   U’	
  

225000-­‐dimensional!	
  

V’T	
  

Avg	
  
Face	
  



Matrix	
  Norms	
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•  Frobenius	
  Norm	
  

•  Trace	
  Norm	
  

X
Fro
= Xij

2

ij
∑ = σ d

2

d
∑

X
*
= σ d

d
∑ = trace XTX( )

X =UΣVT

Σ =

σ1
σ 2

!
σ D

"

#

$
$
$
$
$

%

&

'
'
'
'
'

Each	
  σd	
  is	
  guaranteed	
  to	
  be	
  non-­‐nega:ve	
  
By	
  conven:on:	
  σ1	
  ≥	
  σ2	
  ≥	
  …	
  ≥	
  σD	
  ≥	
  0	
  



Proper:es	
  of	
  Matrix	
  Norms	
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X
Fro

2
= trace XTX( ) = trace UΣVT( )

T
UΣVT( )

         = trace VΣ2VT( ) = trace Σ2VTV( )
         = trace Σ2( ) = σ d

2

d
∑

trace(ABC) = trace(BCA) = trace(CAB)

X =UΣVT

Σ =

σ1
σ 2

!
σ D

"

#

$
$
$
$
$

%

&

'
'
'
'
'

Each	
  σd	
  is	
  guaranteed	
  to	
  be	
  non-­‐nega:ve	
  
By	
  conven:on:	
  σ1	
  ≥	
  σ2	
  ≥	
  …	
  ≥	
  σD	
  ≥	
  0	
  



Proper:es	
  of	
  Matrix	
  Norms	
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trace(ABC) = trace(BCA) = trace(CAB)

X =UΣVT

Σ =

σ1
σ 2

!
σ D

"

#

$
$
$
$
$

%

&

'
'
'
'
'

X
*
= trace UΣVT( )

T
UΣVT"

#
$

%

&
'= trace VΣUTUΣVT( )

      = trace VΣΣVT( ) = trace VΣ2VT( ) = trace VΣVT( )
      = trace ΣVTV( ) = trace Σ( ) = σ d

d
∑

Each	
  σd	
  is	
  guaranteed	
  to	
  be	
  non-­‐nega:ve	
  
By	
  conven:on:	
  σ1	
  ≥	
  σ2	
  ≥	
  …	
  ≥	
  σD	
  ≥	
  0	
  



Frobenius	
  Norm	
  =	
  Squared	
  Norm	
  

•  Matrix	
  version	
  of	
  L2	
  Norm:	
  

	
  
•  Useful	
  for	
  regularizing	
  matrix	
  models	
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X
Fro

2
= Xij

2

ij
∑ = σ d

2

d
∑

X =UΣVT Σ =

σ1
σ 2

!
σ D

"

#

$
$
$
$
$

%

&

'
'
'
'
'



Recall:	
  L1	
  &	
  Sparsity	
  

•  w	
  is	
  sparse	
  if	
  mostly	
  0’s:	
  
– Small	
  L0	
  Norm	
  

•  Why	
  not	
  L0	
  Regulariza:on?	
  
– Not	
  conGnuous!	
  

•  L1	
  induces	
  sparsity	
  
– And	
  is	
  con:nuous!	
  

argmin
w

λ w
0
+ yi −w

T xi( )
2

i=1

N

∑

w
0
= 1 wd≠0[ ]

d
∑

argmin
w

λ w + yi −w
T xi( )

2

i=1

N

∑

Omijng	
  b	
  &	
  
for	
  simplicity	
   13	
  



Trace	
  Norm	
  =	
  L1	
  of	
  Eigenvalues	
  	
  

•  A	
  matrix	
  X	
  is	
  considered	
  low	
  rank	
  if	
  it	
  has	
  few	
  non-­‐
zero	
  singular	
  values:	
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X
*
= σ d

d
∑ = trace XTX( )

X =UΣVT Σ =

σ1
σ 2

!
σ D

"

#

$
$
$
$
$

%

&

'
'
'
'
'

X
Rank

= 1 σ d>0[ ]
d
∑

aka	
  “spectral	
  sparsity”	
  

Not	
  conGnuous!	
  



Other	
  Useful	
  Proper:es	
  
•  Cauchy	
  Schwarz:	
  

•  AM-­‐GM	
  Inequality:	
  

	
  
•  Orthogonal	
  Transforma:on	
  Invariance	
  of	
  Norms:	
  

•  Trace	
  Norm	
  of	
  Diagonals	
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A,B 2
= trace(ATB)2 ≤ A,A B,B = trace(ATA)trace(BTB) = A

F

2 B
F

2

A B = A 2 B 2
≤
1
2

A 2
+ B 2( )

UA
F
= A

F
UA

*
= A

*

A
*
= Aii

i
∑ If	
  A	
  is	
  a	
  square	
  diagonal	
  matrix	
  

If	
  U	
  is	
  a	
  full-­‐rank	
  orthogonal	
  matrix	
  

True	
  for	
  any	
  norm	
  



Recap:	
  SVD	
  &	
  PCA	
  

•  SVD:	
  
	
  

•  PCA:	
  

•  The	
  first	
  K	
  columns	
  of	
  U	
  are	
  the	
  best	
  rank-­‐K	
  
subspace	
  that	
  minimizes	
  the	
  Frobenius	
  norm	
  
residual:	
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X =UΣVT

XXT =UΣ2UT

X −U1:KU1:K
T X

Fro

2



Latent	
  Factor	
  Models	
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Nemlix	
  Problem	
  

•  Yij	
  =	
  ra:ng	
  user	
  i	
  gives	
  to	
  movie	
  j	
  

•  Solve	
  using	
  SVD!	
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Y	
  

N	
  Movies	
  
M
	
  U
se
rs
	
  

U	
  
VT	
  

=	
  

N	
  

M	
  

K	
  

K	
  

“Latent	
  Factors”	
  

yij ≈ ui
Tvj
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hop://www2.research.ao.com/~volinsky/papers/ieeecomputer.pdf	
  

Example	
  

Miniproject	
  2:	
  create	
  your	
  own.	
  

yij ≈ ui
Tvj



Actual	
  Nemlix	
  Problem	
  

•  Many	
  missing	
  values!	
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Y	
  
(missing	
  values)	
  

N	
  Movies	
  

M
	
  U
se
rs
	
  

U	
  
V	
  

=	
  

N	
  

M	
  

K	
  

K	
  

“Latent	
  Factors”	
  



Collabora:ve	
  Filtering	
  

•  M	
  Users,	
  N	
  Items	
  
•  Small	
  subset	
  of	
  user/item	
  pairs	
  have	
  ra:ngs	
  
•  Most	
  are	
  missing	
  

•  Applicable	
  to	
  any	
  user/item	
  ra:ng	
  problem	
  
– Amazon,	
  Pandora,	
  etc.	
  

•  Goal:	
  Predict	
  the	
  missing	
  values.	
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Latent	
  Factor	
  Formula:on	
  

•  Only	
  labels,	
  no	
  features	
  

•  Learn	
  a	
  latent	
  representa:on	
  over	
  users	
  U	
  
and	
  movies	
  V	
  such	
  that:	
  

Lecture	
  13:	
  Latent	
  Factor	
  Models	
  &	
  Non-­‐Nega:ve	
  Matrix	
  Factoriza:on	
   22	
  

S = yij{ }

argmin
U,V

λ
2

U
Fro

2
+ V

Fro

2( )+ yij −ui
Tvj( )

ij
∑

2



Connec:on	
  to	
  Trace	
  Norm	
  

•  Suppose	
  we	
  consider	
  all	
  U,V	
  that	
  achieve	
  perfect	
  
reconstruc:on:	
  Y=UVT	
  

•  Find	
  U,V	
  with	
  lowest	
  complexity:	
  

•  Complexity	
  equivalent	
  to	
  trace	
  norm:	
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Y
*
= min

Y=UVT

1
2

U
Fro

2
+ V

Fro

2( )

argmin
Y=UVT

1
2

U
Fro

2
+ V

Fro

2( )

Prove	
  in	
  homework!	
  



Proof	
  (One	
  Direc:on)	
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Y
*
≥ min

Y=ABT

1
2

A
Fro

2
+ B

Fro

2( )We	
  will	
  prove:	
   Y =UΣVT

Choose:	
   A =U Σ,           B =V Σ

Then:	
   min
Y=ABT

1
2

A
Fro

2
+ B

Fro

2( ) ≤ 1
2

U Σ
Fro

2
+ V Σ

Fro

2( )
                                   = 1

2
trace U Σ( )

T
U Σ( )#

$
%

&
'
(+ trace V Σ( )

T
V Σ( )#

$
%

&
'
(

#
$
%

&
'
(

                                   = 1
2

trace ΣUTU Σ( )+ trace ΣVTV Σ( )( )
                                  = 1

2
trace Σ Σ( )+ trace Σ Σ( )( )

                                  = 1
2

trace Σ( )+ trace Σ( )( ) = trace Σ( ) = Y
*

SVD	
  



Interpre:ng	
  Model	
  

•  Latent-­‐Factor	
  Model	
  Objec:ve	
  

	
  

•  Related	
  to:	
  

Lecture	
  13:	
  Latent	
  Factor	
  Models	
  &	
  Non-­‐Nega:ve	
  Matrix	
  Factoriza:on	
   25	
  

argmin
U,V

λ
2

U
Fro

2
+ V

Fro

2( )+ yij −ui
Tvj( )

ij
∑

2

argmin
W

λ W
*
+ yij −wij( )

ij
∑

2

W
*
= min

W=UVT

1
2

U
Fro

2
+ V

Fro

2( ) Equivalent	
  when	
  U,V	
  =	
  rank	
  of	
  W	
  

Find	
  the	
  best	
  low-­‐rank	
  	
  
approximaGon	
  to	
  Y!	
  



User/Movie	
  Symmetry	
  	
  

•  If	
  we	
  knew	
  V,	
  then	
  linear	
  regression	
  to	
  learn	
  U	
  
– Treat	
  V	
  as	
  features	
  

•  If	
  we	
  knew	
  U,	
  then	
  linear	
  regression	
  to	
  learn	
  V	
  
– Treat	
  U	
  as	
  features	
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argmin
U,V

λ
2

U
Fro

2
+ V

Fro

2( )+ yij −ui
Tvj( )

ij
∑

2



Op:miza:on	
  

•  Only	
  train	
  over	
  observed	
  yij	
  
•  Two	
  ways	
  to	
  Op:mize	
  
– Gradient	
  Descent	
  
– Alterna:ng	
  op:miza:on	
  

•  Closed	
  Form	
  (for	
  each	
  sub-­‐problem)	
  
– Homework	
  ques:on	
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argmin
U,V

λ
2

U
Fro

2
+ V

Fro

2( )+ ωij yij −ui
Tvj( )

ij
∑

2
ωij ∈ 0,1{ }



Gradient	
  Calcula:on	
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argmin
U,V

λ
2

U
Fro

2
+ V

Fro

2( )+ 12 ωij yij −ui
Tvj( )

ij
∑

2

∂ui = λui − ωijv j yij −ui
Tvj( )

T

j
∑

ui = λIK + ωijv jvj
T

j
∑

"

#
$$

%

&
''

−1

ωij yijv j
j
∑
"

#
$$

%

&
''

Closed	
  Form	
  Solu:on	
  (assuming	
  V	
  fixed):	
  



Gradient	
  Descent	
  Op:ons	
  

•  Stochas:c	
  Gradient	
  Descent	
  
– Update	
  all	
  model	
  parameters	
  for	
  single	
  data	
  point	
  

•  Alterna:ng	
  SGD:	
  
– Update	
  a	
  single	
  column	
  of	
  parameters	
  at	
  a	
  :me	
  

Lecture	
  13:	
  Latent	
  Factor	
  Models	
  &	
  Non-­‐Nega:ve	
  Matrix	
  Factoriza:on	
   29	
  

∂ui = λui − vj yij −ui
Tvj( )

ui = ui −η∂ui



Alterna:ng	
  Op:miza:on	
  

•  Ini:alize	
  U	
  &	
  V	
  randomly	
  
•  Loop	
  
– Choose	
  next	
  ui	
  or	
  vj	
  
– Solve	
  op:mally:	
  

•  (assuming	
  all	
  other	
  variables	
  fixed)	
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ui = λIK + ωijv jvj
T

j
∑

"

#
$$

%

&
''

−1

ωij yijv j
j
∑
"

#
$$

%

&
''



Tradeoffs	
  

•  Alterna:ng	
  op:miza:on	
  much	
  faster	
  in	
  terms	
  of	
  
#itera:ons	
  
–  But	
  requires	
  inver:ng	
  a	
  matrix:	
  

•  Gradient	
  descent	
  faster	
  for	
  high-­‐dim	
  problems	
  
–  Also	
  allows	
  for	
  streaming	
  data	
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ui = λIK + ωijv jvj
T

j
∑

"

#
$$

%

&
''

−1

ωij yijv j
j
∑
"

#
$$

%

&
''

ui = ui −η∂ui
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hop://www2.research.ao.com/~volinsky/papers/ieeecomputer.pdf	
  



Recap:	
  Collabora:ve	
  Filtering	
  

•  Goal:	
  predict	
  every	
  user/item	
  ra:ng	
  

•  Challenge:	
  only	
  a	
  small	
  subset	
  observed	
  

•  AssumpGon:	
  there	
  exists	
  a	
  low-­‐rank	
  subspace	
  
that	
  captures	
  all	
  the	
  variability	
  in	
  describing	
  
different	
  users	
  and	
  items	
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Aside:	
  Mul:task	
  Learning	
  

•  M	
  Tasks:	
  

•  Example:	
  personalized	
  recommender	
  system	
  
– One	
  task	
  per	
  user:	
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Sm = (xi, yi
m ){ }i=1

N

argmin
W

λ
2
R(W )+ 1

2
yi −wm

T xi( )
i
∑

2

m
∑

Regularizer	
  



How	
  to	
  Regularize?	
  

•  Standard	
  L2	
  Norm:	
  

•  Decomposes	
  to	
  independent	
  tasks	
  
– For	
  each	
  task,	
  learn	
  D	
  parameters	
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How	
  to	
  Regularize?	
  

•  Trace	
  Norm:	
  

•  Induces	
  W	
  to	
  have	
  low	
  rank	
  across	
  all	
  task	
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Sm = (xi, yi
m ){ }i=1

N
argmin
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λ
2
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2
yi −wm

T xi( )
i
∑

2

m
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2
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Recall:	
  Trace	
  Norm	
  &	
  Latent	
  Factor	
  Models	
  

•  Suppose	
  we	
  consider	
  all	
  U,V	
  that	
  achieve	
  perfect	
  
reconstruc:on:	
  W=UVT	
  

•  Find	
  U,V	
  with	
  lowest	
  complexity:	
  

•  Claim:	
  complexity	
  equivalent	
  to	
  trace	
  norm:	
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W
*
= min

W=UVT

1
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U
Fro

2
+ V

Fro

2( )
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1
2

U
Fro

2
+ V

Fro

2( )



How	
  to	
  Regularize?	
  

•  Latent	
  Factor	
  Approach	
  

•  Learns	
  a	
  feature	
  projec:on	
  x’	
  =	
  Vx	
  
•  Learns	
  a	
  K	
  dimensional	
  model	
  per	
  task	
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Sm = (xi, yi
m ){ }i=1

N
argmin
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λ
2
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2
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2
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Tradeoff	
  

•  D*N	
  parameters:	
  

•  D*K	
  +	
  N*K	
  parameters:	
  

– Sta:s:cally	
  more	
  efficient	
  
– Great	
  if	
  low-­‐rank	
  assump:on	
  is	
  a	
  good	
  one	
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Mul:task	
  Learning	
  

•  M	
  Tasks:	
  

•  Example:	
  personalized	
  recommender	
  system	
  
– One	
  task	
  per	
  user:	
  
–  If	
  x	
  is	
  topic	
  feature	
  representa:on	
  

•  V	
  is	
  subspace	
  of	
  correlated	
  topics	
  
•  Projects	
  mul:ple	
  topics	
  together	
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Sm = (xi, yi
m ){ }i=1

N

argmin
U,V

λ
2

U
Fro

2
+ V

Fro

2( )+ 12 yi
m −um

TVxi( )
i
∑

2

m
∑



Reduc:on	
  to	
  Collabora:ve	
  Filtering	
  

•  Suppose	
  each	
  xi	
  is	
  single	
  indicator	
  xi	
  =	
  ei	
  
•  Then:	
  

•  Exactly	
  Collabora:ve	
  Filtering!	
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Latent	
  Factor	
  Mul:task	
  Learning	
  vs	
  
Collabora:ve	
  Filtering	
  

•  Projects	
  x	
  into	
  low-­‐dimensional	
  subspace	
  Vx	
  
•  Learns	
  low-­‐dimensional	
  model	
  per	
  task	
  

•  Creates	
  low	
  dimensional	
  feature	
  for	
  each	
  movie	
  
•  Learns	
  low-­‐dimensional	
  model	
  per	
  user	
  

Lecture	
  13:	
  Latent	
  Factor	
  Models	
  &	
  Non-­‐Nega:ve	
  Matrix	
  Factoriza:on	
   42	
  

argmin
U,V

λ
2

U
Fro

2
+ V

Fro

2( )+ 12 yi
m −um

TVxi( )
i
∑

2

m
∑

argmin
U,V

λ
2

U
Fro

2
+ V

Fro

2( )+ 12 yi
m −um

Tvi( )
i
∑

2

m
∑



General	
  Bilinear	
  Models	
  

•  Users	
  described	
  by	
  features	
  z	
  
•  Items	
  described	
  by	
  features	
  x	
  

•  Learn	
  a	
  projec:on	
  of	
  z	
  and	
  x	
  into	
  common	
  
low-­‐dimensional	
  space	
  
– Linear	
  model	
  in	
  low	
  dimensional	
  space	
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S = (xi, zi,yi ){ }argmin
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λ
2

U
Fro

2
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2( )+ yi − zi
TUTVxi( )

i
∑

2



Why	
  are	
  Bilinear	
  Models	
  Useful?	
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  MxK	
  

V:	
  NxK	
  

U:	
  MxK	
  
V:	
  DxK	
  

U:	
  FxK	
  
V:	
  DxK	
  



Story	
  So	
  Far:	
  Latent	
  Factor	
  Models	
  

•  Simplest	
  Case:	
  reduces	
  to	
  SVD	
  of	
  matrix	
  Y	
  
– No	
  missing	
  values	
  
–  (z,x)	
  indicator	
  features	
  

•  General	
  Case:	
  projects	
  high-­‐dimensional	
  
feature	
  representa:on	
  into	
  low-­‐dimensional	
  
linear	
  model	
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Non-­‐Nega:ve	
  Matrix	
  Factoriza:on	
  

Lecture	
  13:	
  Latent	
  Factor	
  Models	
  &	
  Non-­‐Nega:ve	
  Matrix	
  Factoriza:on	
   46	
  



Limita:ons	
  of	
  PCA	
  &	
  SVD	
  

Lecture	
  13:	
  Latent	
  Factor	
  Models	
  &	
  Non-­‐Nega:ve	
  Matrix	
  Factoriza:on	
   47	
  

All	
  features	
  	
  
non-­‐nega:ve	
  

PCA/SVD	
  
SoluGon	
  

BeVer	
  SoluGon?	
  



Non-­‐Nega:ve	
  Matrix	
  Factoriza:on	
  

•  Assume	
  Y	
  is	
  non-­‐nega:ve	
  
•  Find	
  non-­‐nega:ve	
  U	
  &	
  V	
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VT	
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  M	
  

K	
  

“Latent	
  Factors”	
  

N	
   K	
   N	
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CS	
  155	
  Non-­‐Nega:ve	
  Face	
  Basis	
  
0.76	
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0.00	
   0.74	
   0.32	
  

0.01	
   0.64	
   1.39	
   0.15	
  

0.97	
   1.58	
   0.00	
   0.54	
  

1.03	
   0.16	
   0.43	
   1.16	
  

0.00	
   1.02	
   0.93	
   0.33	
  

0.00	
   0.56	
   0.28	
   0.79	
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CS	
  155	
  Eigenface	
  Basis	
  



Aside:	
  Non-­‐Orthogonal	
  Projec:ons	
  

•  If	
  columns	
  of	
  A	
  are	
  not	
  orthogonal,	
  ATA≠I	
  
– How	
  to	
  reverse	
  transforma:on	
  x’=ATx?	
  
– SoluGon:	
  Pseudoinverse!	
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0 otherwise
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#

Pseudoinverse	
  
A+T AT x =UΣ+VTVΣUT x

        =U1:KU1:K
T x

IntuiGon:	
  use	
  the	
  rank-­‐K	
  orthogonal	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  basis	
  that	
  spans	
  A.	
  	
  	
  



Objec:ve	
  Func:on	
  

•  Squared	
  Loss:	
  
–  Penalizes	
  squared	
  distance	
  

	
  

•  Generalized	
  Rela:ve	
  Entropy	
  
–  Aka,	
  unnormalized	
  KL	
  divergence	
  
–  Penalizes	
  ra:o	
  

•  Train	
  using	
  gradient	
  descent	
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argmin
U≥0,V≥0

ℓ(yij,ui
Tvj )

ij
∑

hop://hebb.mit.edu/people/seung/papers/nmfconverge.pdf	
  

ℓ(a,b) = (a− b)2

ℓ(a,b) = a log a
b
− a+ b



SVD/PCA	
  vs	
  NNMF	
  

•  SVD/PCA:	
  
–  Finds	
  the	
  best	
  
orthogonal	
  basis	
  faces	
  
•  Basis	
  faces	
  can	
  be	
  neg.	
  

–  Coeffs	
  can	
  be	
  nega:ve	
  
–  Ozen	
  trickier	
  to	
  visualize	
  
–  Beoer	
  reconstruc:ons	
  
with	
  fewer	
  basis	
  faces	
  
•  Basis	
  faces	
  capture	
  the	
  
most	
  varia:ons	
  

•  NNMF:	
  
–  Finds	
  best	
  set	
  of	
  non-­‐
nega:ve	
  basis	
  faces	
  

–  Non-­‐nega:ve	
  coeffs	
  
•  Ozen	
  non-­‐overlapping	
  

–  Easier	
  to	
  visualize	
  
–  Requires	
  more	
  basis	
  
faces	
  for	
  good	
  
reconstruc:ons	
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Non-­‐Nega:ve	
  Latent	
  Factor	
  Models	
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S = (xi, zi,yi ){ }argmin
U,V

λ
2

U
Fro

2
+ V

Fro

2( )+ ℓ yi, zi
TUTVxi( )

i
∑

•  Simplest	
  Case:	
  reduces	
  to	
  NNMF	
  of	
  matrix	
  Y	
  
– No	
  missing	
  values	
  
–  (z,x)	
  indicator	
  features	
  

•  General	
  Case:	
  projects	
  high-­‐dimensional	
  non-­‐
nega:ve	
  features	
  into	
  low-­‐dimensional	
  non-­‐
nega:ve	
  linear	
  model	
  



Modeling	
  NBA	
  Gameplay	
  Using	
  	
  
Non-­‐Nega:ve	
  Spa:al	
  	
  
Latent	
  Factor	
  Models	
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Fine-­‐Grained	
  	
  
Spa:al	
  Models	
  

1 2 3 4 5 6 7 8 9 10

Shooting Factors (L)

Kawhi Carmelo Dirk Dion John Tim Kyrie Shawn Jeremy David
Leonard Anthony Nowitzki Waiters Wall Duncan Irving Marion Lin Lee

Fig. 5. Top Row: Depicting the spatial coefficents of the latent factors corresponding to the spatial coefficients contributing to the ball handler taking a shot at
each location (L). Each player’s shooting model can be represented as a combination of these factors. Bottom Row: Depicting the spatial coefficients of a player
with high affinity to each of the latent factors.

1 2 3 4 5 6 7 8 9 10

Receiving Pass Factors (M )

Tony Dirk LeBron Monta Manu David Jose Chandler Goran Joachim
Parker Nowitzki James Ellis Ginobili Lee Calderon Parsons Dragic Noah

Fig. 6. Top Row: Depicting the spatial coefficents of the latent factors corresponding to spatial coefficients contributing to a player receiving a pass at each
location (M ). Each player’s conditional shooting probabilities can be represented as a combination of these factors. Bottom Row: Depicting the spatial coefficents
of a player with high affinity to each of the latent factors.

left column. We evaluated using both ROC curves as well
as average log loss, and we observe that our latent factor
models offer significant improvement. The gain from adding
the temporal spatial components is small (i.e., +SDT offers
about a 0.1% relative reduction in average log loss compared
to +SD), but this gain is still statistically significant given the
approximately 6 million examples/frames in our test set.

Our dataset exhibits a notable amount of class imbalance
– about 70% of frames have no action events forthcoming in
the next 1 second. To further tease out the interesting effects
learned by our model, we also evaluate predictive performance
when conditioned on an action event (shot or pass), and also
on a pass event. These results are depicted in the second
and third columns of Figure 4(a), respectively. We observe a
more significant performance gain from our spatial latent factor
models compared to the baseline, although the performance of
+SDT is no longer distinguishable from +SD.

Figure 4(b) depicts how predictive performance varies
across the basketball court. We see that the spatial latent factor
model improves performance throughout the court. When

comparing all events (top row), we observe a significant error
reduction in the two “low post” locations.9 When comparing
action events (middle row), we observe a significant error
reduction along the baseline behind the basket (for +SD and
+SDT). We comparing only passing events (bottom row), we
observe a significant error reduction around the basket area
(for +SD and +SDT). Our inspection of the learned factors in
Section VI will shed light on how components of our model
contribute to the various reductions in error.

VI. MODEL INSPECTION

We now provide a detailed inspection our learned model
in order to identify patterns that match known intuitions of
basketball game play. We will also identify aspects of our
model that contribute to the various gains in performance
depicted in Figure 4(b). Although our focus is on basketball,
this type of analysis is applicable to a wide range of domains
with fine-grained spatial patterns.

9The two low post locations are situated about 10 feet and directed at 45
degree angles away from the basket.

40	
  feet	
  
56	
  

•  Discre:ze	
  court	
  
– 1x1	
  foot	
  cells	
  
– 2000	
  cells	
  

•  1	
  weight	
  per	
  cell	
  
– 2000	
  weights	
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Fine-­‐Grained	
  	
  
Spa:al	
  Models	
  

1 2 3 4 5 6 7 8 9 10

Shooting Factors (L)

Kawhi Carmelo Dirk Dion John Tim Kyrie Shawn Jeremy David
Leonard Anthony Nowitzki Waiters Wall Duncan Irving Marion Lin Lee

Fig. 5. Top Row: Depicting the spatial coefficents of the latent factors corresponding to the spatial coefficients contributing to the ball handler taking a shot at
each location (L). Each player’s shooting model can be represented as a combination of these factors. Bottom Row: Depicting the spatial coefficients of a player
with high affinity to each of the latent factors.

1 2 3 4 5 6 7 8 9 10

Receiving Pass Factors (M )

Tony Dirk LeBron Monta Manu David Jose Chandler Goran Joachim
Parker Nowitzki James Ellis Ginobili Lee Calderon Parsons Dragic Noah

Fig. 6. Top Row: Depicting the spatial coefficents of the latent factors corresponding to spatial coefficients contributing to a player receiving a pass at each
location (M ). Each player’s conditional shooting probabilities can be represented as a combination of these factors. Bottom Row: Depicting the spatial coefficents
of a player with high affinity to each of the latent factors.

left column. We evaluated using both ROC curves as well
as average log loss, and we observe that our latent factor
models offer significant improvement. The gain from adding
the temporal spatial components is small (i.e., +SDT offers
about a 0.1% relative reduction in average log loss compared
to +SD), but this gain is still statistically significant given the
approximately 6 million examples/frames in our test set.

Our dataset exhibits a notable amount of class imbalance
– about 70% of frames have no action events forthcoming in
the next 1 second. To further tease out the interesting effects
learned by our model, we also evaluate predictive performance
when conditioned on an action event (shot or pass), and also
on a pass event. These results are depicted in the second
and third columns of Figure 4(a), respectively. We observe a
more significant performance gain from our spatial latent factor
models compared to the baseline, although the performance of
+SDT is no longer distinguishable from +SD.

Figure 4(b) depicts how predictive performance varies
across the basketball court. We see that the spatial latent factor
model improves performance throughout the court. When

comparing all events (top row), we observe a significant error
reduction in the two “low post” locations.9 When comparing
action events (middle row), we observe a significant error
reduction along the baseline behind the basket (for +SD and
+SDT). We comparing only passing events (bottom row), we
observe a significant error reduction around the basket area
(for +SD and +SDT). Our inspection of the learned factors in
Section VI will shed light on how components of our model
contribute to the various reductions in error.

VI. MODEL INSPECTION

We now provide a detailed inspection our learned model
in order to identify patterns that match known intuitions of
basketball game play. We will also identify aspects of our
model that contribute to the various gains in performance
depicted in Figure 4(b). Although our focus is on basketball,
this type of analysis is applicable to a wide range of domains
with fine-grained spatial patterns.

9The two low post locations are situated about 10 feet and directed at 45
degree angles away from the basket.

40	
  feet	
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•  Discre:ze	
  court	
  
– 1x1	
  foot	
  cells	
  
– 2000	
  cells	
  

•  1	
  weight	
  per	
  cell	
  
– 2000	
  weights	
  

	
  
	
  

Fs (x) :

But	
  most	
  players	
  haven’t	
  
played	
  that	
  much!	
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Visualizing	
  loca:on	
  factors	
  L	
  

Visualizing	
  players	
  BbL	
  

1 2 3 4 5 6 7 8 9 10

Shooting Factors (L)

Kawhi Carmelo Dirk Dion John Tim Kyrie Shawn Jeremy David
Leonard Anthony Nowitzki Waiters Wall Duncan Irving Marion Lin Lee

Fig. 5. Top Row: Depicting the spatial coefficents of the latent factors corresponding to the spatial coefficients contributing to the ball handler taking a shot at
each location (L). Each player’s shooting model can be represented as a combination of these factors. Bottom Row: Depicting the spatial coefficients of a player
with high affinity to each of the latent factors.

1 2 3 4 5 6 7 8 9 10

Receiving Pass Factors (M )

Tony Dirk LeBron Monta Manu David Jose Chandler Goran Joachim
Parker Nowitzki James Ellis Ginobili Lee Calderon Parsons Dragic Noah

Fig. 6. Top Row: Depicting the spatial coefficents of the latent factors corresponding to spatial coefficients contributing to a player receiving a pass at each
location (M ). Each player’s conditional shooting probabilities can be represented as a combination of these factors. Bottom Row: Depicting the spatial coefficents
of a player with high affinity to each of the latent factors.

left column. We evaluated using both ROC curves as well
as average log loss, and we observe that our latent factor
models offer significant improvement. The gain from adding
the temporal spatial components is small (i.e., +SDT offers
about a 0.1% relative reduction in average log loss compared
to +SD), but this gain is still statistically significant given the
approximately 6 million examples/frames in our test set.

Our dataset exhibits a notable amount of class imbalance
– about 70% of frames have no action events forthcoming in
the next 1 second. To further tease out the interesting effects
learned by our model, we also evaluate predictive performance
when conditioned on an action event (shot or pass), and also
on a pass event. These results are depicted in the second
and third columns of Figure 4(a), respectively. We observe a
more significant performance gain from our spatial latent factor
models compared to the baseline, although the performance of
+SDT is no longer distinguishable from +SD.

Figure 4(b) depicts how predictive performance varies
across the basketball court. We see that the spatial latent factor
model improves performance throughout the court. When

comparing all events (top row), we observe a significant error
reduction in the two “low post” locations.9 When comparing
action events (middle row), we observe a significant error
reduction along the baseline behind the basket (for +SD and
+SDT). We comparing only passing events (bottom row), we
observe a significant error reduction around the basket area
(for +SD and +SDT). Our inspection of the learned factors in
Section VI will shed light on how components of our model
contribute to the various reductions in error.

VI. MODEL INSPECTION

We now provide a detailed inspection our learned model
in order to identify patterns that match known intuitions of
basketball game play. We will also identify aspects of our
model that contribute to the various gains in performance
depicted in Figure 4(b). Although our focus is on basketball,
this type of analysis is applicable to a wide range of domains
with fine-grained spatial patterns.

9The two low post locations are situated about 10 feet and directed at 45
degree angles away from the basket.
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Shooting Factors (L)

Kawhi Carmelo Dirk Dion John Tim Kyrie Shawn Jeremy David
Leonard Anthony Nowitzki Waiters Wall Duncan Irving Marion Lin Lee

Fig. 5. Top Row: Depicting the spatial coefficents of the latent factors corresponding to the spatial coefficients contributing to the ball handler taking a shot at
each location (L). Each player’s shooting model can be represented as a combination of these factors. Bottom Row: Depicting the spatial coefficients of a player
with high affinity to each of the latent factors.
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Receiving Pass Factors (M )

Tony Dirk LeBron Monta Manu David Jose Chandler Goran Joachim
Parker Nowitzki James Ellis Ginobili Lee Calderon Parsons Dragic Noah

Fig. 6. Top Row: Depicting the spatial coefficents of the latent factors corresponding to spatial coefficients contributing to a player receiving a pass at each
location (M ). Each player’s conditional shooting probabilities can be represented as a combination of these factors. Bottom Row: Depicting the spatial coefficents
of a player with high affinity to each of the latent factors.

left column. We evaluated using both ROC curves as well
as average log loss, and we observe that our latent factor
models offer significant improvement. The gain from adding
the temporal spatial components is small (i.e., +SDT offers
about a 0.1% relative reduction in average log loss compared
to +SD), but this gain is still statistically significant given the
approximately 6 million examples/frames in our test set.

Our dataset exhibits a notable amount of class imbalance
– about 70% of frames have no action events forthcoming in
the next 1 second. To further tease out the interesting effects
learned by our model, we also evaluate predictive performance
when conditioned on an action event (shot or pass), and also
on a pass event. These results are depicted in the second
and third columns of Figure 4(a), respectively. We observe a
more significant performance gain from our spatial latent factor
models compared to the baseline, although the performance of
+SDT is no longer distinguishable from +SD.

Figure 4(b) depicts how predictive performance varies
across the basketball court. We see that the spatial latent factor
model improves performance throughout the court. When

comparing all events (top row), we observe a significant error
reduction in the two “low post” locations.9 When comparing
action events (middle row), we observe a significant error
reduction along the baseline behind the basket (for +SD and
+SDT). We comparing only passing events (bottom row), we
observe a significant error reduction around the basket area
(for +SD and +SDT). Our inspection of the learned factors in
Section VI will shed light on how components of our model
contribute to the various reductions in error.

VI. MODEL INSPECTION

We now provide a detailed inspection our learned model
in order to identify patterns that match known intuitions of
basketball game play. We will also identify aspects of our
model that contribute to the various gains in performance
depicted in Figure 4(b). Although our focus is on basketball,
this type of analysis is applicable to a wide range of domains
with fine-grained spatial patterns.

9The two low post locations are situated about 10 feet and directed at 45
degree angles away from the basket.
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1 2 3 4 5 6 7 8 9 10

Shooting Factors (L)

Kawhi Carmelo Dirk Dion John Tim Kyrie Shawn Jeremy David
Leonard Anthony Nowitzki Waiters Wall Duncan Irving Marion Lin Lee

Fig. 5. Top Row: Depicting the spatial coefficents of the latent factors corresponding to the spatial coefficients contributing to the ball handler taking a shot at
each location (L). Each player’s shooting model can be represented as a combination of these factors. Bottom Row: Depicting the spatial coefficients of a player
with high affinity to each of the latent factors.

1 2 3 4 5 6 7 8 9 10

Receiving Pass Factors (M )

Tony Dirk LeBron Monta Manu David Jose Chandler Goran Joachim
Parker Nowitzki James Ellis Ginobili Lee Calderon Parsons Dragic Noah

Fig. 6. Top Row: Depicting the spatial coefficents of the latent factors corresponding to spatial coefficients contributing to a player receiving a pass at each
location (M ). Each player’s conditional shooting probabilities can be represented as a combination of these factors. Bottom Row: Depicting the spatial coefficents
of a player with high affinity to each of the latent factors.

left column. We evaluated using both ROC curves as well
as average log loss, and we observe that our latent factor
models offer significant improvement. The gain from adding
the temporal spatial components is small (i.e., +SDT offers
about a 0.1% relative reduction in average log loss compared
to +SD), but this gain is still statistically significant given the
approximately 6 million examples/frames in our test set.

Our dataset exhibits a notable amount of class imbalance
– about 70% of frames have no action events forthcoming in
the next 1 second. To further tease out the interesting effects
learned by our model, we also evaluate predictive performance
when conditioned on an action event (shot or pass), and also
on a pass event. These results are depicted in the second
and third columns of Figure 4(a), respectively. We observe a
more significant performance gain from our spatial latent factor
models compared to the baseline, although the performance of
+SDT is no longer distinguishable from +SD.

Figure 4(b) depicts how predictive performance varies
across the basketball court. We see that the spatial latent factor
model improves performance throughout the court. When

comparing all events (top row), we observe a significant error
reduction in the two “low post” locations.9 When comparing
action events (middle row), we observe a significant error
reduction along the baseline behind the basket (for +SD and
+SDT). We comparing only passing events (bottom row), we
observe a significant error reduction around the basket area
(for +SD and +SDT). Our inspection of the learned factors in
Section VI will shed light on how components of our model
contribute to the various reductions in error.

VI. MODEL INSPECTION

We now provide a detailed inspection our learned model
in order to identify patterns that match known intuitions of
basketball game play. We will also identify aspects of our
model that contribute to the various gains in performance
depicted in Figure 4(b). Although our focus is on basketball,
this type of analysis is applicable to a wide range of domains
with fine-grained spatial patterns.

9The two low post locations are situated about 10 feet and directed at 45
degree angles away from the basket.
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Shooting Factors (L)

Kawhi Carmelo Dirk Dion John Tim Kyrie Shawn Jeremy David
Leonard Anthony Nowitzki Waiters Wall Duncan Irving Marion Lin Lee

Fig. 5. Top Row: Depicting the spatial coefficents of the latent factors corresponding to the spatial coefficients contributing to the ball handler taking a shot at
each location (L). Each player’s shooting model can be represented as a combination of these factors. Bottom Row: Depicting the spatial coefficients of a player
with high affinity to each of the latent factors.
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Receiving Pass Factors (M )

Tony Dirk LeBron Monta Manu David Jose Chandler Goran Joachim
Parker Nowitzki James Ellis Ginobili Lee Calderon Parsons Dragic Noah

Fig. 6. Top Row: Depicting the spatial coefficents of the latent factors corresponding to spatial coefficients contributing to a player receiving a pass at each
location (M ). Each player’s conditional shooting probabilities can be represented as a combination of these factors. Bottom Row: Depicting the spatial coefficents
of a player with high affinity to each of the latent factors.

left column. We evaluated using both ROC curves as well
as average log loss, and we observe that our latent factor
models offer significant improvement. The gain from adding
the temporal spatial components is small (i.e., +SDT offers
about a 0.1% relative reduction in average log loss compared
to +SD), but this gain is still statistically significant given the
approximately 6 million examples/frames in our test set.

Our dataset exhibits a notable amount of class imbalance
– about 70% of frames have no action events forthcoming in
the next 1 second. To further tease out the interesting effects
learned by our model, we also evaluate predictive performance
when conditioned on an action event (shot or pass), and also
on a pass event. These results are depicted in the second
and third columns of Figure 4(a), respectively. We observe a
more significant performance gain from our spatial latent factor
models compared to the baseline, although the performance of
+SDT is no longer distinguishable from +SD.

Figure 4(b) depicts how predictive performance varies
across the basketball court. We see that the spatial latent factor
model improves performance throughout the court. When

comparing all events (top row), we observe a significant error
reduction in the two “low post” locations.9 When comparing
action events (middle row), we observe a significant error
reduction along the baseline behind the basket (for +SD and
+SDT). We comparing only passing events (bottom row), we
observe a significant error reduction around the basket area
(for +SD and +SDT). Our inspection of the learned factors in
Section VI will shed light on how components of our model
contribute to the various reductions in error.

VI. MODEL INSPECTION

We now provide a detailed inspection our learned model
in order to identify patterns that match known intuitions of
basketball game play. We will also identify aspects of our
model that contribute to the various gains in performance
depicted in Figure 4(b). Although our focus is on basketball,
this type of analysis is applicable to a wide range of domains
with fine-grained spatial patterns.

9The two low post locations are situated about 10 feet and directed at 45
degree angles away from the basket.
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Fig. 7. Top Row: Depicting the spatial coefficents of the latent factors corresponding to passing from each location. Bottom Row: Depicting the associated
spatial coefficents of the latent corresponding to receiving a pass at each location. Figure 8 shows examples of aggregate passing and receiving coefficients.

A. Where do Players Tend to Shoot?

We begin by inspecting the player-by-location shooting fac-
tors B and L. We estimated a 10-dimensional representation,
which visually correspond to known shooting patterns. Our
results are shown in Figure 5. The top row depicts the ten
learned factors (i.e., the rows of L), and the bottom row depicts
the spatial coefficients of players which have high affinity for
each of the factors. The first three factors correspond to players
who shoot at the 3 point line. The next three factor correspond
to players who shoot midrange shots. The seventh factor
corresponds to players who shoot just inside the lane. The
eight factor corresponds to players who shoot while attacking
the basket from the baseline. The final two factors correspond
to players who shoot near the basket.

We note that the first factor and the last two factors have
the strongest coefficients, which is unsurprising since those are
the most valuable shooting locations. Note that the first factor
also corresponds to the large error reduction in the “corner
three” locations in the middle row of Figure 4(b). We further
note that none of the factors have strong coefficients along the
baseline behind the basket, which is also a region of large error
reduction in the middle row of Figure 4(b).

A similar analysis was conducted by [8], but with two
key differences. First, [8] did not consider the in-game state
but only modeled the shot selection chart. In contrast, we are
interested in modeling the conditional probability of a player
shooting given the current game state. For example, a player
may often occupy a certain location without shooting the ball.
Second, as described below, we also model and analyze many
more spatial factors than just player shooting tendencies.

B. Where do Players Tend to Receive Passes?

We now inspect the player-by-location passing factors P

and M . We estimated a 10-dimensional representation, which
visually correspond to known passing patterns. The top row in
Figure 6 shows the ten learned factors (i.e., the rows of M ),
and the bottom row depicts the spatial coefficients of players
which have high affinity for each of the factors.

The first factor corresponds to players that receive passes
while cutting across the baseline. In fact, many of the factors
give off a visual effect of being in motion (i.e., spatial blur),

Fig. 8. Top Row: Depicting spatial coefficients of passing to different locations
on the court. The “X” denotes the location of the passer and corresponds to
a row in Q>

1 Q2. Bottom Row: Depicting the spatial coefficients of receiving
a pass from different locations on the court. The “X” denotes the location of
the receiver, and corresponds to a column in Q>

1 Q2.

which suggests that players are often moving right before
receiving a pass.10 The second factor corresponds to players
that receive passes in the low post, which also corresponds
to areas of high error reduction in the top row of Figure
4(b).11 The next three factors depict various midrange regions.
Typically, right handed players associate more with the fourth
factor, and left handed players associate more with the fifth
factor.12 The next three factors depict regions at the three-
point line, and the final two factors depict regions in the back
court.

The players with the strongest coefficients tend to be from
playoff teams that have tracking equipment deployed on their
home courts during the 2012-2013 NBA season, since those
players have the most training data available for them. For
example, we see that Figure 5 and Figure 6 contain several
players from the San Antonio Spurs, which had the most games
in our dataset.

10This effect is most likely an artifact of how we formulated our task to
predict events up to 1 second into the future. It may be beneficial to model
multiple time intervals into the future (e.g., half a second, one second).

11Note that although players often receive passes in the low post, they
typically do not shoot from that location, as evidenced in the shooting factors
in Figure 5. Capturing this sharp spatial contrast between receiving passes and
shooting contributes to the error reduction in those regions in Figure 4(b).

12This effect is due to players preferring to drive with their strong hand.
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1 2 3 4 5 6 7 8 9 10 11 12

Receiver Factors (Q2)

Fig. 7. Top Row: Depicting the spatial coefficents of the latent factors corresponding to passing from each location. Bottom Row: Depicting the associated
spatial coefficents of the latent corresponding to receiving a pass at each location. Figure 8 shows examples of aggregate passing and receiving coefficients.

A. Where do Players Tend to Shoot?

We begin by inspecting the player-by-location shooting fac-
tors B and L. We estimated a 10-dimensional representation,
which visually correspond to known shooting patterns. Our
results are shown in Figure 5. The top row depicts the ten
learned factors (i.e., the rows of L), and the bottom row depicts
the spatial coefficients of players which have high affinity for
each of the factors. The first three factors correspond to players
who shoot at the 3 point line. The next three factor correspond
to players who shoot midrange shots. The seventh factor
corresponds to players who shoot just inside the lane. The
eight factor corresponds to players who shoot while attacking
the basket from the baseline. The final two factors correspond
to players who shoot near the basket.

We note that the first factor and the last two factors have
the strongest coefficients, which is unsurprising since those are
the most valuable shooting locations. Note that the first factor
also corresponds to the large error reduction in the “corner
three” locations in the middle row of Figure 4(b). We further
note that none of the factors have strong coefficients along the
baseline behind the basket, which is also a region of large error
reduction in the middle row of Figure 4(b).

A similar analysis was conducted by [8], but with two
key differences. First, [8] did not consider the in-game state
but only modeled the shot selection chart. In contrast, we are
interested in modeling the conditional probability of a player
shooting given the current game state. For example, a player
may often occupy a certain location without shooting the ball.
Second, as described below, we also model and analyze many
more spatial factors than just player shooting tendencies.

B. Where do Players Tend to Receive Passes?

We now inspect the player-by-location passing factors P

and M . We estimated a 10-dimensional representation, which
visually correspond to known passing patterns. The top row in
Figure 6 shows the ten learned factors (i.e., the rows of M ),
and the bottom row depicts the spatial coefficients of players
which have high affinity for each of the factors.

The first factor corresponds to players that receive passes
while cutting across the baseline. In fact, many of the factors
give off a visual effect of being in motion (i.e., spatial blur),

Fig. 8. Top Row: Depicting spatial coefficients of passing to different locations
on the court. The “X” denotes the location of the passer and corresponds to
a row in Q>

1 Q2. Bottom Row: Depicting the spatial coefficients of receiving
a pass from different locations on the court. The “X” denotes the location of
the receiver, and corresponds to a column in Q>

1 Q2.

which suggests that players are often moving right before
receiving a pass.10 The second factor corresponds to players
that receive passes in the low post, which also corresponds
to areas of high error reduction in the top row of Figure
4(b).11 The next three factors depict various midrange regions.
Typically, right handed players associate more with the fourth
factor, and left handed players associate more with the fifth
factor.12 The next three factors depict regions at the three-
point line, and the final two factors depict regions in the back
court.

The players with the strongest coefficients tend to be from
playoff teams that have tracking equipment deployed on their
home courts during the 2012-2013 NBA season, since those
players have the most training data available for them. For
example, we see that Figure 5 and Figure 6 contain several
players from the San Antonio Spurs, which had the most games
in our dataset.

10This effect is most likely an artifact of how we formulated our task to
predict events up to 1 second into the future. It may be beneficial to model
multiple time intervals into the future (e.g., half a second, one second).

11Note that although players often receive passes in the low post, they
typically do not shoot from that location, as evidenced in the shooting factors
in Figure 5. Capturing this sharp spatial contrast between receiving passes and
shooting contributes to the error reduction in those regions in Figure 4(b).

12This effect is due to players preferring to drive with their strong hand.
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Fig. 7. Top Row: Depicting the spatial coefficents of the latent factors corresponding to passing from each location. Bottom Row: Depicting the associated
spatial coefficents of the latent corresponding to receiving a pass at each location. Figure 8 shows examples of aggregate passing and receiving coefficients.

A. Where do Players Tend to Shoot?

We begin by inspecting the player-by-location shooting fac-
tors B and L. We estimated a 10-dimensional representation,
which visually correspond to known shooting patterns. Our
results are shown in Figure 5. The top row depicts the ten
learned factors (i.e., the rows of L), and the bottom row depicts
the spatial coefficients of players which have high affinity for
each of the factors. The first three factors correspond to players
who shoot at the 3 point line. The next three factor correspond
to players who shoot midrange shots. The seventh factor
corresponds to players who shoot just inside the lane. The
eight factor corresponds to players who shoot while attacking
the basket from the baseline. The final two factors correspond
to players who shoot near the basket.

We note that the first factor and the last two factors have
the strongest coefficients, which is unsurprising since those are
the most valuable shooting locations. Note that the first factor
also corresponds to the large error reduction in the “corner
three” locations in the middle row of Figure 4(b). We further
note that none of the factors have strong coefficients along the
baseline behind the basket, which is also a region of large error
reduction in the middle row of Figure 4(b).

A similar analysis was conducted by [8], but with two
key differences. First, [8] did not consider the in-game state
but only modeled the shot selection chart. In contrast, we are
interested in modeling the conditional probability of a player
shooting given the current game state. For example, a player
may often occupy a certain location without shooting the ball.
Second, as described below, we also model and analyze many
more spatial factors than just player shooting tendencies.

B. Where do Players Tend to Receive Passes?

We now inspect the player-by-location passing factors P

and M . We estimated a 10-dimensional representation, which
visually correspond to known passing patterns. The top row in
Figure 6 shows the ten learned factors (i.e., the rows of M ),
and the bottom row depicts the spatial coefficients of players
which have high affinity for each of the factors.

The first factor corresponds to players that receive passes
while cutting across the baseline. In fact, many of the factors
give off a visual effect of being in motion (i.e., spatial blur),

Fig. 8. Top Row: Depicting spatial coefficients of passing to different locations
on the court. The “X” denotes the location of the passer and corresponds to
a row in Q>

1 Q2. Bottom Row: Depicting the spatial coefficients of receiving
a pass from different locations on the court. The “X” denotes the location of
the receiver, and corresponds to a column in Q>

1 Q2.

which suggests that players are often moving right before
receiving a pass.10 The second factor corresponds to players
that receive passes in the low post, which also corresponds
to areas of high error reduction in the top row of Figure
4(b).11 The next three factors depict various midrange regions.
Typically, right handed players associate more with the fourth
factor, and left handed players associate more with the fifth
factor.12 The next three factors depict regions at the three-
point line, and the final two factors depict regions in the back
court.

The players with the strongest coefficients tend to be from
playoff teams that have tracking equipment deployed on their
home courts during the 2012-2013 NBA season, since those
players have the most training data available for them. For
example, we see that Figure 5 and Figure 6 contain several
players from the San Antonio Spurs, which had the most games
in our dataset.

10This effect is most likely an artifact of how we formulated our task to
predict events up to 1 second into the future. It may be beneficial to model
multiple time intervals into the future (e.g., half a second, one second).

11Note that although players often receive passes in the low post, they
typically do not shoot from that location, as evidenced in the shooting factors
in Figure 5. Capturing this sharp spatial contrast between receiving passes and
shooting contributes to the error reduction in those regions in Figure 4(b).

12This effect is due to players preferring to drive with their strong hand.

1 2 3 4 5 6 7 8 9 10 11 12

Passer Factors (Q1)

1 2 3 4 5 6 7 8 9 10 11 12

Receiver Factors (Q2)

Fig. 7. Top Row: Depicting the spatial coefficents of the latent factors corresponding to passing from each location. Bottom Row: Depicting the associated
spatial coefficents of the latent corresponding to receiving a pass at each location. Figure 8 shows examples of aggregate passing and receiving coefficients.

A. Where do Players Tend to Shoot?

We begin by inspecting the player-by-location shooting fac-
tors B and L. We estimated a 10-dimensional representation,
which visually correspond to known shooting patterns. Our
results are shown in Figure 5. The top row depicts the ten
learned factors (i.e., the rows of L), and the bottom row depicts
the spatial coefficients of players which have high affinity for
each of the factors. The first three factors correspond to players
who shoot at the 3 point line. The next three factor correspond
to players who shoot midrange shots. The seventh factor
corresponds to players who shoot just inside the lane. The
eight factor corresponds to players who shoot while attacking
the basket from the baseline. The final two factors correspond
to players who shoot near the basket.

We note that the first factor and the last two factors have
the strongest coefficients, which is unsurprising since those are
the most valuable shooting locations. Note that the first factor
also corresponds to the large error reduction in the “corner
three” locations in the middle row of Figure 4(b). We further
note that none of the factors have strong coefficients along the
baseline behind the basket, which is also a region of large error
reduction in the middle row of Figure 4(b).

A similar analysis was conducted by [8], but with two
key differences. First, [8] did not consider the in-game state
but only modeled the shot selection chart. In contrast, we are
interested in modeling the conditional probability of a player
shooting given the current game state. For example, a player
may often occupy a certain location without shooting the ball.
Second, as described below, we also model and analyze many
more spatial factors than just player shooting tendencies.

B. Where do Players Tend to Receive Passes?

We now inspect the player-by-location passing factors P

and M . We estimated a 10-dimensional representation, which
visually correspond to known passing patterns. The top row in
Figure 6 shows the ten learned factors (i.e., the rows of M ),
and the bottom row depicts the spatial coefficients of players
which have high affinity for each of the factors.

The first factor corresponds to players that receive passes
while cutting across the baseline. In fact, many of the factors
give off a visual effect of being in motion (i.e., spatial blur),

Fig. 8. Top Row: Depicting spatial coefficients of passing to different locations
on the court. The “X” denotes the location of the passer and corresponds to
a row in Q>

1 Q2. Bottom Row: Depicting the spatial coefficients of receiving
a pass from different locations on the court. The “X” denotes the location of
the receiver, and corresponds to a column in Q>

1 Q2.

which suggests that players are often moving right before
receiving a pass.10 The second factor corresponds to players
that receive passes in the low post, which also corresponds
to areas of high error reduction in the top row of Figure
4(b).11 The next three factors depict various midrange regions.
Typically, right handed players associate more with the fourth
factor, and left handed players associate more with the fifth
factor.12 The next three factors depict regions at the three-
point line, and the final two factors depict regions in the back
court.

The players with the strongest coefficients tend to be from
playoff teams that have tracking equipment deployed on their
home courts during the 2012-2013 NBA season, since those
players have the most training data available for them. For
example, we see that Figure 5 and Figure 6 contain several
players from the San Antonio Spurs, which had the most games
in our dataset.

10This effect is most likely an artifact of how we formulated our task to
predict events up to 1 second into the future. It may be beneficial to model
multiple time intervals into the future (e.g., half a second, one second).

11Note that although players often receive passes in the low post, they
typically do not shoot from that location, as evidenced in the shooting factors
in Figure 5. Capturing this sharp spatial contrast between receiving passes and
shooting contributes to the error reduction in those regions in Figure 4(b).

12This effect is due to players preferring to drive with their strong hand.
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Tri-­‐Linear	
  Model	
  

•  Predic:on	
  via	
  3-­‐way	
  dot	
  product:	
  
–  Related	
  to	
  Hadamard	
  Product	
  

•  Example:	
  online	
  adver:sing	
  
–  User	
  profile	
  z	
  
–  Item	
  descrip:on	
  x	
  
–  Query	
  q	
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Summary:	
  Latent	
  Factor	
  Models	
  
•  Learns	
  a	
  low-­‐rank	
  model	
  of	
  a	
  matrix	
  of	
  observa:ons	
  Y	
  

–  Dimensions	
  of	
  Y	
  can	
  have	
  various	
  seman:cs	
  

•  Can	
  tolerate	
  missing	
  values	
  in	
  Y	
  

•  Can	
  also	
  use	
  features	
  

•  Widely	
  used	
  in	
  industry	
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Next	
  Week 	
  	
  

•  Embeddings	
  

•  Deep	
  Learning	
  

•  Next	
  Thursday:	
  Recita:on	
  on	
  Advanced	
  
Op:miza:on	
  Techniques	
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