
Machine	Learning	&	Data	Mining	
CS/CNS/EE	155	

Lecture	7:	
Probabilis7c	Models	
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Announcements	

•  Homework	4	released	
– Has	coding	por7on	
– Write	clean	code!	

– Skeleton	code	for	loading	data	available	on	
Moodle	
•  (You	don’t	have	to	use	it.)	
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Today	

•  Basic	Probabilis7c	Models	
– Naïve	Bayes	
– Es7ma7on	
– Sampling	

•  Brief	Overview	of	Advanced	Probabilis7c	
Models	

•  Thursday:	Hidden	Markov	Models	in	Depth	
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Genera7ve	Probabilis7c	Models	

•  Models	joint	distribu7on	of	x	and	y:	

•  Can	make	predic7ons	via	Bayes	Rule:	

•  Can	infer	marginal	distribu7ons:	
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P(x, y)

P(y | x) = P(x, y)
P(x)

=
P(x | y)P(y)

P(x)

P(y) = P(y, x)
x
∑ P(x) = P(y, x)

y
∑

Predic7on	=	choose	y		
with	maximal	P(y|x)	



Example	

•  P(x,y)	sums	to	1	
–  Joint	distribu7on	

	
•  P(x=Homework)	??	
– Answer:	0.5	
– “Marginalize	out	the	y”	
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y	 x	 P(x,y)	

Y=	SPAM	 Help!	 0.15	

y=	NOT	 Help!	 0.1	

y=	SPAM	 Homework	 0.05	

y=	NOT	 Homework	 0.45	

Y=	SPAM	 Winner!	 0.2	

Y=	NOT	 Winner!	 0.05	

P(x) = P(y, x)
y
∑

Margin	distribu7on	of	P(x)	



Example	#2	

•  P(x,y)	sums	to	1	
–  Joint	distribu7on	

	
•  P(y=SPAM|x=Help!)	??	
– Answer:	0.6	
– P(x,y)	=	0.15	
– P(x)	=	0.25	
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y	 x	 P(x,y)	

Y=	SPAM	 Help!	 0.15	

y=	NOT	 Help!	 0.1	

y=	SPAM	 Homework	 0.05	

y=	NOT	 Homework	 0.45	

Y=	SPAM	 Winner!	 0.2	

Y=	NOT	 Winner!	 0.05	

P(y | x) = P(x, y)
P(x)

P(x) = P(y, x)
y
∑



Example	#3	

•  P(x,y)	sums	to	1	
–  Joint	distribu7on	

	
•  P(x=Help!|y=NOT)	??	
– Answer:	0.17	
– P(x,y)	=	0.1	
– P(y)	=	0.6	
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y	 x	 P(x,y)	

Y=	SPAM	 Help!	 0.15	

y=	NOT	 Help!	 0.1	

y=	SPAM	 Homework	 0.05	

y=	NOT	 Homework	 0.45	

Y=	SPAM	 Winner!	 0.2	

Y=	NOT	 Winner!	 0.05	

P(x | y) = P(x, y)
P(y)

P(y) = P(y, x)
x
∑



Training	

•  Goal	is	to	learn	P(x,y)	
–  What	is	objec7ve	func7on?	

•  Maximum	Likelihood!	
	

–  Just	frequency	counts!	
–  6	parameters	
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y	 x	 P(x,y)	

Y=	SPAM	 Help!	 0.15	

y=	NOT	 Help!	 0.1	

y=	SPAM	 Homework	 0.05	

y=	NOT	 Homework	 0.45	

Y=	SPAM	 Winner!	 0.2	

Y=	NOT	 Winner!	 0.05	

S = (xi, yi ){ }i=1
N

argmaxP(S) = argmax P(xi, yi )
i
∏

                     = argmin − logP(xi, yi )
i
∑



Training	

•  Goal	is	to	learn	P(x,y)	
–  What	is	objec7ve	func7on?	

•  Maximum	Likelihood!	
	

–  Just	frequency	counts!	
–  6	parameters	
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y	 x	 P(x,y)	

Y=	SPAM	 Help!	 0.15	

y=	NOT	 Help!	 0.1	

y=	SPAM	 Homework	 0.05	

y=	NOT	 Homework	 0.45	

Y=	SPAM	 Winner!	 0.2	

Y=	NOT	 Winner!	 0.05	

S = (xi, yi ){ }i=1
N

argmaxP(S) = argmax P(xi, yi )
i
∏

                     = argmin − logP(xi, yi )
i
∑

InterpretaIon:	Given	model	structure,	find	that	
parameteriza7on	that	best	explains	data	



Training	Deriva7on	

•  Define:		
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P(x, y) =
wx,y

wx ',y '
x ',y '
∑

argmin − logP(xi, yi )
i
∑ = argmin

w
− logwxi ,yi

+ log wx ',y '
x ',y '
∑

#

$
%
%

&

'
(
(i

∑

∂wx ,y = −
Nx,y

wx,y

+
N
wx ',y '

x ',y '
∑

#	training	examples	(x,y)	

Nx,y

N
=

wx,y

wx ',y '
x ',y '
∑è	

Frequency	of	(x,y)		
in	training	set!	

P(x, y) =
Nx,y

Nè	

Just	a	re-parameteriza7on	



Regulariza7on	

•  Hallucinate	data!	

•  aka:	“pseudo	counts”	
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y	 x	 P(x,y)	

Y=	SPAM	 Help!	 0.15	

y=	NOT	 Help!	 0.1	

y=	SPAM	 Homework	 0.05	

y=	NOT	 Homework	 0.45	

Y=	SPAM	 Winner!	 0.2	

Y=	NOT	 Winner!	 0.05	

P(x, y) =
Nx,y +λPx,y
N +λ

Prior	Probability	of	observing	(x,y)	

Regulariza7on	Strength	



Genera7ve	vs	Discrimina7ve	

•  Genera7ve	models	
– Models	both	y	AND	x	
– P(x,y)	

	
•  Discrimina7ve	models		
– Models	y	GIVEN	x	
– P(y|x)	
– E.g.,	Logis7c	Regression	
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What	are	Benefits		
and	Drawbacks?	



Genera7ve	vs	Discrimina7ve	

•  Genera7ve:		
–  6	parameters	in	example	
–  Can	sample	P(x,y)		
–  Predic7on	via	Bayes	Rule	

•  Tolerates	missing	data	

•  Discrimina7ve:	
–  3	parameters	in	example	
–  Can	only	sample	P(y|x)	
–  Directly	models	predic7on	task	

•  Cannot	naturally	tolerate	missing	data	
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y	 x	 P(x,y)	

Y=	SPAM	 Help!	 0.15	

y=	NOT	 Help!	 0.1	

y=	SPAM	 Homework	 0.05	

y=	NOT	 Homework	 0.45	

Y=	SPAM	 Winner!	 0.2	

Y=	NOT	 Winner!	 0.05	



Discrimina7ve	Models	Make	Beler	
Predic7ons	

•  Directly	learn	to	op7mize	predic7on	goal:	
–  Aka:	directly	learn:	
–  E.g.,	minimize	log-loss	

•  Genera7ve	Models	require	combining	
mul7ple	es7mated	values:	

–  Training	objec7ve	does	not	maximize	accuracy.	
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P(y | x) = P(x, y)
P(x)

P(y | x)

What	if	there	are	so		
many	different	x	that	
P(x)	underflows?	



Genera7ve	Models	are	Joint	Models	

•  Fully	specify	probability	distribu7on	of	P(x,y)	

•  Can	draw	samples	from	P(x,y)	
– R	=	uniform([0,1])	
–  If(R	<	0.15)	

•  x=help!,	y=SPAM	

– Elseif(R	<	0.25)	
•  x=help!,	y=NOT	

– … 		
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y	 x	 P(x,y)	

Y=	SPAM	 Help!	 0.15	

y=	NOT	 Help!	 0.1	

y=	SPAM	 Homework	 0.05	

y=	NOT	 Homework	 0.45	

Y=	SPAM	 Winner!	 0.2	

Y=	NOT	 Winner!	 0.05	

Built-in	func7on	in		
python,	Matlab,	etc.	



Genera7ve	Models	can	Tolerate	
Missing	Values	

•  We	can	model	the	probability	of	missing	
feature	value	
– We	will	see	this	specifically	for	Naïve	Bayes.	

•  Discrimina7ve	models	cannot	tolerate	missing	
values	
–  If	you	don’t	observe	an	input	feature,	you	lose	all	
guarantees	

16	



Genera7ve	Models	are	more	Elegant?	

•  Many	people	find	genera7ve	models	more	
elegant	

•  Tell	a	“complete”	story	about	the	data	

•  Useful	if	we	can’t	decide	what	is	the	
predic7on	task	a	priori	

•  E.g.,	train	model	first,	pick	what	is	the	y	later	
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Naïve	Bayes	

18	



Modeling	a	Feature	Vector	

•  Single	y		
–  (e.g.,	binary)	

•  Vector	of	x	(D-dimensional)	
– Simplest	case,	each	xd	binary	
– E.g.,	presence/absence	of	word	

•  Model	P(x,y)	
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Example	

•  Binary	y	
•  2	binary	x’s	

•  “Probability	table”	

•  What’s	wrong	with		
				this	approach?	
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y	 x1=Winner!	 x2=Homework	 P(x,y)	

SPAM	 1	 1	 0.01	

NOT	 1	 1	 0.01	

SPAM	 0	 1	 0.03	

NOT	 0	 1	 0.35	

SPAM	 1	 0	 0.25	

NOT	 1	 0	 0.05	

SPAM	 0	 0	 0.2	

NOT	 0	 0	 0.1	



Example	

•  Binary	y	
•  2	binary	x’s	

•  “Probability	table”	

•  What’s	wrong	with		
				this	approach?	
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y	 x1=Winner!	 x2=Homework	 P(x,y)	

SPAM	 1	 1	 0.01	

NOT	 1	 1	 0.01	

SPAM	 0	 1	 0.03	

NOT	 0	 1	 0.35	

SPAM	 1	 0	 0.25	

NOT	 1	 0	 0.05	

SPAM	 0	 0	 0.2	

NOT	 0	 0	 0.1	
Model	Complexity	is	ExponenIal		

w.r.t.	the	length	of	x!	



Naïve	Bayes	Formula7on	

•  Posits	a	genera7ng	model:	
– Single	y	
– Mul7ple	x	features	
– Only	keep	track	of:	

•  P(y),	P(xd|y)	
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Y	

X1	 XD	…	X2	

…	

P(x, y) = P(x | y)P(y) = P(y) P(xd | y)
d
∏

Graphical	Model	Diagram	

Each	xd	is	condi7onally	independent	given	y.	
“Naïve”	independence	assump7on!	



Why	is	Naïve	Bayes	Convenient?	

•  Compact	representa7on	

•  Easy	to	compute	any	quan7ty		
–  P(y|x),	P(xd|y),	…	

	

•  Easy	to	es7mate	model	components	
–  P(y),	P(xd|y)	

•  Easy	to	sample	

•  Easy	to	deal	with	missing	values	
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Example	Model	(Discrete)	

•  Each	xd	binary	
– E.g.,	presence	or	absence	of	word	
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x1=Homework	 x2=Winner!	

y=SPAM	 P(x1|y)=0.2	 P(x2|y)=0.5	

y=NOT	 P(x1|y)=0.6	 P(x2|y)=0.1	

P(y)	

y=SPAM	 0.7	

y=NOT	 0.3	

P(x|y)	

P(x, y) = P(x | y)P(y) = P(y) P(xd | y)
d
∏

P(y)	

Naïve&Bayes&Formula0on&

•  Posits&a&genera0ng&model:&
– Single&y&
– Mul0ple&x&features&
– Only%keep%track%of:%

•  P(y),%P(xd|y)%

21&

Y%

X1& XD&…%X2&

…%

P(x, y) = P(x | y)P(y) = P(y) P(xd | y)
d
∏

Graphical&Model&Diagram&

Each&xd&is&condi0onally&independent&given&y.&
“Naïve”&independence&assump0on!&



Example	Model	(Discrete)	

•  Each	xd	binary	
– E.g.,	presence	or	absence	of	word	
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x1=Homework	 x2=Winner!	

y=SPAM	 P(x1|y)=0.2	 P(x2|y)=0.5	

y=NOT	 P(x1|y)=0.6	 P(x2|y)=0.1	

P(y)	

y=SPAM	 0.7	

y=NOT	 0.3	

P(x|y)	

P(x, y) = P(x | y)P(y) = P(y) P(xd | y)
d
∏

P(y)	

Naïve&Bayes&Formula0on&

•  Posits&a&genera0ng&model:&
– Single&y&
– Mul0ple&x&features&
– Only%keep%track%of:%

•  P(y),%P(xd|y)%

21&

Y%

X1& XD&…%X2&

…%

P(x, y) = P(x | y)P(y) = P(y) P(xd | y)
d
∏

Graphical&Model&Diagram&

Each&xd&is&condi0onally&independent&given&y.&
“Naïve”&independence&assump0on!&

Model	Complexity	is	Linear	
w.r.t.	the	length	of	x!	



Making	Predic7ons	
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Y	

X1	 XD	…	X2	

…	

Graphical	Model	Diagram	

P(y | x) = P(x, y)
P(x)

           = P(x | y)P(y)
P(x)

           = P(y)
P(x)

P(xd | y)
d
∏

           ∝P(y) P(xd | y)
d
∏

Model	components	we	keep	track	of.	



Example	Predic7on	

•  Suppose:	

•  Then:	
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P(y | x)∝P(y) P(xd | y)
d
∏ = P(y)P(x | y)

P(y =1) = 0.3
P(y = −1) = 0.7

P(x | y =1) = 0.05
P(x | y = −1) = 0.001

P(y =1| x) = 0.3*0.05
0.3*0.05+ 0.7*0.001

≈ 0.96



Example	Predic7on	#2	

•  What	if	we	want	to	compute:	

•  Simple!	

•  It’s	an	explicitly	defined	model	component:	

28	

P(x1 | x2:D, y)

P(x1 | y)

P(x, y) = P(x | y)P(y) = P(y) P(xd | y)
d
∏



Example	Predic7on	#3	

•  What	if	we	want	to	compute:	
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P(x1 | x2:D )

P(x1 | x2:D ) = P(x)
P(x2:D )

=

P(y)P(x | y)
y
∑

P(y)P(x2:D | y)
y
∑

P(x, y) = P(x | y)P(y) = P(y) P(xd | y)
d
∏

Why	is	the	numerator	smaller	than	the	denominator?	

“Marginalizing	
		out	the	y”	



Marginaliza7on	in	Matrix	Form	

•  Compute	P(xd=1):	
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x1=Homework	 x2=Winner!	

y=SPAM	 P(x1=1|y)=0.2	 P(x2=1|y)=0.5	

y=NOT	 P(x1=1|y)=0.6	 P(x2=1|y)=0.1	

P(y)	

y=SPAM	 0.7	

y=NOT	 0.3	

O	

P	

P(xd =1) = OTP!" #$d d-th	row		

P(xd =1) = P(xd =1| y)P(y)
y
∑

O]en	faster	than		
wriIng	for	loops!	



Missing	Values	

•  What	if	we	don’t	observe	x2?	
•  Predict	P(y=SPAM|x1)	
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x1=Homework	 x2=Winner!	

y=SPAM	 P(x1=1|y)=0.2	 P(x2=1|y)=0.5	

y=NOT	 P(x1=1|y)=0.6	 P(x2=1|y)=0.1	

P(y)	

y=SPAM	 0.7	

y=NOT	 0.3	

P(y | x1) = P(y, x2:D | x1) =
x2:D
∑ P(x, y)

P(x1)x2:D
∑

How	to	efficiently	sum	over	mulIple	missing	values?	

We	can	marginalize		
out	the	missing	values!	



Condi7onal	Independence	to	the	
Rescue!	
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P(y | x1) = P(y, x2:D | x1) =
x2:D
∑ P(x, y)

P(x1)x2:D
∑

P(x, y) = P(y) P(xd | y)
d
∏

P(x, y)
x2:D
∑ = P(y) P(xd | y)

d
∏

x2:D
∑

               = P(y)P(x1 | y) P(xd | y)
xd
∑

d∈ 2,D[ ]
∏

               = P(y)P(x1 | y)

From	previous	slide	

DefiniIon	of		
Naïve	Bayes	

Swap	Product	&	Sum		
due	to	independence!	

Marginalizes	to	1!	



Intui7on	

•  Consider	the	case	of	3	variables	in	x:	
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= P(x2 | y)P(x3 | y)
x3∈ 0,1{ }

∑
x2∈ 0,1{ }

∑

P(x, y)
x2:D
∑ = P(y) P(xd | y)

d
∏

x2:D
∑ = P(y)P(x1 | y) P(xd | y)

xd
∑

d∈ 2,D[ ]
∏ = P(y)P(x1 | y)

= P(x2 = 0 | y)P(x3 = 0 | y)+P(x2 = 0 | y)P(x3 =1| y)
  +P(x2 =1| y)P(x3 = 0 | y)+P(x2 =1| y)P(x3 =1| y)

= P(x2 = 0 | y)+P(x2 =1| y)( ) P(x3 = 0 | y)+P(x3 =1| y)( )
=1



Intui7on	

•  Consider	the	case	of	3	variables	in	x:	
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= P(x2 | y)P(x3 | y)
x3∈ 0,1{ }

∑
x2∈ 0,1{ }

∑ = P(x2 | y)P(x3 | y)
x3∈ 0,1{ }

∑
x2∈ 0,1{ }

∑

P(x, y)
x2:D
∑ = P(y) P(xd | y)

d
∏

x2:D
∑ = P(y)P(x1 | y) P(xd | y)

xd
∑

d∈ 2,D[ ]
∏

= P(x2 = 0 | y)P(x3 = 0 | y)+P(x2 = 0 | y)P(x3 =1| y)
  +P(x2 =1| y)P(x3 = 0 | y)+P(x2 =1| y)P(x3 =1| y)

= P(x2 = 0 | y)+P(x2 =1| y)( ) P(x3 = 0 | y)+P(x3 =1| y)( )



One	Empirical	Comparison	

	
•  Measure	how	frequently	each	model	places		
–  1st,	2nd,	3rd,	etc.	

•  Only	genera7ve	model	(Naïve	Bayes)	is	in	last	place	
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An Empirical Comparison of Supervised Learning Algorithms

Table 4. Bootstrap Analysis of Overall Rank by Mean Performance Across Problems and Metrics

model 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

bst-dt 0.580 0.228 0.160 0.023 0.009 0.000 0.000 0.000 0.000 0.000
rf 0.390 0.525 0.084 0.001 0.000 0.000 0.000 0.000 0.000 0.000
bag-dt 0.030 0.232 0.571 0.150 0.017 0.000 0.000 0.000 0.000 0.000
svm 0.000 0.008 0.148 0.574 0.240 0.029 0.001 0.000 0.000 0.000
ann 0.000 0.007 0.035 0.230 0.606 0.122 0.000 0.000 0.000 0.000
knn 0.000 0.000 0.000 0.009 0.114 0.592 0.245 0.038 0.002 0.000
bst-stmp 0.000 0.000 0.002 0.013 0.014 0.257 0.710 0.004 0.000 0.000
dt 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.616 0.291 0.089
logreg 0.000 0.000 0.000 0.000 0.000 0.000 0.040 0.312 0.423 0.225
nb 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.030 0.284 0.686

overall, and only a 4.2% chance of seeing them rank
lower than 3rd place. Random forests would come in
1st place 39% of the time, 2nd place 53% of the time,
with little chance (0.1%) of ranking below third place.

There is less than a 20% chance that a method other
than boosted trees, random forests, and bagged trees
would rank in the top three, and no chance (0.0%)
that another method would rank 1st—it appears to be
a clean sweep for ensembles of trees. SVMs probably
would rank 4th, and neural nets probably would rank
5th, but there is a 1 in 3 chance that SVMs would rank
after neural nets. The bootstrap analysis clearly shows
that MBL, boosted 1-level stumps, plain decision trees,
logistic regression, and naive bayes are not competitive
on average with the top five models on these problems
and metrics when trained on 5k samples.

6. Related Work

STATLOG is perhaps the best known study (King
et al., 1995). STATLOG was a very comprehensive
study when it was performed, but since then important
new learning algorithms have been introduced such as
bagging, boosting, SVMs, and random forests. LeCun
et al. (1995) presents a study that compares several
learning algorithms (including SVMs) on a handwrit-
ing recognition problem using three performance crite-
ria: accuracy, rejection rate, and computational cost.
Cooper et al. (1997) present results from a study that
evaluates nearly a dozen learning methods on a real
medical data set using both accuracy and an ROC-like
metric. Lim et al. (2000) perform an empirical com-
parison of decision trees and other classification meth-
ods using accuracy as the main criterion. Bauer and
Kohavi (1999) present an impressive empirical analy-
sis of ensemble methods such as bagging and boosting.
Perlich et al. (2003) conducts an empirical comparison
between decision trees and logistic regression. Provost

and Domingos (2003) examine the issue of predicting
probabilities with decision trees, including smoothed
and bagged trees. Provost and Fawcett (1997) discuss
the importance of evaluating learning algorithms on
metrics other than accuracy such as ROC.

7. Conclusions

The field has made substantial progress in the last
decade. Learning methods such as boosting, random
forests, bagging, and SVMs achieve excellent perfor-
mance that would have been difficult to obtain just 15
years ago. Of the earlier learning methods, feedfor-
ward neural nets have the best performance and are
competitive with some of the newer methods, particu-
larly if models will not be calibrated after training.

Calibration with either Platt’s method or Isotonic Re-
gression is remarkably effective at obtaining excellent
performance on the probability metrics from learning
algorithms that performed well on the ordering met-
rics. Calibration dramatically improves the perfor-
mance of boosted trees, SVMs, boosted stumps, and
Naive Bayes, and provides a small, but noticeable im-
provement for random forests. Neural nets, bagged
trees, memory based methods, and logistic regression
are not significantly improved by calibration.

With excellent performance on all eight metrics, cali-
brated boosted trees were the best learning algorithm
overall. Random forests are close second, followed by
uncalibrated bagged trees, calibrated SVMs, and un-
calibrated neural nets. The models that performed
poorest were naive bayes, logistic regression, decision
trees, and boosted stumps. Although some methods
clearly perform better or worse than other methods
on average, there is significant variability across the
problems and metrics. Even the best models some-
times perform poorly, and models with poor average

“An	Empirical	Comparison	of	Supervised	Learning	Algorithms”	
Caruana,	Niculescu-Mizil,	ICML	2006	



Training	

•  Maximum	Likelihood	of	Training	Set:	

–  Subject	to	Naïve	Bayes	assump7on	on	structure	of	P(x,y)	
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S = (xi, yi ){ }i=1
NargmaxP(S) = argmax P(xi, yi )

i
∏

                     = argmin − logP(xi, yi )
i
∑

P(x, y) = P(x | y)P(y) = P(y) P(xd | y)
d
∏

Naïve&Bayes&Formula0on&

•  Posits&a&genera0ng&model:&
– Single&y&
– Mul0ple&x&features&
– Only%keep%track%of:%

•  P(y),%P(xd|y)%

21&

Y%

X1& XD&…%X2&

…%

P(x, y) = P(x | y)P(y) = P(y) P(xd | y)
d
∏

Graphical&Model&Diagram&

Each&xd&is&condi0onally&independent&given&y.&
“Naïve”&independence&assump0on!&

Only	need	to	es7mate	P(y)	and	each	P(xd|y)!	



Just	Coun7ng!	
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P(y = SPAM ) =
Ny=SPAM

N

P(x1 =1| y = SPAM ) =
N

y=SPAM∧x1=1

Ny=SPAM

Frequency	of	SPAM		
documents	in	training	set	

Frequency	of	word	x1		
appearing	in	SPAM		
documents	in	training	set	



Regulariza7on	

•  Add	“pseudo	counts”	
– aka	hallucinate	some	data	
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P(y = SPAM ) =
Ny=SPAM +λPy=SPAM

N +λ

P(x1 =1| y = SPAM ) =
N

y=SPAM∧x1=1
+λP

y=SPAM∧x1=1

Ny=SPAM +λ

O]en	just	set	pseudo	counts	
to	uniform	distribuIon!	



Sampling	

•  Can	sample	from	distribu7on	
–  Defini7on	of	Genera7ve	Model	

•  Can	draw	samples	from	P(x,y)	
–  First	sample	y:	

•  Random	uniform	variable	R	
•  Set	y=SPAM	if	R	<	P(y=SPAM)	&	y=NOT	otherwise	

–  Then	sample	each	xd:	
•  Sample	uniform	variable	R	
•  Set	xd=1	if	R	<	P(xd=1|y)	&	xd=0	otherwise	
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Naïve&Bayes&Formula0on&

•  Posits&a&genera0ng&model:&
– Single&y&
– Mul0ple&x&features&
– Only%keep%track%of:%

•  P(y),%P(xd|y)%

21&

Y%

X1& XD&…%X2&

…%

P(x, y) = P(x | y)P(y) = P(y) P(xd | y)
d
∏

Graphical&Model&Diagram&

Each&xd&is&condi0onally&independent&given&y.&
“Naïve”&independence&assump0on!&

Built-in	func7on	in		
python,	Matlab,	etc.	



Sampling	Example	

•  Sample	P(y)	
– R	=	0.5,	so	set	y	=	SPAM	

•  Sample	P(x1|y=SPAM)	
– R	=	0.1,	so	set	x1	=	1	

•  Sample	P(x1|y=SPAM)	
– R	=	0.9,	so	set	x2	=	0	
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x1=Homework	 x2=Winner!	

y=SPAM	 P(x1=1|y)=0.2	 P(x2=1|y)=0.5	

y=NOT	 P(x1=1|y)=0.6	 P(x2=1|y)=0.1	

P(y)	

y=SPAM	 0.7	

y=NOT	 0.3	

Naïve&Bayes&Formula0on&

•  Posits&a&genera0ng&model:&
– Single&y&
– Mul0ple&x&features&
– Only%keep%track%of:%

•  P(y),%P(xd|y)%

21&

Y%

X1& XD&…%X2&

…%

P(x, y) = P(x | y)P(y) = P(y) P(xd | y)
d
∏

Graphical&Model&Diagram&

Each&xd&is&condi0onally&independent&given&y.&
“Naïve”&independence&assump0on!&

Can	be	done	in		
either	order	



Sampling	Example	#2	

•  Sample	P(y)	
– R	=	0.9,	so	set	y	=	NOT	

•  Sample	P(x1|y=NOT)	
– R	=	0.5,	so	set	x1	=	1	

•  Sample	P(x1|y=NOT)	
– R	=	0.05,	so	set	x2	=	1	
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x1=Homework	 x2=Winner!	

y=SPAM	 P(x1=1|y)=0.2	 P(x2=1|y)=0.5	

y=NOT	 P(x1=1|y)=0.6	 P(x2=1|y)=0.1	

P(y)	

y=SPAM	 0.7	

y=NOT	 0.3	

Naïve&Bayes&Formula0on&

•  Posits&a&genera0ng&model:&
– Single&y&
– Mul0ple&x&features&
– Only%keep%track%of:%

•  P(y),%P(xd|y)%

21&

Y%

X1& XD&…%X2&

…%

P(x, y) = P(x | y)P(y) = P(y) P(xd | y)
d
∏

Graphical&Model&Diagram&

Each&xd&is&condi0onally&independent&given&y.&
“Naïve”&independence&assump0on!&



Recap:	Naïve	Bayes	

•  Probabilis7c	Genera7ve	Model	

•  Make	strong	independence	assump7ons	
–  Compact	representa7on	
–  Easy	to	train	
–  Easy	to	compute	various	probabili7es	
–  Not	the	most	accurate	for	standard	predic7on	
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P(x, y) = P(x | y)P(y) = P(y) P(xd | y)
d
∏

Naïve&Bayes&Formula0on&

•  Posits&a&genera0ng&model:&
– Single&y&
– Mul0ple&x&features&
– Only%keep%track%of:%

•  P(y),%P(xd|y)%

21&

Y%

X1& XD&…%X2&

…%

P(x, y) = P(x | y)P(y) = P(y) P(xd | y)
d
∏

Graphical&Model&Diagram&

Each&xd&is&condi0onally&independent&given&y.&
“Naïve”&independence&assump0on!&



Invent	Your	Own	Model	

•  Naïve	Bayes	is	a	special	case	of	Bayesian	
Network	

•  Here’s	another	one	I	just	made	up:	
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Invent&Your&Own&Model&

•  Naïve&Bayes&is&a&special&case&of&Bayesian&
Network&

40&

Y1#

X1& XD&…#X2&

…#

Y2#

P(x, y) = P(x | y)P(y)
= P(x | y)P(y1 | y2 )P(y2 )

= P(y1 | y2 )P(y2 )P(xD | y1, y2 ) P(xd | y1)
d∈ 1,D−1[ ]
∏

P(x, y) = P(x | y)P(y)
= P(x | y)P(y1 | y2 )P(y2 )

= P(y1 | y2 )P(y2 )P(xD | y1, y2 ) P(xd | y1)
d∈ 1,D−1[ ]
∏



Some	Other	Probabilis7c	Models	
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Gaussian	Naïve	Bayes	

•  Same	independence	structure	as	Naïve	Bayes	
– But	probability	func7ons	are	now	Gaussians	

•  (Instead	of	discrete	lookup	tables.)	

– y	is	binary:											the	same	

– Each	xd	is	con7nuous:	
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Naïve&Bayes&Formula0on&

•  Posits&a&genera0ng&model:&
– Single&y&
– Mul0ple&x&features&
– Only%keep%track%of:%

•  P(y),%P(xd|y)%

21&

Y%

X1& XD&…%X2&

…%

P(x, y) = P(x | y)P(y) = P(y) P(xd | y)
d
∏

Graphical&Model&Diagram&

Each&xd&is&condi0onally&independent&given&y.&
“Naïve”&independence&assump0on!&

P(y)

P(xd | y) ~ N(µd,y,σ )



Hidden	Markov	Models	

•  Genera7ve	model	of	sequences	

•  (focus	of	next	lecture)	
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Y1	

X1	

Y2	

X2	

YM	

XM	

…	

…	

P(x, y) = P(y1)P(x1 | y1) P(y j | y j−1)P(x j | y j )
j=2

M

∏



(Gaussian)	Mixture	Models	

•  Each	data	point	is	associated	with	a	membership	to	a	
Gaussian	distribu7on	
–  Denoted	by	z	variable	

•  1D	Example	with	3	Gaussians	
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"Nonbayesian-gaussian-mixture"	by	Benwing	–		
Created	using	LaTeX,	TikZ.	Licensed	under	CC	BY	3.0	via	Commons		
-	hlps://commons.wikimedia.org/wiki/File:Nonbayesian-gaussian-mixture.svg#/media/File:Nonbayesian-gaussian-mixture.svg	

K	Gaussian	Distribu7ons	

N	Data	Points	

Membership	variable	
per	data	point	



Topic	Models		
(Latent	Dirichlet	Alloca7on)	

•  Posits	that	documents	can	represented	as	a	mixture	of	topics.	
–  K	topics,	choose	K	a	priori	

•  Posits	that	topics	can	be	represented	as	a	mixture	of	words	
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"Latent	Dirichlet	alloca7on"	by	Bkkbrad	–		
Own	work.	Licensed	under	GFDL	via	Commons	–		
hlps://commons.wikimedia.org/wiki/File:Latent_Dirichlet_alloca7on.svg#/media/File:Latent_Dirichlet_alloca7on.svg	

Training	set:	M	documents,		
each	with	N	words.	

Topic	mixture	of	document.	

Each	word	corresponds	to	
a	specific	topic.	



Example:	LDA	analysis	of	Sarah	Palin’s	emails	
(Disclaimer:	this	was	the	top	result	of	Google	Search	“LDA	example”)	

•  Topics:	

49	
hlp://blog.echen.me/2011/08/22/introduc7on-to-latent-dirichlet-alloca7on/	



Example:	LDA	analysis	of	Sarah	Palin’s	emails	
(Disclaimer:	this	was	the	top	result	of	Google	Search	“LDA	example”)	

•  Presiden7al	Campaign			
•  Wildlife	

50	



Deep	Belief	Networks	

51	hlp://gitxiv.com/posts/jG46ukGod8R7Rdtud/a-neural-algorithm-of-ar7s7c-style	

Figure 2: Images that combine the content of a photograph with the style of several well-known
artworks. The images were created by finding an image that simultaneously matches the content
representation of the photograph and the style representation of the artwork (see Methods). The
original photograph depicting the Neckarfront in Tübingen, Germany, is shown in A (Photo:
Andreas Praefcke). The painting that provided the style for the respective generated image
is shown in the bottom left corner of each panel. B The Shipwreck of the Minotaur by J.M.W.
Turner, 1805. C The Starry Night by Vincent van Gogh, 1889. D Der Schrei by Edvard Munch,
1893. E Femme nue assise by Pablo Picasso, 1910. F Composition VII by Wassily Kandinsky,
1913.

5



Recap:	Genera7ve	Probabilis7c	Models	

•  Quan7fies	Uncertainty	
– Can	tolerate	missing	values	

•  Model	represents	a	“summary”	of	the	data	
– Fit	model	parameters	to	data	
– Can	use	for	inspec7on	

•  Not	trained	to	op7mize	predic7on	accuracy	
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Next	Lecture	

•  Hidden	Markov	Models	in	depth	
– Sequence	Modeling	
– Requires	Dynamic	Programming		
–  Implement	aspects	of	HMMs	in	homework	

•  Recita7on	Thursday:	
– Recap	of	Dynamic	Programming	(for	HMMs)	
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