
Machine	Learning	&	Data	Mining	
CS/CNS/EE	155	

Lecture	10:	
Condi6onal	Random	Fields	Revisited,	

Overview	of	General	Structured	Predic6on	

1	

Today	

•  Naïve	Bayes	vs	Logis6c	Regression	
– Detailed	Comparison	
– Generalizes	Conceptually	to	HMMs	vs	CRFs	

•  Condi6onal	Random	Fields	Revisited	
– Using	Logis6c	Regression	Nota6on	

•  Overview	of	General	Structured	Predic6on	

2	

Recall:	Naïve	Bayes	

•  Posits	a	genera6ng	model:	
– Single	y	
– Mul6ple	x	features	
– Only	keep	track	of:	

•  P(y),	P(xd|y)	

3	

Y	

X1	 XD	…	X2	

…	

P(x, y) = P(x | y)P(y) = P(y) P(xd | y)
d
∏

Graphical	Model	Diagram	

Each	xd	is	condi6onally	independent	given	y.	
“Naïve”	independence	assump6on!	

Recall:	Logis6c	Regression	

4	

•  “Log-Linear”	assump6on	
–  Linear	scoring	func6on	(in	exponent)	
– Most	common	discrimina6ve	probabilis6c	model	

x ∈ RD

y ∈ 1,2,...,L{ }
P(y | x) =

exp wy
T x − by{ }

exp wk
T x − bk{ }

k
∑

=
exp F(x, y){ }
exp F(x,k){ }

k
∑

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F(x,y)	

P(y|x)	

Naïve	Bayes	vs	Logis6c	Regression	
•  NB	has	L	parameters	for	P(y)	(i.e.,	A)	
•  LR	has	L	parameters	for	bias	b	

•  NB	has	L*D	parameters	for	P(x|y)	(i.e,	O)	
•  LR	has	L*D	parameters	for	w	

•  Same	number	of	parameters!	

5	

P(x, y) = Ay O
xd ,y
d

d=1

D

∏

P(y)	 P(x|y)	

P(y | x) = ewy
T x−by

ewk
T x−bk

k
∑ x ∈ 0,1{ }

D

y ∈ 1,2,...,L{ }

Naïve	Bayes	 Logis6c	Regression	

Interpre6ng	Parameters	of	LR	

6	

P(y | x) = ewy
T x−by

ewk
T x−bk

k
∑

 ∝ exp wy
T x − by{ }

 = exp −by{ } exp wy
dxd{ }

d
∏

 = exp Ay{ } exp O
xd ,y
d{ }

d
∏

P(x, y) = Ay O
xd ,y
d

d=1

D

∏

P(y)	 P(xd|y)	

LogisHc	Regression	 Naïve	Bayes	

Exponent	of	LR		
looks	similar	to	NB!	

Rename	
Parameters	

Cannot	ignore		
denominator!!!	

Modeling	P(y|x)	

7	

P(y | x) =
exp wy

T x − by{ }
exp wk

T x − bk{ }
k
∑

=

exp O
xd ,y
d + Ay

d
∑
#
$
%

&
'
(

exp O
xd ,k
d + Ak

d
∑
#
$
%

&
'
(k

∑

P(y | x) = P(x, y)
P(x)

=
P(x, y)
P(x,k)

k
∑

=
Ay O

xd ,y
d

d=1

D

∏

Ak O
xd ,k
d

d=1

D

∏
k
∑

LogisHc	Regression	

Naïve	Bayes	

There’s	no	need	
for	each	A,O	≤	1	

P(y)	 P(xd|y)	

Recall:	Training	Naïve	Bayes	

•  Maximum	Likelihood	of	Training	Set:	

–  Subject	to	Naïve	Bayes	assump6on	on	structure	of	P(x,y)	

	

8	

S = (xi, yi){ }i=1
NargmaxP(S) = argmax P(xi, yi)

i
∏

 = argmin − logP(xi, yi)
i
∑

P(x, y) = P(x | y)P(y) = P(y) P(xd | y)
d
∏

Naïve&Bayes&Formula0on&

•  Posits&a&genera0ng&model:&
– Single&y&
– Mul0ple&x&features&
– Only%keep%track%of:%

•  P(y),%P(xd|y)%

21&

Y%

X1& XD&…%X2&

…%

P(x, y) = P(x | y)P(y) = P(y) P(xd | y)
d
∏

Graphical&Model&Diagram&

Each&xd&is&condi0onally&independent&given&y.&
“Naïve”&independence&assump0on!&

Only	need	to	es6mate	P(y)	and	each	P(xd|y)!	

Op6mality	Condi6on	for	Naïve	Bayes	

•  Define:	

•  Supervised	Training:		

9	

P(x | y) =Ox,y =
wx,y

wx '
x '
∑

argmin − logP(xi | yi)− logP(yi)[]
i
∑

∂wx ,y = −
Nx,y

wx,y

+
Ny

wx ',y
x '
∑

#	training	examples	(x,y)	

Nx,y

Ny

=
wx,y

wx ',y
x '
∑è	

Frequency	counts	
in	training	set!	

P(x | y) =
Nx,y

Ny
è	

Just	a	re-parameteriza6on	

= − logwxi ,yi
+ log wx ',yi

x '
∑

#

$
%

&

'
(

i
∑

Recall:	Training	Logis6c	Regression	

10	

argmin − logP(yi | xi)
i
∑ ≡ −F(xi, yi)+ log exp F(xi, y '){ }

y '
∑

$

%
&
&

'

(
)
)i

∑

F(x, y) = wy
T x − by = Ay + Ox,y

d

d
∑

P(y | x)=
exp F(x, y){ }
exp F(x, y '){ }

y '
∑

∂wy = −1 yi=y[] +P(y | xi)()∂F(xi, y)∂wy
= − 1 yi=y[] −P(y | xi)()∂F(xi, y)∂wyi
∑

i
∑

Gradient	(skipping	deriva6on)	

Op6mality	Condi6on	for	Logis6c	Regression	

11	

∂wy = −1 yi=y[] +P(y | xi)()∂F(xi, y)∂wy
= − 1 yi=y[] −P(y | xi)()∂F(xi, y)∂wyi
∑

i
∑

1 yi=y[]
∂F(xi, y)
∂wyi

∑ = P(y | xi)
i
∑ ∂F(xi, y)

∂wy

Gradient	(skipping	deriva6on)	

Sehng	gradient	to	0:	 0 = − 1 yi=y[] −P(y | xi)()∂F(xi, y)∂wyi
∑

Empirical	frequency	of	y	should	match	predicted	frequency!	

Comparison	of	Op6mality	Condi6ons	

•  Naïve	Bayes:	

	
•  Logis6c	Regression:	

12	

P(x | y) =
Nx,y

Ny

Correspond	to	exactly	one	model	parameter!	

Does	not	correspond	to	exactly	one	model	parameter!	

P(y) =
Ny

N

1 yi=y[]
∂F(xi, y)
∂wyi

∑ = P(y | xi)
i
∑ ∂F(xi, y)

∂wy

Comparison	of	Op6mality	Condi6ons	

•  HMM:	

•  CRF:	

13	

P(x | y) =
Nx,y

Ny

Ny ',y
∂F(xi, y)
∂wy,y '

= P(y ', y | xi)
i
∑ ∂F(xi, y)

∂wy,y '

Correspond	to	exactly	one	model	parameter!	

Does	not	correspond	to	exactly	one	model	parameter!	

P(y | y ') =
Ny ',y

Ny

GeneraHve	 DiscriminaHve	

P(x,y)	
•  Joint	model	over	x	and	y	
•  Cares	about	everything	

P(y|x)			(when	probabilis6c)	
•  Condi6onal	model	
•  Only	cares	about	predic6ng	well	

Naïve	Bayes,	HMMs	
•  Also	Topic	Models		

Logis6c	Regression,	CRFs	
•  also	SVM,	Least	Squares,	etc.	

Max	Likelihood	 Max	(Condi6onal)	Likelihood	
•  (=minimize	log	loss)	
•  Can	pick	any	loss	based	on	y	
•  Hinge	Loss,	Squared	Loss,	etc.	

Always	Probabilis6c	 Not	Necessarily	Probabilis6c	
•  Certainly	never	joint	over	P(x,y)	

Olen	strong	assump6ons	
•  Keeps	training	tractable	

More	flexible	assump6ons	
•  Focuses	en6re	model	on	P(y|x)	

Mismatch	between	train	&	predict	
•  Requires	Bayes’s	rule	

Train	to	op6mize	predict	goal	

Can	sample	anything	 Can	only	sample	y	given	x	

Can	handle	missing	values	in	x	 Cannot	handle	missing	values	in	x	

14	

Recap:	Sequence	Predic6on	
•  Input:	x	=	(x1,…,xM)	
•  Predict:	y	=	(y1,…,yM)	

–  Each	yi	one	of	L	labels.	

•  x	=	“Fish	Sleep”	
•  y	=	(N,	V)	

•  x	=	“The	Dog	Ate	My	Homework”	
•  y	=	(D,	N,	V,	D,	N)	

•  x	=	“The	Fox	Jumped	Over	The	Fence”	
•  y	=	(D,	N,	V,	P,	D,	N)	

15	

POS	Tags:	
Det,	Noun,	Verb,	Adj,	Adv,	Prep	

L=6	

“Log-Linear”	1st	Order	Sequen6al	Model	

16	
y0	=	special	start	state,		excluding	end	state	

Scoring	transi6ons	 Scoring	input	features		

P(y | x) =
exp F(y, x){ }

Z(x)

F(y, x) ≡ A
yj ,y j−1

+O
yj ,x j()

j=1

M

∑

logP(y | x) = F(y, x)− log Z(x)()

Scoring	Func6on	

Z(x) = exp F(y ', x){ }
y '
∑ aka	“Par66on	Func6on”	

P(y | x) = 1
Z(x)

exp A
yj ,y j−1

+O
yj ,x j()

j=1

M

∑
#
$
%

&%

'
(
%

)%

()

•  x	=	“Fish	Sleep”	
•  y	=	(N,V)	

17	

P(y | x) = 1
Z(x)

exp A
yj ,y j−1

+O
yj ,x j()

j=1

M

∑
#
$
%

&%

'
(
%

)%

AN,*	 AV,*	

A*,N	 -2	 1	

A*,V	 2	 -2	

A*,Start	 1	 -1	

ON,*	 OV,*	

O*,Fish	 2	 1	

O*,Sleep	 1	 0	

AN,V	
wV,Fish	

P(N,V | "Fish Sleep") = 1
Z(x)

exp AN ,Start +ON ,Fish + AV ,N +OV ,Sleep{ }= 1
Z(x)

exp 4{ }

y	 exp(F(y,x))	

(N,N)	 exp(1+2-2+1)	=	exp(2)	

(N,V)	 exp(1+2+2+0)	=	exp(4)	

(V,N)	 exp(-1+1+2+1)	=	exp(3)	

(V,V)	 exp(-1+1-2+0)	=	exp(-2)	

Z(x)	=	Sum	

18	

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

AN ,Start +ON ,Fish + AV ,N +OV ,Sleep

•  x	=	“Fish	Sleep”	
•  y	=	(N,V)	

P(N,V | "Fish Sleep")

P(N,V | "Fish Sleep") = 1
Z(x)

exp AN ,Start +ON ,Fish + AV ,N +OV ,Sleep{ }

*hold	other	parameters	fixed	

19	

ϕ1
j (a | x) =

1
a=Noun()∧ x j='Fish '()"

#
$
%

1
a=Noun()∧ x j='Sleep '()"

#
$
%

1
a=Verb()∧ x j='Fish '()"

#
$
%

1
a=Verb()∧ x j='Sleep '()"

#
$
%

"

#

&
&
&
&
&
&
&
&

$

%

'
'
'
'
'
'
'
'

ϕ1
1(Noun | "Fish Sleep") =

1
0
0
0

!

"

#
#
#
#

$

%

&
&
&
&

ϕ1
2 (Verb | "Fish Sleep") =

0
0
0
1

!

"

#
#
#
#

$

%

&
&
&
&

ϕ1
2 (Noun | "Fish Sleep") =

0
1
0
0

!

"

#
#
#
#

$

%

&
&
&
&

ϕ1
1(Verb | "Fish Sleep") =

0
0
1
0

!

"

#
#
#
#

$

%

&
&
&
&

New	Nota6on	
Duplicate	word	features	for	each	label.	

Noun	
Class	
Features	

Verb	
Class	
Features	

ϕ1
j (a | x) =

1 a=1[]φ1(x
j)

!
1 a=L[]φ1(x

j)

!

"

#
#
#
#

$

%

&
&
&
&

20	

ϕ1
j (a | x) =

1
a=Noun()∧ x j='Fish '()"

#
$
%

1
a=Noun()∧ x j='Sleep '()"

#
$
%

1
a=Verb()∧ x j='Fish '()"

#
$
%

1
a=Verb()∧ x j='Sleep '()"

#
$
%

"

#

&
&
&
&
&
&
&
&

$

%

'
'
'
'
'
'
'
'

ϕ2 (Noun,Start) =

1
0
0
0
0
0

!

"

#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&

ϕ2 (Verb,Start) =

0
0
0
1
0
0

!

"

#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&

ϕ2 (Verb,Noun) =

0
0
0
0
1
0

!

"

#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&

ϕ2 (a,b) =

1 a=Noun()∧ b=Start()"# $%

1 a=Noun()∧ b=Noun()"# $%

1 a=Noun()∧ b=Verb()"# $%

1 a=Verb()∧ b=Start()"# $%

1 a=Verb()∧ b=Noun()"# $%

1 a=Verb()∧ b=Verb()"# $%

"

#

&
&
&
&
&
&
&
&
&
&

$

%

'
'
'
'
'
'
'
'
'
'

New	Nota6on	
One	feature	for	every	transi6on.	

New	Nota6on	

21	

F(y, x) ≡ wTϕ j (y j, y j−1 | x)#$ %&
j=1

M

∑

ϕ j (a,a ' | x) =
ϕ1

j (a | x)
ϕ2 (a,a ')

!

"

#
#

$

%

&
&

w =
w1
w2

!

"
#
#

$

%
&
&

F(y, x) ≡ A
yj ,y j−1

+O
yj ,x j()

j=1

M

∑
Scoring	transi6ons	 Scoring	input	features		

Old	Scoring		
FuncHon	

New	Scoring		
FuncHon	Stacked		

Weight	Vector	
Stacked	
Feature	Vector	

ϕ1
j (a | x) =

1
a=Noun()∧ x j='Fish '()"

#
$
%

1
a=Noun()∧ x j='Sleep '()"

#
$
%

1
a=Verb()∧ x j='Fish '()"

#
$
%

1
a=Verb()∧ x j='Sleep '()"

#
$
%

"

#

&
&
&
&
&
&
&
&

$

%

'
'
'
'
'
'
'
'

ϕ2 (a,a ') =

1 a=Noun()∧ a '=Start()"# $%

1 a=Noun()∧ a '=Noun()"# $%

1 a=Noun()∧ a '=Verb()"# $%

1 a=Verb()∧ a '=Start()"# $%

1 a=Verb()∧ a '=Noun()"# $%

1 a=Verb()∧ a '=Verb()"# $%

"

#

&
&
&
&
&
&
&
&
&
&

$

%

'
'
'
'
'
'
'
'
'
'

22	

F(y, x) ≡ wTϕ j (y j, y j−1 | x)#$ %&
j=1

M

∑ ϕ j (a,a ' | x) =
ϕ1

j (a | x)

ϕ2
j (a,a ')

!

"

#
#

$

%

&
&

w =
w1
w2

!

"
#
#

$

%
&
&

w1 =

2
1
1
0

!

"

#
#
#
#

$

%

&
&
&
&

w2 =

1
−2
2
−1
1
−2

"

#

$
$
$
$
$
$
$

%

&

'
'
'
'
'
'
'

ϕ1
j (a | x) =

1
a=Noun()∧ x j='Fish '()"

#
$
%

1
a=Noun()∧ x j='Sleep '()"

#
$
%

1
a=Verb()∧ x j='Fish '()"

#
$
%

1
a=Verb()∧ x j='Sleep '()"

#
$
%

"

#

&
&
&
&
&
&
&
&

$

%

'
'
'
'
'
'
'
'

AN,*	 AV,*	

A*,N	 -2	 1	

A*,V	 2	 -2	

A*,Start	 1	 -1	

ON,*	 OV,*	

O*,Fish	 2	 1	

O*,Sleep	 1	 0	

Old	Nota6on:	

Old	Nota6on:	

ϕ2 (a,a ') =

1 a=Noun()∧ a '=Start()"# $%

1 a=Noun()∧ a '=Noun()"# $%

1 a=Noun()∧ a '=Verb()"# $%

1 a=Verb()∧ a '=Start()"# $%

1 a=Verb()∧ a '=Noun()"# $%

1 a=Verb()∧ a '=Verb()"# $%

"

#

&
&
&
&
&
&
&
&
&
&

$

%

'
'
'
'
'
'
'
'
'
'

Why	New	Nota6on?	

•  Easier	to	reason	about:	
–  Compu6ng	Predic6ons	
–  Compu6ng	Gradients	
–  Extensions	(just	generalize	φ)	

23	

F(y, x) ≡ wTϕ j (y j, y j−1 | x)#$ %&
j=1

M

∑

ϕ j (a,b | x) =
ϕ1

j (a | x)
ϕ2 (a,b)

!

"

#
#

$

%

&
&

ϕ1
j (a | x) =

1
a=Noun()∧ x j='Fish '()"

#
$
%

1
a=Noun()∧ x j='Sleep '()"

#
$
%

1
a=Verb()∧ x j='Fish '()"

#
$
%

1
a=Verb()∧ x j='Sleep '()"

#
$
%

"

#

&
&
&
&
&
&
&
&

$

%

'
'
'
'
'
'
'
'

w =
w1
w2

!

"
#
#

$

%
&
&

ϕ2 (a,b) =

1 a=Noun()∧ b=Start()"# $%

1 a=Noun()∧ b=Noun()"# $%

1 a=Noun()∧ b=Verb()"# $%

1 a=Verb()∧ b=Start()"# $%

1 a=Verb()∧ b=Noun()"# $%

1 a=Verb()∧ b=Verb()"# $%

"

#

&
&
&
&
&
&
&
&
&
&

$

%

'
'
'
'
'
'
'
'
'
'

Condi6onal	Random	Fields	

24	

P(y | x) = 1
Z(x)

exp F(y, x){ }

ϕ j (a,b | x) =
ϕ1

j (a | x)
ϕ2 (a,b)

!

"

#
#

$

%

&
&

ϕ1
j (a | x) =

1
a=Noun()∧ x j='Fish '()"

#
$
%

1
a=Noun()∧ x j='Sleep '()"

#
$
%

1
a=Verb()∧ x j='Fish '()"

#
$
%

1
a=Verb()∧ x j='Sleep '()"

#
$
%

"

#

&
&
&
&
&
&
&
&

$

%

'
'
'
'
'
'
'
'

w =
w1
w2

!

"
#
#

$

%
&
&

ϕ2 (a,b) =

1 a=Noun()∧ b=Start()"# $%

1 a=Noun()∧ b=Noun()"# $%

1 a=Noun()∧ b=Verb()"# $%

1 a=Verb()∧ b=Start()"# $%

1 a=Verb()∧ b=Noun()"# $%

1 a=Verb()∧ b=Verb()"# $%

"

#

&
&
&
&
&
&
&
&
&
&

$

%

'
'
'
'
'
'
'
'
'
'

F(y, x) ≡ wTϕ j (y j, y j−1 | x)#$ %&
j=1

M

∑

Z x() = exp F(y ', x){ }
y '
∑

P(N,V | x = "Fish Sleep") = 1
Z(x)

exp w1
Tϕ1

1(N, x)+w2
Tϕ2 (N,Start)+w1

Tϕ1
2 (V, x)+w2

Tϕ2 (V,N){ }

 = 1
Z(x)

exp w1,1 +w2,1 +w1,4 +w2,5{ }= 1
Z(x)

exp 2+1+ 0+1{ }=
1

Z(x)
exp 4{ }

()
25	

y	 exp(F(y,x))	

(N,N)	 exp(2+1+1-2)	=	exp(2)	

(N,V)	 exp(2+1+0+1)	=	exp(4)	

(V,N)	 exp(1-1+1+2)	=	exp(3)	

(V,V)	 exp(1-1+0-2)	=	exp(-2)	

Z(x)	=	Sum	

w1 =

2
1
1
0

!

"

#
#
#
#

$

%

&
&
&
&

w2 =

1
−2
2
−1
1
−2

"

#

$
$
$
$
$
$
$

%

&

'
'
'
'
'
'
'

ϕ1
j (a | x) =

1
a=Noun()∧ x j='Fish '()"

#
$
%

1
a=Noun()∧ x j='Sleep '()"

#
$
%

1
a=Verb()∧ x j='Fish '()"

#
$
%

1
a=Verb()∧ x j='Sleep '()"

#
$
%

"

#

&
&
&
&
&
&
&
&

$

%

'
'
'
'
'
'
'
'

ϕ2
j (a,a ') =

1 a=Noun()∧ a '=Start()"# $%

1 a=Noun()∧ a '=Noun()"# $%

1 a=Noun()∧ a '=Verb()"# $%

1 a=Verb()∧ a '=Start()"# $%

1 a=Verb()∧ a '=Noun()"# $%

1 a=Verb()∧ a '=Verb()"# $%

"

#

&
&
&
&
&
&
&
&
&
&

$

%

'
'
'
'
'
'
'
'
'
'

x	=	“Fish	Sleep”												y	=	(N,V)	

Summary	of	New	Nota6on	

•  Generic	Logis6c	Model	Nota6on:	

•  Define	feature	func6on:	
–  Linear	model	in	feature	representa6on	
–  Applies	to	both	CRFs	and	basic	LR	

26	

P(y | x) = 1
Z(x)

exp F(y, x){ }

F(y, x) ≡ wTϕ j (y j, y j−1 | x)#$ %&
j=1

M

∑Z x() = exp F(y ', x){ }
y '
∑

Compu6ng	Predic6ons	(Viterbi)	

27	

Ŷ k (T) = argmax
y1:k−1

F(y1:k−1⊕T, x)
#

$
%

&

'
(⊕T

argmax
y

P(y | x) = argmax
y

F(y, x)

Ŷ k+1(T) = argmax
y1:k∈ Ŷ k (T){ }T

F(y1:k ⊕T, x)
#

$
%
%

&

'
(
(⊕T

 = argmax
y1:k∈ Ŷ k (T){ }T

F(y1:k, x)+wTϕ k+1(T, yk, x)
#

$
%
%

&

'
(
(⊕T

Maintain	length-k		
prefix	solu6ons	

Recursively	solve	for	
length-(k+1)	solu6ons	

argmax
y

F(y, x) = argmax
y∈ Ŷ M (T){ }T

F(y, x)Predict	via	best	
length-M	solu6on	

F(y1:k, x) ≡ wTϕ j (y j, y j−1 | x)#$ %&
j=1

k

∑

28	

Ŷ1(V)	

Ŷ1(D)	

Ŷ1(N)	

Store	each		
Ŷ1(T)	&	F(Ŷ1(T),x)	

Ŷ2(V)	

Ŷ2(D)	

Ŷ2(N)	

Solve:	

y1=V	

y1=D	

y1=N	

Ŷ 2 (V) = argmax
y1∈ Ŷ1 T(){ }T

F(y1, x)+wTϕ 2 (V, y1 | x)
"

#
$
$

%

&
'
'⊕V

Ŷ1(T)	is	just	T	

29	

Ŷ1(V)	

Ŷ1(D)	

Ŷ1(N)	

Store	each		
Ŷ1(T)	&	F(Ŷ1(T),x)	

Ŷ2(V)	

Ŷ2(D)	

Ŷ2(N)	

y1=N	

Ŷ1(T)	is	just	T	 Ex:	Ŷ2(V)	=	(N,	V)	

Solve:	 Ŷ 2 (V) = argmax
y1∈ Ŷ1 T(){ }T

F(y1, x)+wTϕ 2 (V, y1 | x)
"

#
$
$

%

&
'
'⊕V

30	

Ŷ1(V)	

Ŷ1(D)	

Ŷ1(N)	

Store	each		
Ŷ1(T)	&	F(Ŷ1(T),x)	

Ŷ2(V)	

Ŷ2(D)	

Ŷ2(N)	

Store	each		
Ŷ2(Z)	&	F(Ŷ2(Z),x)	

Ex:	Ŷ2(V)	=	(N,	V)	

Ŷ3(V)	

Ŷ3(D)	

Ŷ3(N)	

Solve:	

y2=V	

y2=D	

y2=N	

Ŷ 3(V) = argmax
y1:2∈ Ŷ 2 T(){ }T

F(y1:2, x)+wTϕ j (V, y2 | x)
"

#
$
$

%

&
'
'⊕V

Ŷ1(Z)	is	just	Z	

31	

Ŷ1(V)	

Ŷ1(D)	

Ŷ1(N)	

Store	each		
Ŷ1(Z)	&	F(Ŷ1(Z),x)	

Ŷ2(V)	

Ŷ2(D)	

Ŷ2(N)	

Store	each		
Ŷ2(T)	&	F(Ŷ2(T),x)	

Ex:	Ŷ2(V)	=	(N,	V)	

Ŷ3(V)	

Ŷ3(D)	

Ŷ3(N)	

Store	each		
Ŷ3(T)	&	F(Ŷ3(T),x)	

Ex:	Ŷ3(V)	=	(D,N,V)	

ŶL(V)	

ŶL(D)	

ŶL(N)	

…	

Ŷ1(T)	is	just	T	

Ŷ M (V) = argmax
y1:M−1∈ Ŷ M−1 T(){ }T

F(y1:M−1, x)+wTϕM (V, yM−1 | x)
#

$
%
%

&

'
(
(⊕VSolve:	

32	

Ŷ1(V)	

Ŷ1(D)	

Ŷ1(N)	

Store	each		
Ŷ1(Z)	&	F(Ŷ1(Z),x)	

Ŷ2(V)	

Ŷ2(D)	

Ŷ2(N)	

Store	each		
Ŷ2(T)	&	F(Ŷ2(T),x)	

Ex:	Ŷ2(V)	=	(N,	V)	

Ŷ3(V)	

Ŷ3(D)	

Ŷ3(N)	

Store	each		
Ŷ3(T)	&	F(Ŷ3(T),x)	

Ex:	Ŷ3(V)	=	(D,N,V)	

ŶL(V)	

ŶL(D)	

ŶL(N)	

…	

Ŷ1(T)	is	just	T	

Ŷ M (V) = argmax
y1:M−1∈ Ŷ M−1 T(){ }T

F(y1:M−1, x)+wTϕM (V, yM−1 | x)
#

$
%
%

&

'
(
(⊕VSolve:	

Decomposes	addi6vely	by		
pairwise	feature	vector:	

φj(a,b|x)	
	

Easier	to	keep	track	of!	

Compu6ng	Condi6onal	Probabili6es	

33	

G j (b,a) = exp wTϕ j (b,a | x){ }

P(y | x) = 1
Z(x)

G j (y j, y j−1)
j=1

M

∏

Z(x) = G j (y ' j, y ' j−1)
j=1

M

∏
y '
∑

P(y | x) = 1
Z(x)

exp F(y, x){ }=
1

Z(x)
exp wTϕ j (y j, y j−1 | x)

j=1

M

∑
#
$
%

&%

'
(
%

)%

Z x() = exp F(y ', x){ }
y '
∑

Challenges:	
•  Compute	Z(x)	efficiently	
•  Numerical	instability	

Matrix	NotaHon:	

See	course	notes.	

Matrix	Semiring	

34	

Z(x) = G j (y ' j, y ' j−1)
j=1

M

∏
y '
∑

Gj(b,a)	

L+1	

Matrix	Version	of	Gj		

G1:2 (b,a) ≡ G2 (b,c)G1(c,a)
c
∑ G1:2	 G2	 G1	=	

Gi:j	 Gi+1	 Gi	=	 Gj	 Gj-1	 …	Gi: j (b,a) ≡

L+
1	

Include	‘Start’	G j (b,a) = exp wTϕ j (b,a | x){ }

See	course	notes.	

•  Consider	Length-1	(M=1)	

•  M=2	

•  General	M	
–  Do	M	matrix	computa6ons	to	compute	G1:M	

–  Z(x)	=	sum	column	‘Start’	of	G1:M	

Compu6ng	Par66on	Func6on	

35	

Z(x) = G1(a,Start)
a
∑

Sum	column	‘Start’	of	G1!	

Z(x) = G2 (b,a)G1(a,Start)
a,b
∑ = G1:2 (b,Start)

b
∑

Sum	column	‘Start’	of	G1:2!	

G1:M	 G2	 G1	=	 GM	 GM-1	 …	

Sum	column	‘Start’	of	G1:M!	

See	course	notes	for	more	efficient	approach.	

Dealing	w/	Numerical	Instability	

•  Previous	slide	suffers	from	numerical	instability	
–  G1:k		can	easily	overflow	and/or	underflow	
	

36	See	course	notes.	

Ĝ1: j =
1
C j G

jĜ1: j−1() C j = G jĜ1: j−1"
#

$
%ba

a,b
∑

log Z(x)() = log Ga,Start
1:M

a
∑
"

#
$

%

&
'= log Ĝa,Start

1:M

a
∑
"

#
$

%

&
'+ log C j()

j=1

M

∑

G1:M = Ĝ1:M C j

j=1

M

∏
Numerical	Stability	va	Scaling:	 Example	Scaling	Factor:	

log P(y | x)() = F(y, x)− log Z(x)() Use	log	probs	instead!	

Training		
(StochasHc)	Gradient	Descent	

•  Minimize	log	loss	of	training	data:	

37	

S = (xi, yi){ }i=1
N

argmin
w

− logP(yi | xi)
i=1

N

∑ = argmin
w

−F(yi, xi)+ log Z(xi)()
i=1

N

∑

∂w −F(y, x) = − ϕ j (y j, y j−1 | x)
j=1

M

∑

∂w log(Z(x)) = P(y j = b, y j−1 = a | x)ϕ j (b,a | x)
a,b
∑

j=1

M

∑

See	course	notes.	

Op6mality	Condi6on	

•  Op6mality	condi6on:	

•  Frequency	counts	=	Cond.	expectaHon	on	training	data!	
–  If	each	feature	is	disjoint,	then	above	equality	holds	for	each	(a,b):	

38	

argmin
Θ

− logP(yi | xi)
i=1

N

∑ = argmin
Θ

−F(yi, xi)+ log Z(xi)()
i=1

N

∑

ϕ j (yi
j, yi

j−1 | xi)
j=1

Mi

∑
i=1

N

∑ = P(y j = b, y j−1 = a | xi)ϕ
j (b,a | xi)

a,b
∑

j=1

Mi

∑
i=1

N

∑

1
yi
j=b()∧ yi

j−1=a()#
$

%
&
ϕ j (b,a | xi)

j=1

Mi

∑
i=1

N

∑ = P(y j = b, y j−1 = a | xi)ϕ
j (b,a | xi)

j=1

Mi

∑
i=1

N

∑

S = (xi, yi){ }i=1
N

See	course	notes.	

Compu6ng	P(yj=b,yj-1=a|x)	
(Forward-Backward)	

39	

∂w log(Z(x)) = P(y j = b, y j−1 = a | x)ϕ j (b,a | x)
a,b
∑

j=1

M

∑

P(y j = b, y j−1 = a | x) = P(y1: j−2 ⊕ (a,b)⊕ y j+1:M | x)
y j+1:M
∑

y1: j−2
∑

Forward	Computes		
1st	Sum	Efficiently	

Backward	Computes		
2nd	Sum	Efficiently	

See	course	notes.	

Forward-Backward	for	CRFs	

40	

P(y j = b, y j−1 = a | x) = α
j−1(a)G j (b,a)β j (b)

Z(x)

α1(a) =G1(a,Start)

α j (a) = α j−1(a ')G j (a,a ')
a '
∑

βM (b) =1

β j (b) = β j+1(b ')G j+1(b ',b)
b '
∑

Z(x) = exp F(y ', x){ }
y '
∑ G j (b,a) = exp wTϕ j (b,a | x){ }

See	course	notes.	

Dealing	w/	Numerical	Instability	

•  Numerical	instability:	αj	&	βj	vectors	can	blow	up	

•  Observa6on:	

•  New	αj	&	βj	vectors:	
	

41	See	course	notes.	

P(y j = b, y j−1 = a | x) = α
j−1(a)G j (b,a)β j (b)

Z(x)
=

α j−1(a)G j (b,a)β j (b)
α j−1(a ')G j (b ',a ')β j (b ')

a ',b '
∑

α̂ j (a) = 1
Cα

j α̂ j−1(b)G j (a,b)
b
∑ β̂ j (b) = 1

Cβ
j β̂ j+1(a)G j (a,b)

a
∑

Cα
j = α̂ j−1(b)G j (a,b)

a,b
∑ Cβ

j = β̂ j+1(a)G j (a,b)
a,b
∑

Recap:	Condi6onal	Random	Fields	

•  “Log-Linear”	1st	order	sequence	models	
– Can	compute	condi6onal	probabili6es	P(y|x)	

•  Pairwise	feature	maps	φj(b,a|x)	
– Arbitrary	features	that	depend	on	pairs	of	labels.	

•  Train	via	minimizing	neg	log	likelihood	

•  Dynamic	programming	to	train	and	predict	

42	

General	Structured	Predic6on	

43	

More	Elaborate	Scoring	Func6ons	
•  Structure	encoded	by	linear	scoring	func6on:	
	

•  2nd	Order	Sequen6al	Model:	
	

•  Classifica6on	Model:	

•  Efficient	Predic6on:	

44	

F(y, x)

F(y, x) ≡ wTϕ j (y j, y j−1, y j−2 | x)#$ %&
j=1

M

∑

F(y, x) ≡ wTϕ(y | x)

argmax
y

F(y, x)

More	Elaborate	Scoring	Func6ons	
•  Structure	encoded	by	linear	scoring	func6on:	
	

•  2nd	Order	Sequen6al	Model:	
	

•  Classifica6on	Model:	

•  Efficient	Predic6on:	

45	

F(y, x)

F(y, x) ≡ wTϕ j (y j, y j−1, y j−2 | x)#$ %&
j=1

M

∑

F(y, x) ≡ wTϕ(y | x)

argmax
y

F(y, x)

Remainder	of	Lecture:	
Tour	of	Structured	Predic6on	Models	
Some	Might	be	Interes6ng	to	You…	

46	
h�ps://www.coursera.org/course/pgm	

h�p://www.cs.cmu.edu/~guestrin/Class/10708/	
h�ps://piazza.com/cornell/fall2013/btry6790cs6782/resources	

x1	 x2	

y1	 y2	 yM	…	

x3	

ϕ2 (y
2, y1)

y0	
ϕ2 (y

1, y0)

ϕ1(y
1 | x1) ϕ1(y

2 | x2) ϕ1(y
M | xM)

y3	

ϕ2 (y
3, y2)

x3	

ϕ1(y
3 | x3)

Graph	structure	encodes	structural	dependencies	between	yj!	

ϕ j (a,b | x) =
ϕ1 (a | x

j)
ϕ2 (a,b)

!

"

#
#

$

%

&
&Graphical	Models	

47	
h�ps://www.coursera.org/course/pgm	

h�p://www.cs.cmu.edu/~guestrin/Class/10708/	
h�ps://piazza.com/cornell/fall2013/btry6790cs6782/resources	

…	
ϕ2 (y

2, y1)

y0	
ϕ2 (y

1, y0) ϕ2 (y
3, y2)

Graph	structure	encodes	structural	dependencies	between	yj!	

ϕ j (a,b | x) =
ϕ1

j (a | x)
ϕ2 (a,b)

!

"

#
#

$

%

&
&Graphical	Models	

x1	 x2	

y1	 y2	 yM	

x3	

y3	

x3	

Graphical	Models	

48	

x1	 x2	

y1	 y2	 yM	…	

x3	

ϕ3(y
3, y2, y1)

y0	

ϕ3(y
2, y1, y0)

ϕ1(y
1 | x1) ϕ1(y

2 | x2) ϕ1(y
M | xM)

Graph	structure	encodes	structural	dependencies	between	yj!	

y3	

x3	

ϕ1(y
3 | x3)

Features	depend	on	cliques	in	graphical	model	representaHon.	

h�ps://www.coursera.org/course/pgm	

h�p://www.cs.cmu.edu/~guestrin/Class/10708/	
h�ps://piazza.com/cornell/fall2013/btry6790cs6782/resources	

ϕ j (a,b,c | x) =
ϕ1 (a | x

j)
ϕ3(a,b,c)

!

"

#
#

$

%

&
&

Tree	Structured	Models	

49	

x1	

y1	

y2	 y3	

y4	 y5	 y7	y6	

x3	x2	

x4	 x5	 x6	 x7	

Child	nodes	of	yj	

F(y, x) ≡ w
1

Tϕ1(y
j | x j)+ w2

Tϕ2 (y
j, yi)

i∈Cj

∑
$

%
&
&

'

(
)
)j=1

M

∑

Predic6on	via	Dynamic	Programming	

50	

Tree$Structured$Models$

44$

x1$

y1$

y2$ y3$

y4$ y5$ y7$y6$

x3$x2$

x4$ x5$ x6$ x7$

F(y, x) ≡ w
1

Tϕ1(y
j | x j)+ w2

Tϕ2 (y
j, yi)

i∈Cj

∑
$

%
&
&

'

(
)
)j=1

M

∑

1.  Solve	par6al	solu6ons	of	Leaves	
2.  Solve	par6al	sol.	of	next	level	up	
3.  Repeat	Step	2	un6l	Root	
4.  Pick	best	par6al	solu6on	of	Root	

*Max-Product	Algorithm	for	Tree	Graphical	Models	
*Viterbi	=	Max-Product	for	Linear	Chain	Graphical	Models	

Loopy	Graphical	Models	

51	

stereo vision

✦ binocular fusion of features observed by
the eyes

✦ reconstruction of their 3D preimage

left right perceived depth

[Tsukuba]

stereo vision

✦ binocular fusion of features observed by
the eyes

✦ reconstruction of their 3D preimage

left right perceived depth

[Tsukuba]

stereo vision

✦ binocular fusion of features observed by
the eyes

✦ reconstruction of their 3D preimage

left right perceived depth

[Tsukuba]

X	 Y	

Stereo	(binocular)		
Depth	Detec6on	

h�p://vision.middlebury.edu/MRF/	

h�p://www.cs.cornell.edu/~rdz/Papers/SZ-visalg99.pdf	

47#

y11# y12# y1M#y13#

y21# y22# y2M#y23#

yM1# yM2# yMM#yM3#

…#

…#

…#

…
#

…
#

…
#

…
#

•  Each	yij	is	depth	of	pixel	
•  Neighbor	pixels	are	similar	
•  Features	over	pairs	of	pixels	

•  “Loopy”	Graphical	Model	
•  Predic6on	is	NP-Hard!	

x	suppressed	for	brevity	

argmax
y

F(y, x)

h�p://www.seas.upenn.edu/~taskar/pubs/mmamn.pdf	

String	Alignment	

52	

102 COMMUNICATIONS OF THE ACM | NOVEMBER 2009 | VOL. 52 | NO. 11

research highlights

joint feature vector into a sum of feature vectors for individ-
ual alignment operations (match, insertion, or deletion):

 (x, yi) is the feature vector for the ith alignment operation
in the alignment y of the sequence pair x. Below we describe
several alignment models represented by , focusing on the
scoring of matching two amino acids (see Figure 5 for an
illustration of the features used):

 (i) Simple: we only consider the substitution cost of single
features, e.g., the cost of matching a position with
amino acid “M” with another position in a loop region.

 (ii) Anova2: we consider pairwise interaction of features,
e.g., the cost of matching a position with amino acid
“M” in an alpha helix with another position with
amino acid “V” in a loop region.

 (iii) Tensor: we consider three-way interaction of features
among amino acid, secondary structure, and solvent
accessibility.

 (iv) Window: on top of three alignment models above, we
add neighborhood features using a sliding window,
which takes into account the hydrophobicity and sec-
ondary structure in the neighborhood of a position.

 (iv) Profile: on top of the alignment model Window, we
add PSI-BLAST profile scores as features.

As the loss function (y, y–), we use Q4-loss. It is the percent-
age of matched amino acids in the correct alignment y that
are aligned more than four positions apart in the predicted
alignment y–. The linearity of the Q4-loss allows us to use
the Smith–Waterman algorithm also for solving the loss-
 augmented inference problem during training. We refer to
Yu et al.29 for more details.
Experiments: We tested our algorithm with the training and
validation sets developed in Qiu and Elber,20 which contain
4542 and 4587 pairwise alignments of evolutionarily-related
proteins with high structural similarites. For the test set we
selected 4185 structures deposited in the Protein Data Bank
from June 2005 to June 2006, leading to 29345 test pairs.

labeled subtopics. The second representation learns a
word weighting function, with goal of having the repre-
sentations agree on the best solution. This setting is very
general and can be applied to other domains beyond sub-
topic retrieval.

3.2. Predicting protein alignments
Proteins are sequences of 20 different amino acids joined
together by peptide bonds. They fold into various stable
structures under normal cell environments. A central ques-
tion in biology is to understand how proteins fold, as their
structures relate to their functions.

One of the more successful methods for predicting pro-
tein structure from an amino acid sequence is homology
modeling. It approximates the structure of an unknown
protein by comparing it against a database of proteins with
experimentally determined structures. An important inter-
mediate step is to align the unknown protein sequence with
known protein sequences in the database, and this is a diffi-
cult problem when the sequences have diverged too far (e.g.,
less than 20% sequence identity).

To align protein sequences accurately for homology
modeling, we need to have a good substitution cost matrix
as input to the Smith–Waterman algorithm (a dynamic pro-
gramming algorithm). A common approach is to learn the
substitution matrix from a set of known good alignments
between evolutionarily related proteins.

Structural SVMs are particularly suitable for learn-
ing the substitution matrix, since they allow incorporat-
ing all available information (e.g., secondary structures,
solvent accessibility, and other physiochemical proper-
ties) in a principled way. When predicting the alignment
y = (y1, y2, …) for two given protein sequences x = (sa, sb),
each sequence location is described by a vector of features.
The discriminative approach of structural SVMs makes it
easy to incorporate these extra features without having to
make unjustified independence assumptions as in genera-
tive models. As explained below, this enables learning a
“richer” substitution function w (x, yi) instead of a fixed
substitution matrix.

The Smith–Waterman algorithm uses a linear function
for scoring alignments, which allows us to decompose the

Figure 5. Aligning a new protein sequence with a known protein
structure. Features at the aligned positions are used to construct
substitution matrices under different alignment models.

Know protein (Position 10)
amino acid: Methionine (M)
2nd structure: alpha helix
solvent access: Exposed

New protein (Position 11)
amino acid: Valine (V)
2nd structure (predicted): loop
solvent access (predicted): Buried

new
SQYGWNAYIDN-LMADKnown

SWQTYVDTNLVCT QGF

Figure 4. Subtopic loss comparison when retrieving five documents.
Structural SVM performance is superior with 95% confidence (using
signed rank test).

0.5

0.45

0.35

0.3

0.25
Random Okapi Unweighted

model
Essential pages Structural SVM

0.469 0.472 0.471

0.434

0.349

0.4

Lo
ss

h�p://www.cs.cornell.edu/People/tj/publica6ons/yu_etal_06a.pdf	
See	Also:	h�p://journals.plos.org/ploscompbiol/ar6cle?id=10.1371/journal.pcbi.1000173	

x	=	pair	of	strings	(one	from	D)	
y	=	alignment	

Predict	Folding	Structure		
&	Func6on	of	Protein	
	
Database	D	of	Known	Proteins	
(very	well	studied)	
	
Larger	Database	G	of	Homologies	
(proteins	w/	known	similari6es	to	D)	
	
Train	on	G:	learn	how	to	align	any	
amino	acid	seq	to	proteins	in	D	
	
	
	

F(y, x) encodes	score	of	different	types		
of	subs6tu6ons,	inser6ons	&	dele6ons	

Ranking	

h�p://research.microsol.com/en-us/um/people/cburges/tech_reports/MSR-TR-2010-82.pdf	
h�p://www.cs.cornell.edu/People/tj/publica6ons/joachims_05a.pdf	

h�p://www.yisongyue.com/publica6ons/sigir2007_svmmap.pdf	 53	

Find	w	that	predicts	best	ranking	
of	search	results.	
	
Every	relevant	result	should	be		
above	every	non-relevant	result.		

x	=	query	&	set	of	results	
y	=	ranking	

F(y, x) = yij wTϕ(xi)−wTϕ(x j)"# $%
i, j
∑

yij ∈ −1,+1{ }

argmax
y

F(y, x) = sort wTϕ(x j){ } j

Summary:	Structured	Predic6on	

•  Very	general	sehng	
–  Applicable	to	predic6on	made	jointly	over	mul6ple	y’s		
–  Predic6on	in	Graphical	Models	

•  Many	learning	algorithms	for	structured	predic6on	
–  CRFs,	SSVMs,	Structured	Perceptron,	Learning	Reduc6ons	

•  Topic	for	En6re	Class!	

54	

h�p://www.cs.cmu.edu/~nasmith/sp4nlp/	

h�p://www.cs.cornell.edu/Courses/cs778/2006fa/	

h�ps://www.sites.google.com/site/spflodd/	

h�p://www.nowozin.net/sebas6an/cvpr2011tutorial/	

h�p://www.cs.cornell.edu/People/tj/publica6ons/joachims_06b.pdf	

Next	Week	

•  Lecture	Tuesday:	
– Learning	Reduc6ons	
– Recent	Applica6ons	

•  NO	Lecture	Thursday:	
– Student-Faculty	Conference	

•  RecitaHon	Thursday:	
– Review	of	Condi6onal	Random	Fields	

55	

1

Fast Edge Detection Using Structured Forests
Piotr Dollár and C. Lawrence Zitnick

Microsoft Research
{pdollar,larryz}@microsoft.com

Abstract—Edge detection is a critical component of many vision systems, including object detectors and image segmentation
algorithms. Patches of edges exhibit well-known forms of local structure, such as straight lines or T-junctions. In this paper we take
advantage of the structure present in local image patches to learn both an accurate and computationally efficient edge detector. We
formulate the problem of predicting local edge masks in a structured learning framework applied to random decision forests. Our
novel approach to learning decision trees robustly maps the structured labels to a discrete space on which standard information gain
measures may be evaluated. The result is an approach that obtains realtime performance that is orders of magnitude faster than many
competing state-of-the-art approaches, while also achieving state-of-the-art edge detection results on the BSDS500 Segmentation
dataset and NYU Depth dataset. Finally, we show the potential of our approach as a general purpose edge detector by showing our
learned edge models generalize well across datasets.

F

1 INTRODUCTION

Edge detection has remained a fundamental task in computer
vision since the early 1970’s [18], [15], [43]. The detection
of edges is a critical preprocessing step for a variety of
tasks, including object recognition [47], [17], segmentation
[33], [1], and active contours [26]. Traditional approaches to
edge detection use a variety of methods for computing color
gradients followed by non-maximal suppression [7], [19], [50].
Unfortunately, many visually salient edges do not correspond
to color gradients, such as texture edges [34] and illusory
contours [39]. State-of-the-art edge detectors [1], [41], [31],
[21] use multiple features as input, including brightness, color,
texture and depth gradients computed over multiple scales.

Since visually salient edges correspond to a variety of visual
phenomena, finding a unified approach to edge detection is
difficult. Motivated by this observation several recent papers
have explored the use of learning techniques for edge detection
[13], [49], [31], [27]. These approaches take an image patch
and compute the likelihood that the center pixel contains an
edge. Optionally, the independent edge predictions may then
be combined using global reasoning [1], [41], [49], [2].

Edges in a local patch are highly interdependent [31].
They often contain well-known patterns, such as straight lines,
parallel lines, T-junctions or Y-junctions [40], [31]. Recently, a
family of learning approaches called structured learning [36]
has been applied to problems exhibiting similar characteristics.
For instance, [29] applies structured learning to the problem
of semantic image labeling for which local image labels are
also highly interdependent.

In this paper we propose a generalized structured learning
approach that we apply to edge detection. This approach
allows us to take advantage of the inherent structure in edge
patches, while being surprisingly computationally efficient.
We can compute edge maps in realtime, which is orders of
magnitude faster than competing state-of-the-art approaches.
A random forest framework is used to capture the structured

Fig. 1. Edge detection results using three versions of our
Structured Edge (SE) detector demonstrating tradeoffs in accu-
racy vs. runtime. We obtain realtime performance while simul-
taneously achieving state-of-the-art results. ODS numbers were
computed on BSDS [1] on which the popular gPb detector [1]
achieves a score of .73. The variants shown include SE, SE+SH,
and SE+MS+SH, see §4 for details.

information [29]. We formulate the problem of edge detection
as predicting local segmentation masks given input image
patches. Our novel approach to learning decision trees uses
structured labels to determine the splitting function at each
branch in the tree. The structured labels are robustly mapped to
a discrete space on which standard information gain measures
may be evaluated. Each forest predicts a patch of edge pixel
labels that are aggregated across the image to compute our
final edge map, see Figure 1. Since the aggregated edge maps
may be diffuse, the edge maps may optionally be sharpened
using local color and depth cues. We show state-of-the-art
results on both the BSDS500 [1] and the NYU Depth dataset
[44]. We demonstrate the potential of our approach as a general
purpose edge detector by showing the strong cross dataset
generalization of our learned edge models.

ar
X

iv
:1

40
6.

55
49

v2
 [

cs
.C

V
]

25
 N

ov
 2

01
4

Online Submission ID: 0622

A Data-Driven Approach for Realistic Speech Animation

1 1.5 2 2.5 3 3.5s s s s s ih ih ih g g r r ae ae ae ae f f f

“SIGGRAPH”

Realistic Speech Animation

Target Speech

1 1.5 2 2.5 3 3.5

“SIGGRAPH”

Machine Learning

Neural Network
Decision TreeData-driven Learning

visual context

audio context

Figure 1: A decision tree is used to learn the regression from input phoneme labels to output speech animation parameters. The tree generates
continuous, natural-looking speech animation parameters that represent a reference face of an actor and can be retargeted to the face of any
computer generated character. Predictions are made by traversing the tree from root to leaf node evaluating the learned set of discriminative
queries.

Abstract1

In this paper, we present a simple and effective machine learning2

approach for automatically generating natural looking speech an-3

imation that synchronizes to target audio speech. Our approach is4

easy to deploy, requires minimal parameter tuning, generalizes well5

to novel input speech sequences, and is easily composable with ex-6

isting retargeting approaches. This paper provides detailed a de-7

scription of our end-to-end approach, including discussing design8

decisions, and analyzing the relative importance of different sys-9

tem components. We show that realistic speech animation can be10

created for any input speech on a range of characters using a variety11

of voices. We also provide an extensive empirical evaluation, both12

quantitative and subjective, and demonstrate substantial improve-13

ments over previous approaches.14

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional15

Graphics and Realism—Animation; I.2.7 [Artificial Intelligence]:16

Natural Language Processing—Speech recognition and synthesis.17

Keywords: Speech Animation, Visemes, Machine Learning.18

1 Introduction19

Automated speech animation (also known as lip synchronization or20

lip sync) is an important and time-consuming aspect of character21

animation. Broadly speaking, speech animation is the task of mov-22

ing the facial features of a graphics model to give the impression of23

speech (e.g., synchronize with the spoken audio), and the goal of24

automated speech animation is to perform this task in a (near-)fully25

automated fashion.26

The use of speech animation in practice has typically involved an27

unpleasant trade-off between production speed and quality. At one28

extreme, large budget productions employ many professional ani-29

mators who can spend several hours manually animating just a few30

short seconds of speech, and key-framing every frame (or every31

few frames). At the other end, high-volume or low-budget produc-32

tions use overly simplified libraries of lip shapes combined with33

naive interpolation methods to quickly generate low-quality speech34

animation. In the middle are mid-budget productions that use the35

latter approach as an initialization, and them employ a few artists to36

somewhat refine the animation.37

As humans, we are all experts on faces and are able to identify asyn-38

chrony between audio and visual speech, causing poor speech ani-39

mation to appear somewhat distracting. Furthermore, the McGurk40

effect shows that mismatch between visual and audio speech can41

change what the viewer perceives to have heard [McGurk and Mac-42

Donald 1976]. Thus, proper speech animation is crucial for effec-43

tive animation in general.44

In this paper, we show that a simple and fast machine learning ap-45

proach can achieve dramatic improvements upon previous work in46

automatic speech animation. We present an audio-to-visual speech47

animation pipeline based on a recently proposed sliding window48

regression approach [Kim et al. 2015] that can generate realistic49

speech animation. The key performance gains are due to:50

• Utilizing complex predictors such as deep neural networks51

[Rumelhart et al. 1988] and decision trees [Maimon and52

Rokach 2005] that can learn highly non-linear mappings from53

phonetic inputs to animation outputs. We find that both neu-54

ral networks and decision trees perform well, with neural net-55

works performing the best.56

• Utilizing a multivariate sliding window predictor [Kim et al.57

2015] that captures natural variation and coarticulation in58

acoustic and visual speech. One key tuning parameter is the59

size of the sliding window. We find that this parameter is easy60

to tune, in part due to how quickly our predictors train.61

• Making predictions in a relatively compact yet expressive Ac-62

tive Appearance Model space [Cootes et al. 2001; Matthews63

and Baker 2004]. This allows for predictions to be easily com-64

posed with various retargeting approaches and thus mapped to65

arbitrary graphics characters.66

In summary, our approach is simple to employ, requires minimal67

parameter tuning or feature engineering, generalizes well to novel68

input speech sequences, and is easily composable with existing re-69

targeting approaches. Our approach also extends trivially to ensem-70

ble machine learning methods such as random forests; however, we71

find the quantitative performance gains to be minimal, and the sub-72

jective differences to be neglible.73

This paper provides a detailed description of our end-to-end ap-74

proach, including discussing design decisions, and analyzing the75

relative importance of different system components. We show that76

our approach is easy to deploy with respect to design decisions77

1

