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Announcements	  

•  Homework	  6	  Released	  
– Due	  Tuesday	  March	  1st	  

•  Miniproject	  2	  to	  be	  released	  next	  week	  
– Due	  March	  8th	  
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Today	  

•  Some	  useful	  matrix	  proper:es	  
– Useful	  for	  homework	  

•  Latent	  Factor	  Models	  
– Low-‐rank	  models	  with	  missing	  values	  

•  Non-‐nega:ve	  matrix	  factoriza:on	  
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Recap:	  Orthogonal	  Matrix	  

•  A	  matrix	  U	  is	  orthogonal	  if	  UUT	  =	  UTU	  =	  I	  
–  For	  any	  column	  u:	  	  uTu	  =	  1	  
–  For	  any	  two	  columns	  u,	  u’:	  	  uTu’	  =	  0	  
–  U	  is	  a	  rota:on	  matrix,	  and	  UT	  is	  the	  inverse	  rota:on	  
–  If	  x’	  =	  UTx,	  then	  x	  =	  Ux’	  

4	  
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Recap:	  Orthogonal	  Matrix	  

•  Any	  subset	  of	  columns	  of	  U	  defines	  a	  subspace	  
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u1u1
T x

x ' =U1:K
T x

projU1:K x( ) =U1:KU1:K
T x

Transform	  into	  new	  coordinates	  
Treat	  U1:K	  as	  new	  axes	  

Project	  x	  onto	  U1:K	  in	  original	  space	  
“Low	  Rank”	  Subspace	  



Recap:	  Singular	  Value	  Decomposi:on	  
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X =UΣVT

Orthogonal	  

Diagonal	  Orthogonal	  

X = x1,..., xN[ ]∈ ReD×N

xi −U1:KU1:K
T xi

2

i=1

N

∑
“Residual”	  

U1:K	  is	  the	  K-‐dim	  
subspace	  with	  	  
smallest	  residual	  

SVD	  



Recap:	  SVD	  &	  PCA	  
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XXT = UΣVT( ) UΣVT( )
T
=UΣVTVΣUT =UΣ2UT

XXT =UΛUT PCA	  

X =UΣVT

Orthogonal	  

Diagonal	  Orthogonal	  

SVD	  

Orthogonal	   Diagonal	  



Recap:	  Eigenfaces	  

•  Each	  col	  of	  U’	  is	  an	  “Eigenface”	  
•  Each	  col	  of	  V’T	  =	  coefficients	  of	  a	  student	  
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=	  
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X’	   U’	  

225000-‐dimensional!	  

V’T	  

Avg	  
Face	  



Matrix	  Norms	  
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•  Frobenius	  Norm	  

•  Trace	  Norm	  

X
Fro
= Xij

2

ij
∑ = σ d

2

d
∑

X
*
= σ d

d
∑ = trace XTX( )

X =UΣVT

Σ =

σ1
σ 2

!
σ D

"

#

$
$
$
$
$

%

&

'
'
'
'
'

Each	  σd	  is	  guaranteed	  to	  be	  non-‐nega:ve	  
By	  conven:on:	  σ1	  ≥	  σ2	  ≥	  …	  ≥	  σD	  ≥	  0	  



Proper:es	  of	  Matrix	  Norms	  
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X
Fro

2
= trace XTX( ) = trace UΣVT( )

T
UΣVT( )

         = trace VΣ2VT( ) = trace Σ2VTV( )
         = trace Σ2( ) = σ d

2

d
∑

trace(ABC) = trace(BCA) = trace(CAB)

X =UΣVT

Σ =

σ1
σ 2

!
σ D

"

#

$
$
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$

%

&

'
'
'
'
'
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Proper:es	  of	  Matrix	  Norms	  
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trace(ABC) = trace(BCA) = trace(CAB)

X =UΣVT

Σ =

σ1
σ 2

!
σ D

"

#

$
$
$
$
$

%
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'
'
'
'
'

X
*
= trace UΣVT( )

T
UΣVT"

#
$

%

&
'= trace VΣUTUΣVT( )

      = trace VΣΣVT( ) = trace VΣ2VT( ) = trace VΣVT( )
      = trace ΣVTV( ) = trace Σ( ) = σ d

d
∑

Each	  σd	  is	  guaranteed	  to	  be	  non-‐nega:ve	  
By	  conven:on:	  σ1	  ≥	  σ2	  ≥	  …	  ≥	  σD	  ≥	  0	  



Frobenius	  Norm	  =	  Squared	  Norm	  

•  Matrix	  version	  of	  L2	  Norm:	  

	  
•  Useful	  for	  regularizing	  matrix	  models	  
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X
Fro

2
= Xij

2

ij
∑ = σ d

2

d
∑

X =UΣVT Σ =

σ1
σ 2

!
σ D
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Recall:	  L1	  &	  Sparsity	  

•  w	  is	  sparse	  if	  mostly	  0’s:	  
– Small	  L0	  Norm	  

•  Why	  not	  L0	  Regulariza:on?	  
– Not	  conGnuous!	  

•  L1	  induces	  sparsity	  
– And	  is	  con:nuous!	  

argmin
w

λ w
0
+ yi −w

T xi( )
2

i=1

N

∑

w
0
= 1 wd≠0[ ]

d
∑

argmin
w

λ w + yi −w
T xi( )

2

i=1

N

∑

Omijng	  b	  &	  
for	  simplicity	   13	  



Trace	  Norm	  =	  L1	  of	  Eigenvalues	  	  

•  A	  matrix	  X	  is	  considered	  low	  rank	  if	  it	  has	  few	  non-‐
zero	  singular	  values:	  
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X
*
= σ d

d
∑ = trace XTX( )

X =UΣVT Σ =

σ1
σ 2

!
σ D

"

#

$
$
$
$
$

%
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'

X
Rank

= 1 σ d>0[ ]
d
∑

aka	  “spectral	  sparsity”	  

Not	  conGnuous!	  



Other	  Useful	  Proper:es	  
•  Cauchy	  Schwarz:	  

•  AM-‐GM	  Inequality:	  

	  
•  Orthogonal	  Transforma:on	  Invariance	  of	  Norms:	  

•  Trace	  Norm	  of	  Diagonals	  
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A,B 2
= trace(ATB)2 ≤ A,A B,B = trace(ATA)trace(BTB) = A

F

2 B
F

2

A B = A 2 B 2
≤
1
2

A 2
+ B 2( )

UA
F
= A

F
UA

*
= A

*

A
*
= Aii

i
∑ If	  A	  is	  a	  square	  diagonal	  matrix	  

If	  U	  is	  a	  full-‐rank	  orthogonal	  matrix	  

True	  for	  any	  norm	  



Recap:	  SVD	  &	  PCA	  

•  SVD:	  
	  

•  PCA:	  

•  The	  first	  K	  columns	  of	  U	  are	  the	  best	  rank-‐K	  
subspace	  that	  minimizes	  the	  Frobenius	  norm	  
residual:	  
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X =UΣVT

XXT =UΣ2UT

X −U1:KU1:K
T X

Fro

2



Latent	  Factor	  Models	  
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Nemlix	  Problem	  

•  Yij	  =	  ra:ng	  user	  i	  gives	  to	  movie	  j	  

•  Solve	  using	  SVD!	  
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Y	  

N	  Movies	  
M
	  U
se
rs
	  

U	  
VT	  

=	  

N	  

M	  

K	  

K	  

“Latent	  Factors”	  

yij ≈ ui
Tvj
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hop://www2.research.ao.com/~volinsky/papers/ieeecomputer.pdf	  

Example	  

Miniproject	  2:	  create	  your	  own.	  

yij ≈ ui
Tvj



Actual	  Nemlix	  Problem	  

•  Many	  missing	  values!	  
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Y	  
(missing	  values)	  

N	  Movies	  

M
	  U
se
rs
	  

U	  
V	  

=	  

N	  

M	  

K	  

K	  

“Latent	  Factors”	  



Collabora:ve	  Filtering	  

•  M	  Users,	  N	  Items	  
•  Small	  subset	  of	  user/item	  pairs	  have	  ra:ngs	  
•  Most	  are	  missing	  

•  Applicable	  to	  any	  user/item	  ra:ng	  problem	  
– Amazon,	  Pandora,	  etc.	  

•  Goal:	  Predict	  the	  missing	  values.	  
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Latent	  Factor	  Formula:on	  

•  Only	  labels,	  no	  features	  

•  Learn	  a	  latent	  representa:on	  over	  users	  U	  
and	  movies	  V	  such	  that:	  
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S = yij{ }

argmin
U,V

λ
2

U
Fro

2
+ V

Fro

2( )+ yij −ui
Tvj( )

ij
∑

2



Connec:on	  to	  Trace	  Norm	  

•  Suppose	  we	  consider	  all	  U,V	  that	  achieve	  perfect	  
reconstruc:on:	  Y=UVT	  

•  Find	  U,V	  with	  lowest	  complexity:	  

•  Complexity	  equivalent	  to	  trace	  norm:	  
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Y
*
= min

Y=UVT

1
2

U
Fro

2
+ V

Fro

2( )

argmin
Y=UVT

1
2

U
Fro

2
+ V

Fro

2( )

Prove	  in	  homework!	  



Proof	  (One	  Direc:on)	  
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Y
*
≥ min

Y=ABT

1
2

A
Fro

2
+ B

Fro

2( )We	  will	  prove:	   Y =UΣVT

Choose:	   A =U Σ,           B =V Σ

Then:	   min
Y=ABT

1
2

A
Fro

2
+ B

Fro

2( ) ≤ 1
2

U Σ
Fro

2
+ V Σ

Fro

2( )
                                   = 1

2
trace U Σ( )

T
U Σ( )#

$
%

&
'
(+ trace V Σ( )

T
V Σ( )#

$
%

&
'
(

#
$
%

&
'
(

                                   = 1
2

trace ΣUTU Σ( )+ trace ΣVTV Σ( )( )
                                  = 1

2
trace Σ Σ( )+ trace Σ Σ( )( )

                                  = 1
2

trace Σ( )+ trace Σ( )( ) = trace Σ( ) = Y
*

SVD	  



Interpre:ng	  Model	  

•  Latent-‐Factor	  Model	  Objec:ve	  

	  

•  Related	  to:	  
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argmin
U,V

λ
2

U
Fro

2
+ V

Fro

2( )+ yij −ui
Tvj( )

ij
∑

2

argmin
W

λ W
*
+ yij −wij( )

ij
∑

2

W
*
= min

W=UVT

1
2

U
Fro

2
+ V

Fro

2( ) Equivalent	  when	  U,V	  =	  rank	  of	  W	  

Find	  the	  best	  low-‐rank	  	  
approximaGon	  to	  Y!	  



User/Movie	  Symmetry	  	  

•  If	  we	  knew	  V,	  then	  linear	  regression	  to	  learn	  U	  
– Treat	  V	  as	  features	  

•  If	  we	  knew	  U,	  then	  linear	  regression	  to	  learn	  V	  
– Treat	  U	  as	  features	  
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argmin
U,V

λ
2

U
Fro

2
+ V

Fro

2( )+ yij −ui
Tvj( )

ij
∑

2



Op:miza:on	  

•  Only	  train	  over	  observed	  yij	  
•  Two	  ways	  to	  Op:mize	  
– Gradient	  Descent	  
– Alterna:ng	  op:miza:on	  

•  Closed	  Form	  (for	  each	  sub-‐problem)	  
– Homework	  ques:on	  
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argmin
U,V

λ
2

U
Fro

2
+ V

Fro

2( )+ ωij yij −ui
Tvj( )

ij
∑

2
ωij ∈ 0,1{ }



Gradient	  Calcula:on	  
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argmin
U,V

λ
2

U
Fro

2
+ V

Fro

2( )+ 12 ωij yij −ui
Tvj( )

ij
∑

2

∂ui = λui − ωijv j yij −ui
Tvj( )

T

j
∑

ui = λIK + ωijv jvj
T

j
∑

"

#
$$

%

&
''

−1

ωij yijv j
j
∑
"

#
$$

%

&
''

Closed	  Form	  Solu:on	  (assuming	  V	  fixed):	  



Gradient	  Descent	  Op:ons	  

•  Stochas:c	  Gradient	  Descent	  
– Update	  all	  model	  parameters	  for	  single	  data	  point	  

•  Alterna:ng	  SGD:	  
– Update	  a	  single	  column	  of	  parameters	  at	  a	  :me	  
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∂ui = λui − vj yij −ui
Tvj( )

ui = ui −η∂ui



Alterna:ng	  Op:miza:on	  

•  Ini:alize	  U	  &	  V	  randomly	  
•  Loop	  
– Choose	  next	  ui	  or	  vj	  
– Solve	  op:mally:	  

•  (assuming	  all	  other	  variables	  fixed)	  
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ui = λIK + ωijv jvj
T

j
∑

"

#
$$

%

&
''

−1

ωij yijv j
j
∑
"

#
$$

%

&
''



Tradeoffs	  

•  Alterna:ng	  op:miza:on	  much	  faster	  in	  terms	  of	  
#itera:ons	  
–  But	  requires	  inver:ng	  a	  matrix:	  

•  Gradient	  descent	  faster	  for	  high-‐dim	  problems	  
–  Also	  allows	  for	  streaming	  data	  
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ui = λIK + ωijv jvj
T

j
∑

"

#
$$

%

&
''

−1

ωij yijv j
j
∑
"

#
$$

%

&
''

ui = ui −η∂ui
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hop://www2.research.ao.com/~volinsky/papers/ieeecomputer.pdf	  



Recap:	  Collabora:ve	  Filtering	  

•  Goal:	  predict	  every	  user/item	  ra:ng	  

•  Challenge:	  only	  a	  small	  subset	  observed	  

•  AssumpGon:	  there	  exists	  a	  low-‐rank	  subspace	  
that	  captures	  all	  the	  variability	  in	  describing	  
different	  users	  and	  items	  
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Aside:	  Mul:task	  Learning	  

•  M	  Tasks:	  

•  Example:	  personalized	  recommender	  system	  
– One	  task	  per	  user:	  
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Sm = (xi, yi
m ){ }i=1

N

argmin
W

λ
2
R(W )+ 1

2
yi −wm

T xi( )
i
∑

2

m
∑

Regularizer	  



How	  to	  Regularize?	  

•  Standard	  L2	  Norm:	  

•  Decomposes	  to	  independent	  tasks	  
– For	  each	  task,	  learn	  D	  parameters	  
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Sm = (xi, yi
m ){ }i=1

N
argmin

W

λ
2
R(W )+ 1

2
yi −wm

T xi( )
i
∑

2

m
∑
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How	  to	  Regularize?	  

•  Trace	  Norm:	  

•  Induces	  W	  to	  have	  low	  rank	  across	  all	  task	  
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Recall:	  Trace	  Norm	  &	  Latent	  Factor	  Models	  

•  Suppose	  we	  consider	  all	  U,V	  that	  achieve	  perfect	  
reconstruc:on:	  W=UVT	  

•  Find	  U,V	  with	  lowest	  complexity:	  

•  Claim:	  complexity	  equivalent	  to	  trace	  norm:	  
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How	  to	  Regularize?	  

•  Latent	  Factor	  Approach	  

•  Learns	  a	  feature	  projec:on	  x’	  =	  Vx	  
•  Learns	  a	  K	  dimensional	  model	  per	  task	  
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Tradeoff	  

•  D*N	  parameters:	  

•  D*K	  +	  N*K	  parameters:	  

– Sta:s:cally	  more	  efficient	  
– Great	  if	  low-‐rank	  assump:on	  is	  a	  good	  one	  
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Mul:task	  Learning	  

•  M	  Tasks:	  

•  Example:	  personalized	  recommender	  system	  
– One	  task	  per	  user:	  
–  If	  x	  is	  topic	  feature	  representa:on	  

•  V	  is	  subspace	  of	  correlated	  topics	  
•  Projects	  mul:ple	  topics	  together	  
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Reduc:on	  to	  Collabora:ve	  Filtering	  

•  Suppose	  each	  xi	  is	  single	  indicator	  xi	  =	  ei	  
•  Then:	  

•  Exactly	  Collabora:ve	  Filtering!	  
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Latent	  Factor	  Mul:task	  Learning	  vs	  
Collabora:ve	  Filtering	  

•  Projects	  x	  into	  low-‐dimensional	  subspace	  Vx	  
•  Learns	  low-‐dimensional	  model	  per	  task	  

•  Creates	  low	  dimensional	  feature	  for	  each	  movie	  
•  Learns	  low-‐dimensional	  model	  per	  user	  
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General	  Bilinear	  Models	  

•  Users	  described	  by	  features	  z	  
•  Items	  described	  by	  features	  x	  

•  Learn	  a	  projec:on	  of	  z	  and	  x	  into	  common	  
low-‐dimensional	  space	  
– Linear	  model	  in	  low	  dimensional	  space	  
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Why	  are	  Bilinear	  Models	  Useful?	  
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Story	  So	  Far:	  Latent	  Factor	  Models	  

•  Simplest	  Case:	  reduces	  to	  SVD	  of	  matrix	  Y	  
– No	  missing	  values	  
–  (z,x)	  indicator	  features	  

•  General	  Case:	  projects	  high-‐dimensional	  
feature	  representa:on	  into	  low-‐dimensional	  
linear	  model	  
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Non-‐Nega:ve	  Matrix	  Factoriza:on	  
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Limita:ons	  of	  PCA	  &	  SVD	  
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All	  features	  	  
non-‐nega:ve	  

PCA/SVD	  
SoluGon	  

BeVer	  SoluGon?	  



Non-‐Nega:ve	  Matrix	  Factoriza:on	  

•  Assume	  Y	  is	  non-‐nega:ve	  
•  Find	  non-‐nega:ve	  U	  &	  V	  
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“Latent	  Factors”	  

N	   K	   N	  
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CS	  155	  Non-‐Nega:ve	  Face	  Basis	  
0.76	  

Lecture	  13:	  Latent	  Factor	  Models	  &	  Non-‐Nega:ve	  Matrix	  Factoriza:on	  

0.00	   0.74	   0.32	  

0.01	   0.64	   1.39	   0.15	  

0.97	   1.58	   0.00	   0.54	  

1.03	   0.16	   0.43	   1.16	  

0.00	   1.02	   0.93	   0.33	  

0.00	   0.56	   0.28	   0.79	  
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CS	  155	  Eigenface	  Basis	  



Aside:	  Non-‐Orthogonal	  Projec:ons	  

•  If	  columns	  of	  A	  are	  not	  orthogonal,	  ATA≠I	  
– How	  to	  reverse	  transforma:on	  x’=ATx?	  
– SoluGon:	  Pseudoinverse!	  
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Pseudoinverse	  
A+T AT x =UΣ+VTVΣUT x

        =U1:KU1:K
T x

IntuiGon:	  use	  the	  rank-‐K	  orthogonal	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  basis	  that	  spans	  A.	  	  	  



Objec:ve	  Func:on	  

•  Squared	  Loss:	  
–  Penalizes	  squared	  distance	  

	  

•  Generalized	  Rela:ve	  Entropy	  
–  Aka,	  unnormalized	  KL	  divergence	  
–  Penalizes	  ra:o	  

•  Train	  using	  gradient	  descent	  
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argmin
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hop://hebb.mit.edu/people/seung/papers/nmfconverge.pdf	  

ℓ(a,b) = (a− b)2

ℓ(a,b) = a log a
b
− a+ b



SVD/PCA	  vs	  NNMF	  

•  SVD/PCA:	  
–  Finds	  the	  best	  
orthogonal	  basis	  faces	  
•  Basis	  faces	  can	  be	  neg.	  

–  Coeffs	  can	  be	  nega:ve	  
–  Ozen	  trickier	  to	  visualize	  
–  Beoer	  reconstruc:ons	  
with	  fewer	  basis	  faces	  
•  Basis	  faces	  capture	  the	  
most	  varia:ons	  

•  NNMF:	  
–  Finds	  best	  set	  of	  non-‐
nega:ve	  basis	  faces	  

–  Non-‐nega:ve	  coeffs	  
•  Ozen	  non-‐overlapping	  

–  Easier	  to	  visualize	  
–  Requires	  more	  basis	  
faces	  for	  good	  
reconstruc:ons	  
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Non-‐Nega:ve	  Latent	  Factor	  Models	  
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•  Simplest	  Case:	  reduces	  to	  NNMF	  of	  matrix	  Y	  
– No	  missing	  values	  
–  (z,x)	  indicator	  features	  

•  General	  Case:	  projects	  high-‐dimensional	  non-‐
nega:ve	  features	  into	  low-‐dimensional	  non-‐
nega:ve	  linear	  model	  



Modeling	  NBA	  Gameplay	  Using	  	  
Non-‐Nega:ve	  Spa:al	  	  
Latent	  Factor	  Models	  
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Fine-‐Grained	  	  
Spa:al	  Models	  

1 2 3 4 5 6 7 8 9 10

Shooting Factors (L)

Kawhi Carmelo Dirk Dion John Tim Kyrie Shawn Jeremy David
Leonard Anthony Nowitzki Waiters Wall Duncan Irving Marion Lin Lee

Fig. 5. Top Row: Depicting the spatial coefficents of the latent factors corresponding to the spatial coefficients contributing to the ball handler taking a shot at
each location (L). Each player’s shooting model can be represented as a combination of these factors. Bottom Row: Depicting the spatial coefficients of a player
with high affinity to each of the latent factors.

1 2 3 4 5 6 7 8 9 10

Receiving Pass Factors (M )

Tony Dirk LeBron Monta Manu David Jose Chandler Goran Joachim
Parker Nowitzki James Ellis Ginobili Lee Calderon Parsons Dragic Noah

Fig. 6. Top Row: Depicting the spatial coefficents of the latent factors corresponding to spatial coefficients contributing to a player receiving a pass at each
location (M ). Each player’s conditional shooting probabilities can be represented as a combination of these factors. Bottom Row: Depicting the spatial coefficents
of a player with high affinity to each of the latent factors.

left column. We evaluated using both ROC curves as well
as average log loss, and we observe that our latent factor
models offer significant improvement. The gain from adding
the temporal spatial components is small (i.e., +SDT offers
about a 0.1% relative reduction in average log loss compared
to +SD), but this gain is still statistically significant given the
approximately 6 million examples/frames in our test set.

Our dataset exhibits a notable amount of class imbalance
– about 70% of frames have no action events forthcoming in
the next 1 second. To further tease out the interesting effects
learned by our model, we also evaluate predictive performance
when conditioned on an action event (shot or pass), and also
on a pass event. These results are depicted in the second
and third columns of Figure 4(a), respectively. We observe a
more significant performance gain from our spatial latent factor
models compared to the baseline, although the performance of
+SDT is no longer distinguishable from +SD.

Figure 4(b) depicts how predictive performance varies
across the basketball court. We see that the spatial latent factor
model improves performance throughout the court. When

comparing all events (top row), we observe a significant error
reduction in the two “low post” locations.9 When comparing
action events (middle row), we observe a significant error
reduction along the baseline behind the basket (for +SD and
+SDT). We comparing only passing events (bottom row), we
observe a significant error reduction around the basket area
(for +SD and +SDT). Our inspection of the learned factors in
Section VI will shed light on how components of our model
contribute to the various reductions in error.

VI. MODEL INSPECTION

We now provide a detailed inspection our learned model
in order to identify patterns that match known intuitions of
basketball game play. We will also identify aspects of our
model that contribute to the various gains in performance
depicted in Figure 4(b). Although our focus is on basketball,
this type of analysis is applicable to a wide range of domains
with fine-grained spatial patterns.

9The two low post locations are situated about 10 feet and directed at 45
degree angles away from the basket.

40	  feet	  
56	  

•  Discre:ze	  court	  
– 1x1	  foot	  cells	  
– 2000	  cells	  

•  1	  weight	  per	  cell	  
– 2000	  weights	  

	  
	  

Fs (x) :
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Fig. 5. Top Row: Depicting the spatial coefficents of the latent factors corresponding to the spatial coefficients contributing to the ball handler taking a shot at
each location (L). Each player’s shooting model can be represented as a combination of these factors. Bottom Row: Depicting the spatial coefficients of a player
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Fig. 6. Top Row: Depicting the spatial coefficents of the latent factors corresponding to spatial coefficients contributing to a player receiving a pass at each
location (M ). Each player’s conditional shooting probabilities can be represented as a combination of these factors. Bottom Row: Depicting the spatial coefficents
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left column. We evaluated using both ROC curves as well
as average log loss, and we observe that our latent factor
models offer significant improvement. The gain from adding
the temporal spatial components is small (i.e., +SDT offers
about a 0.1% relative reduction in average log loss compared
to +SD), but this gain is still statistically significant given the
approximately 6 million examples/frames in our test set.

Our dataset exhibits a notable amount of class imbalance
– about 70% of frames have no action events forthcoming in
the next 1 second. To further tease out the interesting effects
learned by our model, we also evaluate predictive performance
when conditioned on an action event (shot or pass), and also
on a pass event. These results are depicted in the second
and third columns of Figure 4(a), respectively. We observe a
more significant performance gain from our spatial latent factor
models compared to the baseline, although the performance of
+SDT is no longer distinguishable from +SD.

Figure 4(b) depicts how predictive performance varies
across the basketball court. We see that the spatial latent factor
model improves performance throughout the court. When

comparing all events (top row), we observe a significant error
reduction in the two “low post” locations.9 When comparing
action events (middle row), we observe a significant error
reduction along the baseline behind the basket (for +SD and
+SDT). We comparing only passing events (bottom row), we
observe a significant error reduction around the basket area
(for +SD and +SDT). Our inspection of the learned factors in
Section VI will shed light on how components of our model
contribute to the various reductions in error.

VI. MODEL INSPECTION

We now provide a detailed inspection our learned model
in order to identify patterns that match known intuitions of
basketball game play. We will also identify aspects of our
model that contribute to the various gains in performance
depicted in Figure 4(b). Although our focus is on basketball,
this type of analysis is applicable to a wide range of domains
with fine-grained spatial patterns.

9The two low post locations are situated about 10 feet and directed at 45
degree angles away from the basket.

40	  feet	  
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•  Discre:ze	  court	  
– 1x1	  foot	  cells	  
– 2000	  cells	  

•  1	  weight	  per	  cell	  
– 2000	  weights	  

	  
	  

Fs (x) :

But	  most	  players	  haven’t	  
played	  that	  much!	  
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Visualizing	  loca:on	  factors	  L	  

Visualizing	  players	  BbL	  

1 2 3 4 5 6 7 8 9 10

Shooting Factors (L)

Kawhi Carmelo Dirk Dion John Tim Kyrie Shawn Jeremy David
Leonard Anthony Nowitzki Waiters Wall Duncan Irving Marion Lin Lee

Fig. 5. Top Row: Depicting the spatial coefficents of the latent factors corresponding to the spatial coefficients contributing to the ball handler taking a shot at
each location (L). Each player’s shooting model can be represented as a combination of these factors. Bottom Row: Depicting the spatial coefficients of a player
with high affinity to each of the latent factors.

1 2 3 4 5 6 7 8 9 10

Receiving Pass Factors (M )

Tony Dirk LeBron Monta Manu David Jose Chandler Goran Joachim
Parker Nowitzki James Ellis Ginobili Lee Calderon Parsons Dragic Noah

Fig. 6. Top Row: Depicting the spatial coefficents of the latent factors corresponding to spatial coefficients contributing to a player receiving a pass at each
location (M ). Each player’s conditional shooting probabilities can be represented as a combination of these factors. Bottom Row: Depicting the spatial coefficents
of a player with high affinity to each of the latent factors.

left column. We evaluated using both ROC curves as well
as average log loss, and we observe that our latent factor
models offer significant improvement. The gain from adding
the temporal spatial components is small (i.e., +SDT offers
about a 0.1% relative reduction in average log loss compared
to +SD), but this gain is still statistically significant given the
approximately 6 million examples/frames in our test set.

Our dataset exhibits a notable amount of class imbalance
– about 70% of frames have no action events forthcoming in
the next 1 second. To further tease out the interesting effects
learned by our model, we also evaluate predictive performance
when conditioned on an action event (shot or pass), and also
on a pass event. These results are depicted in the second
and third columns of Figure 4(a), respectively. We observe a
more significant performance gain from our spatial latent factor
models compared to the baseline, although the performance of
+SDT is no longer distinguishable from +SD.

Figure 4(b) depicts how predictive performance varies
across the basketball court. We see that the spatial latent factor
model improves performance throughout the court. When

comparing all events (top row), we observe a significant error
reduction in the two “low post” locations.9 When comparing
action events (middle row), we observe a significant error
reduction along the baseline behind the basket (for +SD and
+SDT). We comparing only passing events (bottom row), we
observe a significant error reduction around the basket area
(for +SD and +SDT). Our inspection of the learned factors in
Section VI will shed light on how components of our model
contribute to the various reductions in error.

VI. MODEL INSPECTION

We now provide a detailed inspection our learned model
in order to identify patterns that match known intuitions of
basketball game play. We will also identify aspects of our
model that contribute to the various gains in performance
depicted in Figure 4(b). Although our focus is on basketball,
this type of analysis is applicable to a wide range of domains
with fine-grained spatial patterns.

9The two low post locations are situated about 10 feet and directed at 45
degree angles away from the basket.
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Fig. 6. Top Row: Depicting the spatial coefficents of the latent factors corresponding to spatial coefficients contributing to a player receiving a pass at each
location (M ). Each player’s conditional shooting probabilities can be represented as a combination of these factors. Bottom Row: Depicting the spatial coefficents
of a player with high affinity to each of the latent factors.

left column. We evaluated using both ROC curves as well
as average log loss, and we observe that our latent factor
models offer significant improvement. The gain from adding
the temporal spatial components is small (i.e., +SDT offers
about a 0.1% relative reduction in average log loss compared
to +SD), but this gain is still statistically significant given the
approximately 6 million examples/frames in our test set.

Our dataset exhibits a notable amount of class imbalance
– about 70% of frames have no action events forthcoming in
the next 1 second. To further tease out the interesting effects
learned by our model, we also evaluate predictive performance
when conditioned on an action event (shot or pass), and also
on a pass event. These results are depicted in the second
and third columns of Figure 4(a), respectively. We observe a
more significant performance gain from our spatial latent factor
models compared to the baseline, although the performance of
+SDT is no longer distinguishable from +SD.

Figure 4(b) depicts how predictive performance varies
across the basketball court. We see that the spatial latent factor
model improves performance throughout the court. When

comparing all events (top row), we observe a significant error
reduction in the two “low post” locations.9 When comparing
action events (middle row), we observe a significant error
reduction along the baseline behind the basket (for +SD and
+SDT). We comparing only passing events (bottom row), we
observe a significant error reduction around the basket area
(for +SD and +SDT). Our inspection of the learned factors in
Section VI will shed light on how components of our model
contribute to the various reductions in error.

VI. MODEL INSPECTION

We now provide a detailed inspection our learned model
in order to identify patterns that match known intuitions of
basketball game play. We will also identify aspects of our
model that contribute to the various gains in performance
depicted in Figure 4(b). Although our focus is on basketball,
this type of analysis is applicable to a wide range of domains
with fine-grained spatial patterns.

9The two low post locations are situated about 10 feet and directed at 45
degree angles away from the basket.
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Training	  Data	  

STATS	  SportsVU	  
2012/2013	  Season,	  630	  Games,	  	  

80K	  Possessions,	  380	  frames	  per	  possession	  
59	  



Predic:on	  

•  Game	  state:	  x	  
–  Coordinates	  of	  all	  players	  
–  Who	  is	  the	  ball	  handler	  

•  Event:	  y	  
–  Ball	  handler	  will	  shoot	  
–  Ball	  handler	  will	  pass	  (to	  whom?)	  
–  Ball	  handler	  will	  hold	  onto	  the	  ball	  
–  6	  possibili:es	  

•  Goal:	  	  Learn	  P(y|x)	  
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Logis:c	  Regression	  
(Simple	  Version:	  Just	  for	  Shoo:ng)	  

P(y | x) =
exp F(y | x){ }
Z(x | F)

Z(x | F) = exp F(y ' | x){ }
y '∈{s,⊥}
∑

F(y ' | x) =
Fs (x) y ' = s
F⊥ y ' =⊥

"
#
$

%$

Offset	  or	  bias	  

P(y = s | x) = 1
1+ exp −Fs (x)+F⊥{ }

Shot	  

Hold	  on	  to	  ball	  
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Learning	  the	  Model	  

•  Given	  training	  data:	  

•  Learn	  parameters	  of	  model:	  
argmin

Fs ,F⊥

λ
2
Fs

2
+ ℓ y,Fs (x)−F⊥( )
(x,y)∈S
∑

S = (x, y){ }

Log	  Loss	  

Player	  	  
Configura:on	   What	  Happened	  	  

Next	  
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P(y = s | x) = 1
1+ exp −Fs (x)+F⊥{ }
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Op:miza:on	  via	  Gradient	  Descent	  
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∂Li = λ1Li −
∂ logP(y | x)

∂Li(x,y)
∑

argmin
B≥0,L≥0,F⊥

 λ
2

B 2
+ L 2( )  + ℓ y,Bb(x )

T Ll (x ) −F⊥( )
(x,y)
∑

∂ logP(y | x)
∂Li

= 1 y=s[ ] −P(s | x)( )Bb(x )
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1 2 3 4 5 6 7 8 9 10

Shooting Factors (L)

Kawhi Carmelo Dirk Dion John Tim Kyrie Shawn Jeremy David
Leonard Anthony Nowitzki Waiters Wall Duncan Irving Marion Lin Lee

Fig. 5. Top Row: Depicting the spatial coefficents of the latent factors corresponding to the spatial coefficients contributing to the ball handler taking a shot at
each location (L). Each player’s shooting model can be represented as a combination of these factors. Bottom Row: Depicting the spatial coefficients of a player
with high affinity to each of the latent factors.

1 2 3 4 5 6 7 8 9 10

Receiving Pass Factors (M )

Tony Dirk LeBron Monta Manu David Jose Chandler Goran Joachim
Parker Nowitzki James Ellis Ginobili Lee Calderon Parsons Dragic Noah

Fig. 6. Top Row: Depicting the spatial coefficents of the latent factors corresponding to spatial coefficients contributing to a player receiving a pass at each
location (M ). Each player’s conditional shooting probabilities can be represented as a combination of these factors. Bottom Row: Depicting the spatial coefficents
of a player with high affinity to each of the latent factors.

left column. We evaluated using both ROC curves as well
as average log loss, and we observe that our latent factor
models offer significant improvement. The gain from adding
the temporal spatial components is small (i.e., +SDT offers
about a 0.1% relative reduction in average log loss compared
to +SD), but this gain is still statistically significant given the
approximately 6 million examples/frames in our test set.

Our dataset exhibits a notable amount of class imbalance
– about 70% of frames have no action events forthcoming in
the next 1 second. To further tease out the interesting effects
learned by our model, we also evaluate predictive performance
when conditioned on an action event (shot or pass), and also
on a pass event. These results are depicted in the second
and third columns of Figure 4(a), respectively. We observe a
more significant performance gain from our spatial latent factor
models compared to the baseline, although the performance of
+SDT is no longer distinguishable from +SD.

Figure 4(b) depicts how predictive performance varies
across the basketball court. We see that the spatial latent factor
model improves performance throughout the court. When

comparing all events (top row), we observe a significant error
reduction in the two “low post” locations.9 When comparing
action events (middle row), we observe a significant error
reduction along the baseline behind the basket (for +SD and
+SDT). We comparing only passing events (bottom row), we
observe a significant error reduction around the basket area
(for +SD and +SDT). Our inspection of the learned factors in
Section VI will shed light on how components of our model
contribute to the various reductions in error.

VI. MODEL INSPECTION

We now provide a detailed inspection our learned model
in order to identify patterns that match known intuitions of
basketball game play. We will also identify aspects of our
model that contribute to the various gains in performance
depicted in Figure 4(b). Although our focus is on basketball,
this type of analysis is applicable to a wide range of domains
with fine-grained spatial patterns.

9The two low post locations are situated about 10 feet and directed at 45
degree angles away from the basket.

1 2 3 4 5 6 7 8 9 10

Shooting Factors (L)

Kawhi Carmelo Dirk Dion John Tim Kyrie Shawn Jeremy David
Leonard Anthony Nowitzki Waiters Wall Duncan Irving Marion Lin Lee

Fig. 5. Top Row: Depicting the spatial coefficents of the latent factors corresponding to the spatial coefficients contributing to the ball handler taking a shot at
each location (L). Each player’s shooting model can be represented as a combination of these factors. Bottom Row: Depicting the spatial coefficients of a player
with high affinity to each of the latent factors.

1 2 3 4 5 6 7 8 9 10

Receiving Pass Factors (M )

Tony Dirk LeBron Monta Manu David Jose Chandler Goran Joachim
Parker Nowitzki James Ellis Ginobili Lee Calderon Parsons Dragic Noah

Fig. 6. Top Row: Depicting the spatial coefficents of the latent factors corresponding to spatial coefficients contributing to a player receiving a pass at each
location (M ). Each player’s conditional shooting probabilities can be represented as a combination of these factors. Bottom Row: Depicting the spatial coefficents
of a player with high affinity to each of the latent factors.

left column. We evaluated using both ROC curves as well
as average log loss, and we observe that our latent factor
models offer significant improvement. The gain from adding
the temporal spatial components is small (i.e., +SDT offers
about a 0.1% relative reduction in average log loss compared
to +SD), but this gain is still statistically significant given the
approximately 6 million examples/frames in our test set.

Our dataset exhibits a notable amount of class imbalance
– about 70% of frames have no action events forthcoming in
the next 1 second. To further tease out the interesting effects
learned by our model, we also evaluate predictive performance
when conditioned on an action event (shot or pass), and also
on a pass event. These results are depicted in the second
and third columns of Figure 4(a), respectively. We observe a
more significant performance gain from our spatial latent factor
models compared to the baseline, although the performance of
+SDT is no longer distinguishable from +SD.

Figure 4(b) depicts how predictive performance varies
across the basketball court. We see that the spatial latent factor
model improves performance throughout the court. When

comparing all events (top row), we observe a significant error
reduction in the two “low post” locations.9 When comparing
action events (middle row), we observe a significant error
reduction along the baseline behind the basket (for +SD and
+SDT). We comparing only passing events (bottom row), we
observe a significant error reduction around the basket area
(for +SD and +SDT). Our inspection of the learned factors in
Section VI will shed light on how components of our model
contribute to the various reductions in error.

VI. MODEL INSPECTION

We now provide a detailed inspection our learned model
in order to identify patterns that match known intuitions of
basketball game play. We will also identify aspects of our
model that contribute to the various gains in performance
depicted in Figure 4(b). Although our focus is on basketball,
this type of analysis is applicable to a wide range of domains
with fine-grained spatial patterns.

9The two low post locations are situated about 10 feet and directed at 45
degree angles away from the basket.

Where	  are	  Players	  Likely	  to	  Receive	  Passes?	  

Visualizing	  Loca:on	  Factors	  M	  

64	  

Enforce	  Non-‐Nega:vity	  
(Accuracy	  Worse)	  
(More	  Interpretable)	  
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Fig. 7. Top Row: Depicting the spatial coefficents of the latent factors corresponding to passing from each location. Bottom Row: Depicting the associated
spatial coefficents of the latent corresponding to receiving a pass at each location. Figure 8 shows examples of aggregate passing and receiving coefficients.

A. Where do Players Tend to Shoot?

We begin by inspecting the player-by-location shooting fac-
tors B and L. We estimated a 10-dimensional representation,
which visually correspond to known shooting patterns. Our
results are shown in Figure 5. The top row depicts the ten
learned factors (i.e., the rows of L), and the bottom row depicts
the spatial coefficients of players which have high affinity for
each of the factors. The first three factors correspond to players
who shoot at the 3 point line. The next three factor correspond
to players who shoot midrange shots. The seventh factor
corresponds to players who shoot just inside the lane. The
eight factor corresponds to players who shoot while attacking
the basket from the baseline. The final two factors correspond
to players who shoot near the basket.

We note that the first factor and the last two factors have
the strongest coefficients, which is unsurprising since those are
the most valuable shooting locations. Note that the first factor
also corresponds to the large error reduction in the “corner
three” locations in the middle row of Figure 4(b). We further
note that none of the factors have strong coefficients along the
baseline behind the basket, which is also a region of large error
reduction in the middle row of Figure 4(b).

A similar analysis was conducted by [8], but with two
key differences. First, [8] did not consider the in-game state
but only modeled the shot selection chart. In contrast, we are
interested in modeling the conditional probability of a player
shooting given the current game state. For example, a player
may often occupy a certain location without shooting the ball.
Second, as described below, we also model and analyze many
more spatial factors than just player shooting tendencies.

B. Where do Players Tend to Receive Passes?

We now inspect the player-by-location passing factors P

and M . We estimated a 10-dimensional representation, which
visually correspond to known passing patterns. The top row in
Figure 6 shows the ten learned factors (i.e., the rows of M ),
and the bottom row depicts the spatial coefficients of players
which have high affinity for each of the factors.

The first factor corresponds to players that receive passes
while cutting across the baseline. In fact, many of the factors
give off a visual effect of being in motion (i.e., spatial blur),

Fig. 8. Top Row: Depicting spatial coefficients of passing to different locations
on the court. The “X” denotes the location of the passer and corresponds to
a row in Q>

1 Q2. Bottom Row: Depicting the spatial coefficients of receiving
a pass from different locations on the court. The “X” denotes the location of
the receiver, and corresponds to a column in Q>

1 Q2.

which suggests that players are often moving right before
receiving a pass.10 The second factor corresponds to players
that receive passes in the low post, which also corresponds
to areas of high error reduction in the top row of Figure
4(b).11 The next three factors depict various midrange regions.
Typically, right handed players associate more with the fourth
factor, and left handed players associate more with the fifth
factor.12 The next three factors depict regions at the three-
point line, and the final two factors depict regions in the back
court.

The players with the strongest coefficients tend to be from
playoff teams that have tracking equipment deployed on their
home courts during the 2012-2013 NBA season, since those
players have the most training data available for them. For
example, we see that Figure 5 and Figure 6 contain several
players from the San Antonio Spurs, which had the most games
in our dataset.

10This effect is most likely an artifact of how we formulated our task to
predict events up to 1 second into the future. It may be beneficial to model
multiple time intervals into the future (e.g., half a second, one second).

11Note that although players often receive passes in the low post, they
typically do not shoot from that location, as evidenced in the shooting factors
in Figure 5. Capturing this sharp spatial contrast between receiving passes and
shooting contributes to the error reduction in those regions in Figure 4(b).

12This effect is due to players preferring to drive with their strong hand.
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Fig. 7. Top Row: Depicting the spatial coefficents of the latent factors corresponding to passing from each location. Bottom Row: Depicting the associated
spatial coefficents of the latent corresponding to receiving a pass at each location. Figure 8 shows examples of aggregate passing and receiving coefficients.

A. Where do Players Tend to Shoot?

We begin by inspecting the player-by-location shooting fac-
tors B and L. We estimated a 10-dimensional representation,
which visually correspond to known shooting patterns. Our
results are shown in Figure 5. The top row depicts the ten
learned factors (i.e., the rows of L), and the bottom row depicts
the spatial coefficients of players which have high affinity for
each of the factors. The first three factors correspond to players
who shoot at the 3 point line. The next three factor correspond
to players who shoot midrange shots. The seventh factor
corresponds to players who shoot just inside the lane. The
eight factor corresponds to players who shoot while attacking
the basket from the baseline. The final two factors correspond
to players who shoot near the basket.

We note that the first factor and the last two factors have
the strongest coefficients, which is unsurprising since those are
the most valuable shooting locations. Note that the first factor
also corresponds to the large error reduction in the “corner
three” locations in the middle row of Figure 4(b). We further
note that none of the factors have strong coefficients along the
baseline behind the basket, which is also a region of large error
reduction in the middle row of Figure 4(b).

A similar analysis was conducted by [8], but with two
key differences. First, [8] did not consider the in-game state
but only modeled the shot selection chart. In contrast, we are
interested in modeling the conditional probability of a player
shooting given the current game state. For example, a player
may often occupy a certain location without shooting the ball.
Second, as described below, we also model and analyze many
more spatial factors than just player shooting tendencies.

B. Where do Players Tend to Receive Passes?

We now inspect the player-by-location passing factors P

and M . We estimated a 10-dimensional representation, which
visually correspond to known passing patterns. The top row in
Figure 6 shows the ten learned factors (i.e., the rows of M ),
and the bottom row depicts the spatial coefficients of players
which have high affinity for each of the factors.

The first factor corresponds to players that receive passes
while cutting across the baseline. In fact, many of the factors
give off a visual effect of being in motion (i.e., spatial blur),

Fig. 8. Top Row: Depicting spatial coefficients of passing to different locations
on the court. The “X” denotes the location of the passer and corresponds to
a row in Q>

1 Q2. Bottom Row: Depicting the spatial coefficients of receiving
a pass from different locations on the court. The “X” denotes the location of
the receiver, and corresponds to a column in Q>

1 Q2.

which suggests that players are often moving right before
receiving a pass.10 The second factor corresponds to players
that receive passes in the low post, which also corresponds
to areas of high error reduction in the top row of Figure
4(b).11 The next three factors depict various midrange regions.
Typically, right handed players associate more with the fourth
factor, and left handed players associate more with the fifth
factor.12 The next three factors depict regions at the three-
point line, and the final two factors depict regions in the back
court.

The players with the strongest coefficients tend to be from
playoff teams that have tracking equipment deployed on their
home courts during the 2012-2013 NBA season, since those
players have the most training data available for them. For
example, we see that Figure 5 and Figure 6 contain several
players from the San Antonio Spurs, which had the most games
in our dataset.

10This effect is most likely an artifact of how we formulated our task to
predict events up to 1 second into the future. It may be beneficial to model
multiple time intervals into the future (e.g., half a second, one second).

11Note that although players often receive passes in the low post, they
typically do not shoot from that location, as evidenced in the shooting factors
in Figure 5. Capturing this sharp spatial contrast between receiving passes and
shooting contributes to the error reduction in those regions in Figure 4(b).

12This effect is due to players preferring to drive with their strong hand.

How	  do	  passes	  tend	  to	  flow?	  

Q1	  

Q2	  
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How	  do	  passes	  tend	  to	  flow?	  1 2 3 4 5 6 7 8 9 10 11 12

Passer Factors (Q1)
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Fig. 7. Top Row: Depicting the spatial coefficents of the latent factors corresponding to passing from each location. Bottom Row: Depicting the associated
spatial coefficents of the latent corresponding to receiving a pass at each location. Figure 8 shows examples of aggregate passing and receiving coefficients.

A. Where do Players Tend to Shoot?

We begin by inspecting the player-by-location shooting fac-
tors B and L. We estimated a 10-dimensional representation,
which visually correspond to known shooting patterns. Our
results are shown in Figure 5. The top row depicts the ten
learned factors (i.e., the rows of L), and the bottom row depicts
the spatial coefficients of players which have high affinity for
each of the factors. The first three factors correspond to players
who shoot at the 3 point line. The next three factor correspond
to players who shoot midrange shots. The seventh factor
corresponds to players who shoot just inside the lane. The
eight factor corresponds to players who shoot while attacking
the basket from the baseline. The final two factors correspond
to players who shoot near the basket.

We note that the first factor and the last two factors have
the strongest coefficients, which is unsurprising since those are
the most valuable shooting locations. Note that the first factor
also corresponds to the large error reduction in the “corner
three” locations in the middle row of Figure 4(b). We further
note that none of the factors have strong coefficients along the
baseline behind the basket, which is also a region of large error
reduction in the middle row of Figure 4(b).

A similar analysis was conducted by [8], but with two
key differences. First, [8] did not consider the in-game state
but only modeled the shot selection chart. In contrast, we are
interested in modeling the conditional probability of a player
shooting given the current game state. For example, a player
may often occupy a certain location without shooting the ball.
Second, as described below, we also model and analyze many
more spatial factors than just player shooting tendencies.

B. Where do Players Tend to Receive Passes?

We now inspect the player-by-location passing factors P

and M . We estimated a 10-dimensional representation, which
visually correspond to known passing patterns. The top row in
Figure 6 shows the ten learned factors (i.e., the rows of M ),
and the bottom row depicts the spatial coefficients of players
which have high affinity for each of the factors.

The first factor corresponds to players that receive passes
while cutting across the baseline. In fact, many of the factors
give off a visual effect of being in motion (i.e., spatial blur),

Fig. 8. Top Row: Depicting spatial coefficients of passing to different locations
on the court. The “X” denotes the location of the passer and corresponds to
a row in Q>

1 Q2. Bottom Row: Depicting the spatial coefficients of receiving
a pass from different locations on the court. The “X” denotes the location of
the receiver, and corresponds to a column in Q>

1 Q2.

which suggests that players are often moving right before
receiving a pass.10 The second factor corresponds to players
that receive passes in the low post, which also corresponds
to areas of high error reduction in the top row of Figure
4(b).11 The next three factors depict various midrange regions.
Typically, right handed players associate more with the fourth
factor, and left handed players associate more with the fifth
factor.12 The next three factors depict regions at the three-
point line, and the final two factors depict regions in the back
court.

The players with the strongest coefficients tend to be from
playoff teams that have tracking equipment deployed on their
home courts during the 2012-2013 NBA season, since those
players have the most training data available for them. For
example, we see that Figure 5 and Figure 6 contain several
players from the San Antonio Spurs, which had the most games
in our dataset.

10This effect is most likely an artifact of how we formulated our task to
predict events up to 1 second into the future. It may be beneficial to model
multiple time intervals into the future (e.g., half a second, one second).

11Note that although players often receive passes in the low post, they
typically do not shoot from that location, as evidenced in the shooting factors
in Figure 5. Capturing this sharp spatial contrast between receiving passes and
shooting contributes to the error reduction in those regions in Figure 4(b).

12This effect is due to players preferring to drive with their strong hand.
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Receiver Factors (Q2)

Fig. 7. Top Row: Depicting the spatial coefficents of the latent factors corresponding to passing from each location. Bottom Row: Depicting the associated
spatial coefficents of the latent corresponding to receiving a pass at each location. Figure 8 shows examples of aggregate passing and receiving coefficients.

A. Where do Players Tend to Shoot?

We begin by inspecting the player-by-location shooting fac-
tors B and L. We estimated a 10-dimensional representation,
which visually correspond to known shooting patterns. Our
results are shown in Figure 5. The top row depicts the ten
learned factors (i.e., the rows of L), and the bottom row depicts
the spatial coefficients of players which have high affinity for
each of the factors. The first three factors correspond to players
who shoot at the 3 point line. The next three factor correspond
to players who shoot midrange shots. The seventh factor
corresponds to players who shoot just inside the lane. The
eight factor corresponds to players who shoot while attacking
the basket from the baseline. The final two factors correspond
to players who shoot near the basket.

We note that the first factor and the last two factors have
the strongest coefficients, which is unsurprising since those are
the most valuable shooting locations. Note that the first factor
also corresponds to the large error reduction in the “corner
three” locations in the middle row of Figure 4(b). We further
note that none of the factors have strong coefficients along the
baseline behind the basket, which is also a region of large error
reduction in the middle row of Figure 4(b).

A similar analysis was conducted by [8], but with two
key differences. First, [8] did not consider the in-game state
but only modeled the shot selection chart. In contrast, we are
interested in modeling the conditional probability of a player
shooting given the current game state. For example, a player
may often occupy a certain location without shooting the ball.
Second, as described below, we also model and analyze many
more spatial factors than just player shooting tendencies.

B. Where do Players Tend to Receive Passes?

We now inspect the player-by-location passing factors P

and M . We estimated a 10-dimensional representation, which
visually correspond to known passing patterns. The top row in
Figure 6 shows the ten learned factors (i.e., the rows of M ),
and the bottom row depicts the spatial coefficients of players
which have high affinity for each of the factors.

The first factor corresponds to players that receive passes
while cutting across the baseline. In fact, many of the factors
give off a visual effect of being in motion (i.e., spatial blur),

Fig. 8. Top Row: Depicting spatial coefficients of passing to different locations
on the court. The “X” denotes the location of the passer and corresponds to
a row in Q>

1 Q2. Bottom Row: Depicting the spatial coefficients of receiving
a pass from different locations on the court. The “X” denotes the location of
the receiver, and corresponds to a column in Q>

1 Q2.

which suggests that players are often moving right before
receiving a pass.10 The second factor corresponds to players
that receive passes in the low post, which also corresponds
to areas of high error reduction in the top row of Figure
4(b).11 The next three factors depict various midrange regions.
Typically, right handed players associate more with the fourth
factor, and left handed players associate more with the fifth
factor.12 The next three factors depict regions at the three-
point line, and the final two factors depict regions in the back
court.

The players with the strongest coefficients tend to be from
playoff teams that have tracking equipment deployed on their
home courts during the 2012-2013 NBA season, since those
players have the most training data available for them. For
example, we see that Figure 5 and Figure 6 contain several
players from the San Antonio Spurs, which had the most games
in our dataset.

10This effect is most likely an artifact of how we formulated our task to
predict events up to 1 second into the future. It may be beneficial to model
multiple time intervals into the future (e.g., half a second, one second).

11Note that although players often receive passes in the low post, they
typically do not shoot from that location, as evidenced in the shooting factors
in Figure 5. Capturing this sharp spatial contrast between receiving passes and
shooting contributes to the error reduction in those regions in Figure 4(b).

12This effect is due to players preferring to drive with their strong hand.

Passing	  From	  “X”	  

Passing	  To	  “X”	  
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Tensor	  Latent	  Factor	  Models	  
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Tensor	  Factoriza:on	  
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Tri-‐Linear	  Model	  

•  Predic:on	  via	  3-‐way	  dot	  product:	  
–  Related	  to	  Hadamard	  Product	  

•  Example:	  online	  adver:sing	  
–  User	  profile	  z	  
–  Item	  descrip:on	  x	  
–  Query	  q	  
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Summary:	  Latent	  Factor	  Models	  
•  Learns	  a	  low-‐rank	  model	  of	  a	  matrix	  of	  observa:ons	  Y	  

–  Dimensions	  of	  Y	  can	  have	  various	  seman:cs	  

•  Can	  tolerate	  missing	  values	  in	  Y	  

•  Can	  also	  use	  features	  

•  Widely	  used	  in	  industry	  
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Ne#lix'Problem'

•  Yij'='ra1ng'user'i'gives'to'movie'j'

•  Solve'using'SVD!'
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Next	  Week 	  	  

•  Embeddings	  

•  Deep	  Learning	  

•  Next	  Thursday:	  Recita:on	  on	  Advanced	  
Op:miza:on	  Techniques	  
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