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Today

* Clustering

 Dimensionality Reduction
— Matrix Factorization
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What is Clustering?

e Clustering is the process of grouping data
points into “clusters”.

* High intra-cluster similarity

* Low inter-cluster similarity
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Example

Lecture 12: Clustering & Dimensionality Reduction



Example
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Unsupervised Learning

* Given: unlabeled data: (g {x,}N
L)i=1
— Only input features
— No labels

* Goal: find hidden structure/patterns
— E.g., hidden structure is a clustering of data
— Previously: generative model of P(x)
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Why is Clustering Useful?

* Clustering is a “summary” of data
— Can just inspect cluster centers
— Or inspect a few data points per cluster
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Images Related to “Pluto”

Each Row is a Cluster

Image Source: http://research.microsoft.com/en-us/people/jrwen/mm04.pdf
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Why is Clustering Useful?

* Clustering is a “summary” of data
— Can just inspect cluster centers
— Or inspect a few data points per cluster

 Compact pre-processing of data before
supervised training
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Centroid Based Clustering
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Centroid Based Clustering

(K-Means)
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Centroid Based Clustering

(K-Means)
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Centroid Based Clustering

(K-Means)
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Centroid Based Clustering

(K-Means)
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Centroid Based Clustering

(K-Means)
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Centroid Based Clustering

(K-Means)
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Centroid Based Clustering

(K-Means)
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Centroid Based Clustering

(K-Means)
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Centroid Based Clustering

(K-Means)
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Centroid Based Clustering
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Centroid Based Clustering

(K-Means)
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Centroid Based Clustering

(K-Means)
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Centroid Based Clustering
(K-Means)
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Centroid Based Clustering

(K-Means)
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K-Means Objective

N
S = {xi}i=1 argmin E E HX Ck”

S= CIU UCK {cl CK} k xEC,

T

Equivalent! Clustering  Cluster Centers

argmm E C ‘Var )
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EM Algorithm for K-Means

(g {xi}: argmin E E Hx ckH

S= CIU UCK {Cl CK}

' k xEC,
t 1
E-Step Clustering  Cluster Centers
— Estimate C,
— Estimate cluster membership
M-Step
— Estimate c,

— Estimate model parameters
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E-Step
argmin E E |- CkHZ S={x},

§=CU..UCk, {c|...cx } k x&Cy

* For each x:
— Assign to cluster C, with smallest distance to c,
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M-Step
argmin 3 M v-c | s-{}”

§=CU..UCk, {c|...cx } k x&Cy

* Foreachc,:
— Compute ¢, = mean(C,)
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Recall: Gaussian Mixture Models

* Each data point is associated with a membership to a
Gaussian distribution

— Denoted by z variable K Gaussian Distributions
. . E\nf K
1D Example with 3 Gaussians S\
N\
K| K
@

/ N Data Points

Membership variable
per data point

"Nonbayesian-gaussian-mixture" by Benwing —
Created using LaTeX, TikZ. Licensed under CC BY 3.0 via Commons

- https://commons.wikimedia.org/wiki/File:Nonbayesian-gaussian-mixture.svg#/media/File:Nonbayesian-gaussian-mixture.svg 29



Recall: Gaussian Mixture Models

exp{-[x-c,| 120°|

Sexp{-Jx-c| 120°|

k‘

P(x cC, Icl,...,cK) =

o exp{—“x -c, ||2 / 202}

* Prob of cluster membership proportional to exp(-dist?/20?)
* “Sharpness” of distribution increases as o decreases

* Converges to K-Means as o goesto O
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Recall: Gaussian Mixture Models

Gaussian |Ike|lh00d

argmaxHP(x) HEP xEC P(k) S={xi}j\=]1

{Cl CK} XES xXES . :
Prior on each Gaussian mixture

(can assume = 1/K for simplicity)

E-Step: Estimate probabilities

M-Step: Maximize model parameters c,,...,C,
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Recap: K-Means

* Centroid-based Clustering

— Defines clusters using a notional of centrality
— E.g., all items in the cluster must be close to each other

* Solve using EM algorithm

— Also probabilistic variant (Gaussian Mixture Models)

e Useful when centrality assumption is good

— But bad when centrality assumption is bad...
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Thought Experiment

What is good clustering?
3 .I \ . l
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Linkage Based Clustering

(Hierarchical Clustering)

* K-Means used centroid clustering structure
— Clustered data points are “close” to cluster center

 Sometimes a linkage structure is better...
— Employ hierarchical clustering
— E.g., agglomerative clustering
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Agglomerative Clustering




Agglomerative Clustering

e Equivalent to finding minimum spanning tree
— Kruskal’s Algorithm

— http://en.wikipedia.org/wiki/Kruskal%27s_algorithm

* Order that edges are added defines the
cluster hierarchy

* Equivalent to finding a binary tree partitioning
with progressively smaller partition distances
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Recap: Clustering

* Unsupervised learning
— Finds the clustering structure of input features

Centroid based
— Clusters should be clumped together

— K-Means

* Linkage Based
— Clusters can be organized hierarchically
— Agglomerative Clustering

* Works great when clustering assumption is good!
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Limitations of Clustering
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Principal Component Analysis
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Summarizing Data

e Summarize data using smaller #attributes S = {x,-}jz1

* Clustering: summarize data via clusters

— K-Means: summarize via cluster membership
— Gaussian Mixture Model: Summarize via distribution over K clusters

 PCA: summarize via orthogonal projections

— Define new feature representation
— Rotation + Projection
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Principal Component Analysis
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Principal Component Analysis
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New Feature Representation!
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Orthogonal Matrix

* A matrix U is orthogonal if UUT = UTU = |

— Forany columnu: u'u=1

— For any two columns u, u’: u'u’ =0

— U is a rotation matrix, and UTis the inverse rotation

— If x¥’ = U"x, then x = UX’

PCA finds a specific
orthogonal U
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Properties of Orthogonal Matrices

e X' =U"X, x=UX

* Norm preserving:
x"x'= (UTx)T (UTx) =x'UU " x=x"x

* Preserves Total Variance:
D N ’ D N )
20 =2 2 ()
d=1 i=1 d=1 i=1

Assuming zero mean
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Principal Component Analysis

Summarize Using 1 Feature?
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Principal Component Analysis

Summarize Using 1 Feature?
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Principal Component Analysis

Summarize Using 1 Feature?

Works with arbitrary subsets of
columns of orthogonal U

E.g., U =[ug,uc,u,l
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PCA Formal Definition

e Define M=matrix of all data:

X = [xl,...,xN] € Re”"

* Mean center:

X=X-|x,.xX|
* PCA:
XX' =UAU"

7 RN
Symmetric
Orthogonal Diagonal
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Properties of PCA

XX =UAU" 4

Assuming zero mean ’ 2
D

* Each column of U is an Eigenvector
 Each A is an Eigenvalue

—A 2A2 L2 A

(XXT)ud =AU,
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Interpretation

Feature Covariance - XXT _ UAUT
Matrix: ~—_

Assuming zero mean PCA Solution

24 IS the covariance of features d & d’ in training data.

The first column u, is the single direction of greatest variation

— A, is the total variation along u;:
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Interpretation Continued

* The first column u, is the single direction that minimizes the
squared loss of reconstructing the original x’s

— l.e., minimizes the amount of residual variation

* One can prove that:

-—-Mlt.x

uuul
“Residual”

* (From definition in previous slide)
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Definition: u, is the dlrectlon that captures the most variation

- argmaxzuu o

w: ul u=1
Step 1: for any x, its residual direction is orthogonal to u,
: T
Residual: X —UU; X
T
T T T T T T
(x—ulu1 x) u=xu-x uuu=x u—-x u =0

Step 2: establish relationship and complete proof
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Interpretation Continued

Find the u, that minimizes the residual squared norm:

T
wu X
1
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Solving PCA
(Iterative Algorithm)

* Given: X=[x1,,,,,xN]EReDXN Assuming zero mean
* Init: X, =X

e Ford=1,...,D

— Solve: 2

. T
u, = arggmnHXd —uu X,

u. u u=l

Fro

— Update:
T
Xy =X, —uu, X,
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Property of PCA
XX' =UAU"

* The first K columns of U are guaranteed to be

the K-dimensional subspace that captures the
most variability of X

 We just proved K=1 a few slides ago

* Homework question: prove general case



Dimensionality Reduction

+ Solve PCA: xXx!' =UAU"

e Use first K columns of U to create K-dim representation:

1 T
X = Ul:Kx

* This creates a compact summary of original dataset
— E.g., K=50, D=1,000,000
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Example: Eigenfaces

PCA on a corpus of faces.
Every pixel is a “feature”
Visualizing the top Eigenvectors of U

http://www.cs.princeton.edu/~cdecoro/eigenfaces/
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Example: Eigenfaces

Visualizing Projection U UT
using top K Eigenvectors: 1:K 1;Kx
http://www.cs.princeton.edu/~cdecoro/eigenfaces/
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CS 155 Eigenfaces

Avg Face




5 eigenfaces 10 eigenfaces 15 eigenfaces 5 eigenfaces 10 eigenfaces 15 eigenfaces

2 229

20 eigenfaces 30 eigenfaces 50 eigenfaces 20 eigenfaces 30 eigenfaces 50 eigenfaces

22

75 eigenfaces 100 eigenfaces 150 eigenfaces 75 eigenfaces 100 eigenfaces 150 eigenfaces

2 209
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Singular Value Decomposition

X=UZV"
T '\ \Orthogonal

Orthogonal Diagonal

* SVD operates on X, as opposed to XX'

* Equivalence between SVD & PCA
xXx7 = (UZVT)(UZVT)T —UsVvUT =USUT

* \/ corresponds to new representation x’

« Homework: prove this more rigorously
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Eigenfaces Step 1

* Flatten each image into vector

225000-dimensional!

—

(3*H*W)xN

Each Column is Image
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Eigenfaces Step 2

* Mean center

Mean

|

Per-column subtraction
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Eigenfaces Step 3

* Singular Value Decomposition: X'=UXV'
z

B

Diagonal Matrix
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Eigenfaces Step 4

» MergingZintoUandV: X'=UZV' =U'V"

21/2
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Interpreting U & V

* Each col of U’ is an “Eigenface”
 Each col of V'T = coefficients of a student
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5 eigenfaces 10 eigenfaces 15 eigenfaces 5 eigenfaces 10 eigenfaces 15 eigenfaces

2 229

20 eigenfaces 30 eigenfaces 50 eigenfaces 20 eigenfaces 30 eigenfaces 50 eigenfaces

22

75 eigenfaces 100 eigenfaces 150 eigenfaces 75 eigenfaces 100 eigenfaces 150 eigenfaces

2 209
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-13.1664 , -27.5141 -25.3403 , -42.383 11.728 , 24.1556 16.6788 , 5.5092

3.2845 , -29. 9722 8.5987 , 40.4183 -2.4102 , -20.5946 25.5004 , 29.0106

12,6747 , -13.4101
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Limitations of Eigenfaces

 Each dimension is a pixel (& color channel)

— Not semantically meaningful n n ‘ 4 m

— Squared reconstruction error in pixel space Q m ﬂ @

* Suppose each dimension had more meaning
— E.g., dim 1 = location of left eye
— Then U components would have cleaner visualization
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Summary

* Clustering & PCA (and SVD) reduce the
dimensionality of data representation.

* For each data point
— Store K numbers
— Cluster membership probabilities
— Coefficients in K-dimensional projection

* Nice visualization & interpretation?
— Depends on semantics of raw dimensions...



Next Lecture

e Latent Factor Models

* Matrix Factorization with Missing Values
— E.g., the “Netflix Problem”

* No recitation on Thursday
* Homework 5 Due on Thursday via Moodle
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