Caltech

Machine Learning & Data Mining
CMS/CS/CNS/EE 155

Lecture 2:
Perceptron & Gradient Descent

Announcements

 Homework 1 is out

— Due Tuesday Jan 12t at 2pm
— Via Moodle

* Sign up for Moodle & Piazza if you haven’t yet

— Announcements are made via Piazza

e Recitation on Python Programming Tonight
— 7:30pm in Annenberg 105

Recap: Basic Recipe

. . . . N xER"
Training Data: S = {(xi,yi)}i=1 ve il

* Model Class: f(xlw,b):wa—b Linear Models

* Loss Function: L(a,b)=(a-b) Squared Loss

N
* Learning Objective: argmin y L(y,. f(x, |w,b))
Wb i

Optimization Problem

Recap: Bias-Variance Trade-off

0 20 40 60 80 100 0 20 40 60 80 10C

15 Bias Variance '-° Bias Variance '° Bias Variance
1 / 1
0.5 0.5
0 20 40 60 80 100 00 20 40 60 80 100 00 20 40 60 80 10C

Recap: Complete Pipeline

Training Data

(" N\
5= {('xi’yi)}i=1

(

Model Class(es)

\

fixlw,b)y=w'x-b

/l]

~
|

N
argminEL(yl.,f(xi |w,b))
Wb i

Cross Validation & Model Selection

r

Loss Function

~N

L(a,b)=(a-b)’

4 . N
U
Profit!
_ J

Today

 Two Basic Learning Approaches
* Perceptron Algorithm

* Gradient Descent
— Aka, actually solving the optimization problem

The Perceptron

* One of the earliest learning algorithms
— 1957 by Frank Rosenblatt

 Still a great algorithm
— Fast
— Clean analysis

— Precursor to Neural Networks

Frank Rosenblatt
with the Mark 1

Perceptron Machine

Perceptron Learning Algorithm
(Linear Classification Model)

e wl=0,bl=0 f(x1w)=sign(w' x-b)
* Fort=1...
— Receive example (x,y) Training Set N
—If f(x|wt) =y S CRR)
e [Wil bt*1] = [wt bt] y E{+1-1}
— Else

Go through training set
in arbitrary order

e pttl = pht + y (e.g., randomly)

Aside: Hyperplane Distance

Lineisa 1D, Plane is 2D

Hyperplane is many D
— Includes Line and Plane

Defined by (w,b)

‘wa—b‘
Distance:
[wl
T
Signed Distance: w”icvib

A

b /7
/IWI/

e
/
W /
\ 08
N
/ O
/7

W
¥
Ny

Linear Model =

un-normalized
signed distance!

Perceptron Learning
[EBE
u >
)
—= LU_I)
LUJ

10

1 Perceptron Learning
Misclassified!
LU,
EBE EBZ a N
] >
— I
+

|I—=

11

Perceptron Learning

12

1 Perceptron Learning

Correct!

13

Perceptron Learning

<€

14

Perceptron Learning

— 7
LU S
-7 &
Vg
oo
7
T >
. o
. LLH .
[

15

() Perceptron Learning
i IR
T g
'~ - m . L
Update! \Hﬁ = hd
B~ ,
== T~ \#%
—= - \EEZ\ =~

16

Perceptron Learning

B Fs_

Correct!

17

1 Perceptron Learning
Correct!
L
_U_J
3 >
[
&
T~

===

18

1 Perceptron Learning
_[|
>
T
== EEZ\ _
I Misclassified!

19

1 Perceptron Learning

20

1 Perceptron Learning

21

All Training Examples i Perceptron Learning
Correctly Classified!

N T
= e
~ * L n
RN T
. N
) = "
N P
— \ _U_A B
- N L
— N a
— N
N
N

22

Start Again 0 Perceptron Learning
[I_[_
I B I
Elulj
< T >
T
- i

23

1 Perceptron Learning
Misclassified!
T g
N
T 4
- S
— .
+

24

1 Perceptron Learning

25

1 Perceptron Learning

Correct! =7 —

/ |I—=

26

1 Perceptron Learning

Ll // Correct!

I / i

27

1 Perceptron Learning

/ l— Misclassified!

28

Perceptron Learning

/
. 9P
_|
Update!

29

Perceptron Learning

30

Perceptron Learning

Correct!

31

Perceptron Learning

II 3 T
) >
LU_I I
= o

32

Perceptron Learning
Misclassified!
|
3 |
]
— H _
+| 4 *
(| ' S
— Ll L
— /I - -

33

Perceptron Learning

34

Perceptron Learning

35

Perceptron Learning

Misclassified!

36

1 Perceptron Learning

37

EB:
. P
—__
| i ~| _
9 T

Perceptron Learning

38

1 Perceptron Learning

T %
~_ F4 7T
— >
T~
- . =~ | ﬁ\
- -
Misclassified!

39

T g
o
—= _|_|_
~ T
\\
-\\\
—
—=

Perceptron Learning

40

1 Perceptron Learning
‘:[Jj
[
LU
L L
IRE N -
- ~
(|
~ — S
— ~ o e
- ~ - T
—= N -
—=
L Update!

41

1 Perceptron Learning
=
L
LU
] a N
N dU5 S n
o N
. ~
- g\|_)
~ T
- — \HJJ\ L
== ~N -
==
L Misclassified!

42

1 Perceptron Learning

43

Perceptron Learning

44

All Training Examples
Correctly Classified!

Perceptron Learning

N
N
N
== —
.
-+
<€ >
|
=]
N
N
N
N

45

Recap: Perceptron Learning Algorithm
(Linear Classification Model)

e wl=0,bl=0 f(x1w)=sign(w' x-b)
* Fort=1...
— Receive example (x,y) Training Set N
—If f(x|wt) =y S CRR)
e [Wil bt*1] = [wt bt] y E{+1-1}
— Else

Go through training set
in arbitrary order

e pttl = pht + y (e.g., randomly)

46

Comparing the Two Models

|
Lﬁ _n_uu \\
_J \
+
/
_ﬁu / !
N Y
&u '
] \ B
r:w_ 4
A
- y/4
7)
/4
/ |
/4
7

47

Convergence to Mistake Free

= Linearly Separable!

A

AN [
N 0 |
my
= N WL
\ g 0
-+
<€ r\ >
N - m
= e
Il
N il
N o
N
AN
AN
1= \

48

Margin

Y = max min

. y(w'x)

NN

N\

49

Linear Separability

* A classification problem is Linearly Separable:
— Exists w with perfect classification accuracy

e Separable with Margin y:

T
Y = max min yw x)

M

* Linearly Separable:y >0

50

Perceptron Mistake Bound

i “Radius” of Feature Space
Holds for any ordering

of training examples! R= maXHXH
X

#Mistakes Bounded By: —

Margin

**If Linearly Separable

More Details: http://www.cs.nyu.edu/~mohri/pub/pmb.pdf

51

In the Real World...

Most problems are NOT linearly separable!

May never converge...

So what to do?

Use validation set!

52

Early Stopping via Validation

* Run Perceptron Learning on Training Set
* Evaluate current model on Validation Set

 Terminate when validation accuracy stops
Improving

https://en.wikipedia.org/wiki/Early stopping

53

Online Learning vs Batch Learning

* Online Learning:

— Receive a stream of data (x,y)
— Make incremental updates
— Perceptron Learning is an instance of Online Learning

e Batch Learning
— Train over all data simultaneously
— Can use online learning algorithms for batch learning
— E.g., stream the data to the learning algorithm

https://en.wikipedia.org/wiki/Online machine learning

54

Recap: Perceptron

* One of the first machine learning algorithms

* Benefits:
— Simple and fast

— Clean analysis

 Drawbacks:

— Might not converge to a very good model
— What is the objective function?

55

(Stochastic) Gradient Descent

Back to Optimizing Objective Functions

. . . . N xER"
Training Data: S = {(’xi’yi)}i=1 ve il

* Model Class: f(xlw,b)= w'x—b Linear Models

* Loss Function: L(a,b)=(a-b) Squared Loss

N
* Learning Objective: argmin y L(y,. f(x, |w,b))
Wb i

Optimization Problem
57

Back to Optimizing Objective Functions
argmin L(w,b | S) = EL(yi,f(xi Iw,b))
Wb i=1
* Typically, requires optimization algorithm.

e Simplest: Gradient Descent

* This Lecture: stick with squared loss
— Talk about various loss functions next lecture

Gradient Review for Squared Loss

0,L(w,b18)=0, Y L(y,.f(x,1w,b))

N
= anL(yi,f(xi | W,b)) Linearity of Differentiation

i=1

= S -2y, - £(x, 1wb)a, £ (x, 1w.b) L(a,b)=(a=b)’
Chain Rule

i=1

= Y2y, - f(x, 1w, b))x, flxlw,b)=w'x-b

i=1

Gradient Descent

e |nitialize:w!=0,bl=0
* Fort=1...

Wt+1 _ wt _T]HIGWL(Wt,bl‘ IS)

bt+1 _ bt . nHlabL(WZ,bt |S)

y;

“Step Size”

60

How to Choose Step Size?
n=1 0. L(w)=-2(1-w)

61

How to Choose Step Size?
n=1 0. L(w)=-2(1-w)

62

How to Choose Step Size?
n=1 0. L(w)=-2(1-w)

63

How to Choose Step Size?
n=1 0. L(w)=-2(1-w)

Oscillate Infinitely!

64

How to Choose Step Size?
n=0.0001 0. L(w)=-2(1-w)

65

How to Choose Step Size?
n=0.0001 0. L(w)=-2(1-w)

66

How to Choose Step Size?
n=0.0001 0. L(w)=-2(1-w)

67

How to Choose Step Size?
n=0.0001 0. L(w)=-2(1-w)

Takes Really Long Time!

68

How to Choose Step Size?

5000 : :
4500 \

4000

3500

3000

Loss

2500 i

2000

1500

1000

500

As Large As Possible!
(Without Diverging)

= 0.001
= 0.01

T —

60 80 100 120 140 160

lterations

Note that the absolute scale is not meaningful
Focus on the relative magnitude differences

180

Being Scale Invariant

* Consider the following two gradient updates:

Wt+1 _ Wt —nHlawL(Wt,bt |S)

Wt+1 — —ﬁHlawi(Wt,bt |S)

Va\

* Suppose: L=1000L
— How are the two step sizes related?

A =1 /1000

70

Practical Rules of Thumb

* Divide Loss Function by Number of Examples:

r+1
w = w' - (n—)awL(wt,bt 1S)
N

e Start with large step size
— If loss plateaus, divide step size by 2
— (Can also use advanced optimization methods)

— (Step size must decrease over time to guarantee
convergence to global optimum)

71

Aside: Convexity

Easy to find
global optima!
tf (@) + (1= 1)f (22) R

A
*y

f (td)l + (1 — t)IEQ)

f(z)

Strict convex if
diff always >0

Image Source: http://en.wikipedia.org/wiki/Convex_function

)

72

Aside: Convexity

L(x,)= L(x,)+ VL(x,) (x, —x,)

Function is always
above the locally
linear extrapolation

73

Aside: Convexity

* All local optima are global optima: Gradient Descent

will find optimum
\ / Assuming step
size chosen safely

e Strictly convex: unique global optimum:

* Almost all standard objectives are (strictly) convex:

— Squared Loss, SVMs, LR, Ridge, Lasso
— We will see non-convex objectives in 2"9 half of course

74

Convergence

* Assume L is convex
* How many iterations to achieve: L(w)-L(w)=<¢

If: ‘L(a) B L(b)‘ = ,OHCZ - bH = Lis “p-Lipschitz”
— Then O(1/<?) iterations

If: ‘VL(a)—VL(b)‘ < pHa bH S s "o-smooth”
— Then O(1/¢) iterations

If: L(a) = L(b)+ VL(b) (a-b)+ L Ha |
— Then O(log(1/¢)) iterations '\

L is “p-strongly convex”

More Details: Bubeck Textbook Chapter 3

75

Convergence

* In general, takes infinite time to reach global optimum.

* Butin general, we don’t care!
— As long as we’re close enough to the global optimum

5000

4500

4000 =01

3500

3000 |-

Loss

2500

2000 H

How do we know if we’re here?

1500 H

100 120 140 160 180 200

And not here? lterations

80

When to Stop?

Convergence analyses = worst-case upper bounds
— What to do in practice?

Stop when progress is sufficiently small

— E.g., relative reduction less than 0.001 Yisong prefers
this option

Stop after pre-specified #iterations

— E.g., 100000

Stop when validation error stops going down

77

Limitation of Gradient Descent

* Requires full pass over training set per
iteration

0,L(w,b18)=0, > L(y, f(x;1w,b))

* Very expensive if training set is huge

Do we need to do a full pass over the data?

78

Stochastic Gradient Descent

* Suppose Loss Function Decomposes Additively

L(w,b)= %ELi(w,b) =E, [Ll.(w,b)]

\

Each L, corresponds to a single data point

* Gradient = expected gradient of sub-functions
d,L(w,b)=0,E,|L(w,b)]

L(w,b)= (yl. - f(x, Iw,b)2

79

Stochastic Gradient Descent

e Suffices to take random gradient update

— So long as it matches the true gradient in expectation

e Each iteration t:
Expected Value is: 0 L(w,b)

/
Wt+1 _ Wt _ 77”18WLi(w,b)

bt+1 _ bt _ T]HlabLi(W,b)

— Choose i at random

* SGD is an online learning algorithm!

80

Mini-Batch SGD

* Each L is a small batch of training examples
— E.g,. 500-1000 examples
— Can leverage vector operations
— Decrease volatility of gradient updates

* Industry state-of-the-art
— Everyone uses mini-batch SGD

— Often parallelized
* (e.g., different cores work on different mini-batches)

Checking for Convergence

How to check for convergence?

— Evaluating loss on entire training set seems expensive...

5000

4500

4000

3500
& 3000}
o
—1 2500
2000

1500 [

1000

500

0 ‘ ‘ ‘ ‘ ‘ ——_
0 20 40 60 80 100 120 140 160 180 200

Ilterations

Checking for Convergence

* How to check for convergence?

— Evaluating loss on entire training set seems expensive...

* Don’t check after every iteration
— E.g., check every 1000 iterations

e Evaluate loss on a subset of training data

— E.g., the previous 5000 examples.

83

Recap: Stochastic Gradient Descent

* Conceptually:
— Decompose Loss Function Additively
— Choose a Component Randomly
— Gradient Update

* Benefits:
— Avoid iterating entire dataset for every update
— Gradient update is consistent (in expectation)

* Industry Standard

84

Perceptron Revisited
(What is the Objective Function?)

e wi=0,bl=0
* Fort=1...
— Receive example (x,y)
— If f(x|wt) =y
o [Wt+1, bt+1] — [Wt, bt]
— Else

f(xIw)=sign(w' x-b)

Training Set:

5= {('xi’yi)}il
yE {+1,—1}

Go through training set
in arbitrary order
(e.g., randomly)

85

Perceptron (Implicit) Objective

L (w,b) = maX{O,—yif(xi | w,b)}

2
18}
16F
14}
2
(V)]
n 1
(@]
— o8}t
0.6}
0.4
0.2
0 1 1 1 1 1 1
-2 15 -1 05 0 0.5 1 15
V()

86

Recap: Complete Pipeline

Training Data

(" N\
5= {('xi’yi)}i=1

(

Model Class(es)

\

fixlw,b)y=w'x-b

-
—_—

~
|

N
argminEL(yl.,f(xi Iw,b)) Use SGD!
w,b -1

Cross Validation & Model Selection

r

Loss Function

~N

L(a,b)=(a-b)

4 . N
U
Profit!
_ J

87

Next Week

Different Loss Functions
— Hinge Loss (SVM)
— Log Loss (Logistic Regression)

Non-linear model classes

— Neural Nets

Regularization

Recitation on Python Programming Tonight!

