Caltech

Machine Learning & Data Mining
CMS/CS/CNS/EE 155

Lecture 2:
Perceptron & Gradient Descent



Announcements

 Homework 1 is out

— Due Tuesday Jan 12t at 2pm
— Via Moodle

* Sign up for Moodle & Piazza if you haven’t yet

— Announcements are made via Piazza

e Recitation on Python Programming Tonight
— 7:30pm in Annenberg 105



Recap: Basic Recipe

. . . . N xER"
Training Data: S = {(xi,yi)}i=1 ve il

* Model Class: f(xlw,b):wa—b Linear Models

* Loss Function:  L(a,b)=(a-b) Squared Loss

N
* Learning Objective:  argmin y L(y,. f(x, |w,b))
Wb i

Optimization Problem



Recap: Bias-Variance Trade-off
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Recap: Complete Pipeline

Training Data

(" N\
5= {('xi’yi)}i=1

(

Model Class(es)

\

fixlw,b)y=w'x-b

/l ]

~
|

N
argminEL(yl.,f(xi |w,b))
Wb i

Cross Validation & Model Selection

r

Loss Function

~N

L(a,b)=(a-b)’

4 . N
U
Profit!
\_ J




Today

 Two Basic Learning Approaches
* Perceptron Algorithm

* Gradient Descent
— Aka, actually solving the optimization problem



The Perceptron

* One of the earliest learning algorithms
— 1957 by Frank Rosenblatt

 Still a great algorithm
— Fast
— Clean analysis

— Precursor to Neural Networks

Frank Rosenblatt
with the Mark 1

Perceptron Machine



Perceptron Learning Algorithm
(Linear Classification Model)

e wl=0,bl=0 f(x1w)=sign(w' x-b)
* Fort=1...
— Receive example (x,y) Training Set N
—If f(x|wt) =y S CRR)
e [Wil bt*1] = [wt bt] y E{+1-1}
— Else

Go through training set
in arbitrary order

e pttl = pht + y (e.g., randomly)



Aside: Hyperplane Distance

Lineisa 1D, Plane is 2D

Hyperplane is many D
— Includes Line and Plane

Defined by (w,b)

‘wa—b‘
Distance:
[wl
T
Signed Distance: w”icvib
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Linear Model =

un-normalized
signed distance!
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Perceptron Learning
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1 Perceptron Learning

Correct!
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Perceptron Learning
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Perceptron Learning
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() Perceptron Learning
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Perceptron Learning
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1 Perceptron Learning
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1 Perceptron Learning
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1 Perceptron Learning
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All Training Examples i Perceptron Learning
Correctly Classified!
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Start Again 0 Perceptron Learning
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1 Perceptron Learning
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1 Perceptron Learning
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1 Perceptron Learning

Ll // Correct!
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1 Perceptron Learning
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Perceptron Learning
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Perceptron Learning
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Perceptron Learning

Correct!
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Perceptron Learning
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Perceptron Learning
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Perceptron Learning
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Perceptron Learning
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Perceptron Learning

Misclassified!
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1 Perceptron Learning
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1 Perceptron Learning
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1 Perceptron Learning
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1 Perceptron Learning
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1 Perceptron Learning
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Perceptron Learning
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All Training Examples
Correctly Classified!

Perceptron Learning
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Recap: Perceptron Learning Algorithm
(Linear Classification Model)

e wl=0,bl=0 f(x1w)=sign(w' x-b)
* Fort=1...
— Receive example (x,y) Training Set N
—If f(x|wt) =y S CRR)
e [Wil bt*1] = [wt bt] y E{+1-1}
— Else

Go through training set
in arbitrary order

e pttl = pht + y (e.g., randomly)
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Comparing the Two Models
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Convergence to Mistake Free

= Linearly Separable!

A

AN [
N 0 |
my
= N WL
\ g 0
-+
<€ r\ >
N - m
= e
Il
N il
N o
N
AN
AN
1= \

48



Margin

Y = max min

. y(w'x)

NN

N\
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Linear Separability

* A classification problem is Linearly Separable:
— Exists w with perfect classification accuracy

e Separable with Margin y:

T
Y = max min yw x)

M

* Linearly Separable:y >0
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Perceptron Mistake Bound

i “Radius” of Feature Space
Holds for any ordering

of training examples! R= maXHXH
X

#Mistakes Bounded By: —

Margin

**If Linearly Separable

More Details: http://www.cs.nyu.edu/~mohri/pub/pmb.pdf
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In the Real World...

Most problems are NOT linearly separable!

May never converge...

So what to do?

Use validation set!
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Early Stopping via Validation

* Run Perceptron Learning on Training Set
* Evaluate current model on Validation Set

 Terminate when validation accuracy stops
Improving

https://en.wikipedia.org/wiki/Early stopping
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Online Learning vs Batch Learning

* Online Learning:

— Receive a stream of data (x,y)
— Make incremental updates
— Perceptron Learning is an instance of Online Learning

e Batch Learning
— Train over all data simultaneously
— Can use online learning algorithms for batch learning
— E.g., stream the data to the learning algorithm

https://en.wikipedia.org/wiki/Online machine learning
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Recap: Perceptron

* One of the first machine learning algorithms

* Benefits:
— Simple and fast

— Clean analysis

 Drawbacks:

— Might not converge to a very good model
— What is the objective function?
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(Stochastic) Gradient Descent



Back to Optimizing Objective Functions

. . . . N xER"
Training Data: S = {(’xi’yi)}i=1 ve il

* Model Class: f(xlw,b)= w'x—b  Linear Models

* Loss Function:  L(a,b)=(a-b) Squared Loss

N
* Learning Objective:  argmin y L(y,. f(x, |w,b))
Wb i

Optimization Problem
57



Back to Optimizing Objective Functions
argmin L(w,b | S) = EL(yi,f(xi Iw,b))
Wb i=1
* Typically, requires optimization algorithm.

e Simplest: Gradient Descent

* This Lecture: stick with squared loss
— Talk about various loss functions next lecture



Gradient Review for Squared Loss

0,L(w,b18)=0, Y L(y,.f(x,1w,b))

N
= anL(yi,f(xi | W,b)) Linearity of Differentiation

i=1

= S -2y, - £(x, 1wb)a, £ (x, 1w.b) L(a,b)=(a=b)’
Chain Rule

i=1

= Y2y, - f(x, 1w, b))x, flxlw,b)=w'x-b

i=1



Gradient Descent

e |nitialize:w!=0,bl=0
* Fort=1...

Wt+1 _ wt _T]HIGWL(Wt,bl‘ IS)

bt+1 _ bt . nHlabL(WZ,bt |S)

y;

“Step Size”
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How to Choose Step Size?
n=1 0. L(w)=-2(1-w)
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How to Choose Step Size?
n=1 0. L(w)=-2(1-w)
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How to Choose Step Size?
n=1 0. L(w)=-2(1-w)

63



How to Choose Step Size?
n=1 0. L(w)=-2(1-w)

Oscillate Infinitely!
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How to Choose Step Size?
n=0.0001 0. L(w)=-2(1-w)
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How to Choose Step Size?
n=0.0001 0. L(w)=-2(1-w)
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How to Choose Step Size?
n=0.0001 0. L(w)=-2(1-w)
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How to Choose Step Size?
n=0.0001 0. L(w)=-2(1-w)

Takes Really Long Time!
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How to Choose Step Size?
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Note that the absolute scale is not meaningful
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Being Scale Invariant

* Consider the following two gradient updates:

Wt+1 _ Wt —nHlawL(Wt,bt |S)

Wt+1 — —ﬁHlawi(Wt,bt |S)

Va\

* Suppose: L=1000L
— How are the two step sizes related?

A =1 /1000
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Practical Rules of Thumb

* Divide Loss Function by Number of Examples:

r+1
w = w' - (n—)awL(wt,bt 1S)
N

e Start with large step size
— If loss plateaus, divide step size by 2
— (Can also use advanced optimization methods)

— (Step size must decrease over time to guarantee
convergence to global optimum)
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Aside: Convexity

Easy to find
global optima!
tf (@) + (1= 1)f (22) R

A
*y

f (td)l + (1 — t)IEQ)

f(z)

Strict convex if
diff always >0

Image Source: http://en.wikipedia.org/wiki/Convex_function

)
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Aside: Convexity

L(x,)= L(x,)+ VL(x, ) (x, —x,)

Function is always
above the locally
linear extrapolation
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Aside: Convexity

* All local optima are global optima: Gradient Descent

will find optimum
\ / Assuming step
size chosen safely

e Strictly convex: unique global optimum:

* Almost all standard objectives are (strictly) convex:

— Squared Loss, SVMs, LR, Ridge, Lasso
— We will see non-convex objectives in 2"9 half of course
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Convergence

* Assume L is convex
* How many iterations to achieve: L(w)-L(w )=<¢

If: ‘L(a) B L(b)‘ = ,OHCZ - bH = Lis “p-Lipschitz”
— Then O(1/<?) iterations

If: ‘VL(a)—VL(b)‘ < pHa bH S s "o-smooth”
— Then O(1/¢) iterations

If: L(a) = L(b)+ VL(b) (a-b)+ L Ha |
— Then O(log(1/¢)) iterations '\

L is “p-strongly convex”

More Details: Bubeck Textbook Chapter 3
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Convergence

* In general, takes infinite time to reach global optimum.

* Butin general, we don’t care!
— As long as we’re close enough to the global optimum
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3000 |-

Loss

2500

2000 H

How do we know if we’re here?

1500 H
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And not here? lterations
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When to Stop?

Convergence analyses = worst-case upper bounds
— What to do in practice?

Stop when progress is sufficiently small

— E.g., relative reduction less than 0.001 Yisong prefers
this option

Stop after pre-specified #iterations

— E.g., 100000

Stop when validation error stops going down
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Limitation of Gradient Descent

* Requires full pass over training set per
iteration

0,L(w,b18)=0, > L(y, f(x;1w,b))

* Very expensive if training set is huge

Do we need to do a full pass over the data?
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Stochastic Gradient Descent

* Suppose Loss Function Decomposes Additively

L(w,b)= %ELi(w,b) =E, [Ll.(w,b)]

\

Each L, corresponds to a single data point

* Gradient = expected gradient of sub-functions
d,L(w,b)=0,E,|L(w,b)]

L(w,b)= (yl. - f(x, Iw,b)2
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Stochastic Gradient Descent

e Suffices to take random gradient update

— So long as it matches the true gradient in expectation

e Each iteration t:
Expected Value is: 0 L(w,b)

/
Wt+1 _ Wt _ 77”18WLi(w,b)

bt+1 _ bt _ T]HlabLi(W,b)

— Choose i at random

* SGD is an online learning algorithm!
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Mini-Batch SGD

* Each L is a small batch of training examples
— E.g,. 500-1000 examples
— Can leverage vector operations
— Decrease volatility of gradient updates

* Industry state-of-the-art
— Everyone uses mini-batch SGD

— Often parallelized
* (e.g., different cores work on different mini-batches)



Checking for Convergence

How to check for convergence?

— Evaluating loss on entire training set seems expensive...
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Checking for Convergence

* How to check for convergence?

— Evaluating loss on entire training set seems expensive...

* Don’t check after every iteration
— E.g., check every 1000 iterations

e Evaluate loss on a subset of training data

— E.g., the previous 5000 examples.
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Recap: Stochastic Gradient Descent

* Conceptually:
— Decompose Loss Function Additively
— Choose a Component Randomly
— Gradient Update

* Benefits:
— Avoid iterating entire dataset for every update
— Gradient update is consistent (in expectation)

* Industry Standard
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Perceptron Revisited
(What is the Objective Function?)

e wi=0,bl=0
* Fort=1...
— Receive example (x,y)
— If f(x|wt) =y
o [Wt+1, bt+1] — [Wt, bt]
— Else

f(xIw)=sign(w' x-b)

Training Set:

5= {('xi’yi)}il
yE {+1,—1}

Go through training set
in arbitrary order
(e.g., randomly)
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Perceptron (Implicit) Objective

L (w,b) = maX{O,—yif(xi | w,b)}

2
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Recap: Complete Pipeline

Training Data

(" N\
5= {('xi’yi)}i=1

(

Model Class(es)

\

fixlw,b)y=w'x-b

-
—_—

~
|

N
argminEL(yl.,f(xi Iw,b)) Use SGD!
w,b -1

Cross Validation & Model Selection

r

Loss Function

~N

L(a,b)=(a-b)

4 . N
U
Profit!
\_ J
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Next Week

Different Loss Functions
— Hinge Loss (SVM)
— Log Loss (Logistic Regression)

Non-linear model classes

— Neural Nets

Regularization

Recitation on Python Programming Tonight!



