
Machine Learning & Data Mining Caltech CS/CNS/EE 155
Hidden Markov Models Last Updated: March 8th, 2016

1 Introduction

Let x = (x1, . . . , xM) denote a sequence of inputs (e.g., a sequence fo words), and let y = (y1, . . . , yM)
denote the corresponding sequence of outputs (e.g., a sequence of part of speech tags. We use x and y
denote a single input and output token, respectively.

In general, we use M to denote the length of a sequence. For simplicity, we assume that x is encoded
usingDwords, so there areDM possible length-M sequences x. We also assume that there are areL possible
labels for each yj , so there are LM possible length-M sequences of y.

Our goal is to use a first-order hidden Markov model (HMM) to model the joint distribution P (x,y). An
HMM is defined as follows:

P (x,y) = P (End|yM)

M∏
j=1

P (xj |yj)P (yj |yj−1), (1)

where End is a special token denoting the end of a sentence and y0 is always the special token denoting the
start of a sentence. (1) defines a set of conditional independence assumptions. For instance:

P (x|y) =
M∏
j=1

P (xj |yj),

which essentially states that the probability of the individual words are all conditionally independent of
each other given the output sequence y.

Note that an HMM model uses the same probability distributions P (xj |yj) and P (yj |yj−1) through-out
the entire sequence. The total size of an HMM model is:

Component No. Parameters
P (xj |yj) D × L
P (yj |yj−1) L× L
P (y1|y0) L
P (End|yM) L

Note also that the probabilities of entire sequences P (x,y) can often be very small (exponentially small
in M), and so it can often be more convenient to work on log-probability space.

logP (x,y) =

logP (End|yM) +

M∑
j=1

(
logP (xj |yj) + logP (yj |yj−1)

) , (2)

Finally, note that given a fixed x, ∀y : P (y|x) ∝ P (x,y). This can be derived via: P (y|x) = P (x,y)/P (x),
which has a fixed P (x) in the denominator for all y.

2 Viterbi Algorithm for Making Predictions

Given a test instance x and a trained HMM model, we make predictions by selecting the y that maximizes
P (y|x), i.e.,:

argmaxy P (y|x) = argmaxy logP (y|x) = argmaxy logP (x,y)

= argmaxy logP (End|yM) +

M∑
j=1

(
logP (xj |yj) + logP (yj |yj−1)

)
. (3)

1

Machine Learning & Data Mining Caltech CS/CNS/EE 155
Hidden Markov Models Last Updated: March 8th, 2016

Naively iterating over all possible y takes exponential time (w.r.t. the length |x| = M). We show here how
to use a dynamic programming approach known as the Viterbi algorithm to efficiently compute (3).

Let P̃ denote the log probability, e.g., P̃ (x,y) = logP (x,y). Define: Ãab = P̃ (yj = a|yj−1 = b) and
Õwz = P̃ (xj = w|yj = z). Let ŷja denote the best length-j prefix solution that ends in yj = a:

ŷja =
(
argmaxy1:j−1 P̃ (y1:j−1 ⊕ a, x1:j)

)
⊕ a, (4)

where ⊕ denotes sequence concatenation or appending (should be clear from context which one it is).
If one had already computed the length-M prefix solutions ŷMa , then one can predict by simply selecting

the ŷMa with highest score P̃ (ŷMa , x). For j = 1, computing each ŷ1
a is trivial since by definition ŷ1

a = a. Via
the Viterbi algorithm, one can compute ŷja for j > 1 by just looping through all the ŷj−1b and choosing the
best one:

ŷja =
(
argmaxy1:j−1∈{ŷj−1

1 ,...,ŷj−1
L } P̃ (y

1:j−1 ⊕ a, x1:j)
)
⊕ a

=
(
argmaxy1:j−1∈{ŷj−1

1 ,...,ŷj−1
L } P̃ (y

1:j−1, x1:j−1) + P̃ (yj = a|yj−1) + P̃ (xj |yj = a)
)
⊕ a. (5)

Computing each ŷja takes O(L) running time (enumerating over all ŷj−1a), and so the total running time of
this approach isO(L2M). Note that you need to save the P̃ (ŷja, x

1:j) that you compute along the way while
computing each (5), since they are used when computing each ŷj+1

a . Finally, note that you have to operate
using log probabilities, because the actual probabilities will underflow for any reasonably sized M .

3 Forward-Backward Algorithm for Computing Marginals

Define a sequence of vectors αj which will correspond to the unnormalized probability of:

αj(a) ∝
∑

y1:j−1

P (y1:j−1 ⊕ a, x1:j) //ignoring the transition to the End state.

We similarly define a sequence of vectors βj which will correspond to the unnormalized probability of:

βj(b) ∝
∑

yj+1:M

P (yj+1|b)P (yj+1:M , xj+1:M).

We first observe some marginal probabilities we can compute using αj(a) and βj(b):

P (yj = a, x) = αj(a)βj(a)∑
a′ α

j(a′)βj(a′) , (6)

P (yj = a, yj+1 = b, x) = αj(a)P (xj+1|yj+1=b)P (yj+1=b|yj=a)βj+1(b)∑
a′,b′ α

j(a′)P (xj+1|yj+1=b′)P (yj+1=b′|yj=a′)βj+1(b′) . (7)

Note that these quantities are used in the EM-algorithm for unsupervised training of HMMs.
We will show how to compute each αj(a) and βj(b) recursively similar to the Viterbi algorithm. We

initalize α0 and βM as:

α0(a) =

{
1 if a = Start
0 otherwise , βM (b) = P (End|yM = b).

If you are not using the End state, then you can set each P (End|yM = b) = 1 in the above formula.

2

Machine Learning & Data Mining Caltech CS/CNS/EE 155
Hidden Markov Models Last Updated: March 8th, 2016

Define Py(b|a) = P (yj+1 = b|yj = a), and Px(w|z) = P (xj = w|yj = z). Similar to the Viterbi algorithm,
we recursively define each αj as:

αj(a) = P (xj |a)
∑
a′

αj−1(a′)Py(a|a′). (8)

We can also recursively define each βj as:

βj(b) =
∑
b′

βj+1(b′)Py(b
′|b)P (xj+1|b′). (9)

(8) is known as the Forward Algorithm, and (9) is known as the Backward Algorithm.
Dealing With Numerical Instability. In practice directly implementing (8) and (9) leads to numerical

instability. For instance, α and β can all overflow or underflow if we compute them as is. The first observa-
tion we do not actually need to compute the denominators in (6) and (7) in order to compute those marginal
probabilities. All we need to do is to renormalize each αj and βj after each step in (8) and (9), i.e.:

α̃j(a) =
1

Cjα

(
P (xj |a)

∑
a′

αj−1(b)Py(a|a′)

)
. (10)

and

β̃j(b) =
1

Cjβ

(∑
b′

βj+1(b′)Py(b
′|b)P (xj+1|b′)

)
, (11)

for some choice of Cjα and Cjβ such that overflow and underflow do not happen. Afterwards, we can
compute (6) and (7) as:

P (yj = a, x) = α̃j(a)β̃j(a)∑
a′ α̃

j(a′)β̃j(a′)
, (12)

P (yj = a, yj+1 = b, x) = α̃j(a)P (xj+1|yj+1=b)P (yj+1=b|yj=a)β̃j+1(b)∑
a′,b′ α̃

j(a′)P (xj+1|yj+1=b′)P (yj+1=b′|yj=a′)β̃j+1(b′)
. (13)

Relationship to Viterbi. Viterbi keeps track of the best sequence of length-j that ends in some yj = a,
and also keeps track of the probability of that sequence. The Forward algorithm keeps track of the marginal
probability of all sequences of length-j that ends in some yj = a. Thus, the Viterbi takes the max whereas the
Forward algorithm takes the sum. Because Viterbi doesn’t sum, the probabilities of the single best sequence
will shrink exponentially as the sequence grows, hence necessitating taking the log to ensure numerical
stability. With the Forward-Backward algorithm, we keep track of the unnormalized probabilities, which
can both overflow or underflow, but because it’s a product of a bunch of sums, you can normalize at each
iteration and still maintain correctness.

4 Training

Supervised Training. In the supervised setting, we are given a training set of N training examples:

S = {(xi,yi)}
N
i=1,

and our goal is to learn the parameters of the HMM to maximize the likelihood on S:

argmax

N∏
i=1

P (xi,yi).

3

Machine Learning & Data Mining Caltech CS/CNS/EE 155
Hidden Markov Models Last Updated: March 8th, 2016

In this case, training is very straightforward counting:

P (yj = b|yj−1 = a) =

∑N
i=1

∑Mi

j=1 1[yji=b∧y
j−1
i =a]∑N

i=1

∑Mi

j=1 1[yj−1
i =a]

.

P (xj = w|yj = a) =

∑N
i=1

∑Mi

j=1 1[xj
i=w∧y

j
i=a]∑N

i=1

∑Mi

j=1 1[yji=a]

.

To see
Unsupervised Training. In the unsupervised setting, we are given a training set of N training examples

containing only the x’s:
S = {xi}Ni=1,

and the maximum likelihood problem is thus:

argmax

N∏
i=1

P (xi) = argmax

N∏
i=1

∑
y

P (xi,y).

We solve this learning problem using an alternating procedure, of first inferring the marginal distribution
of the y’s, and then using that to estimate the model parameters. If we new the y’s, then we can use the
same approach as the supervised setting:

P (yj = b|yj−1 = a) =

∑N
i=1

∑Mi

j=1 P (y
j
i = b, yj−1i = a, xi)∑N

i=1

∑Mi

j=1 P (y
j−1
i = a, xi)

. (14)

P (xj = w|yj = a) =

∑N
i=1

∑Mi

j=1 1[xj
i=w]P (y

j
i = a, xi)∑N

i=1

∑Mi

j=1 P (y
j
i = a, xi)

. (15)

Recall that we can estimate these marginal probabilities using the Forward-Backward algorithm. Thus the
EM procedure for unsupervised training of HMMs is:

1. INIT: randomly initialize HMM model

2. E-STEP: run Forward-Backward to compute marginal probabilities (6), (7)

3. M-STEP: maximium likelihood estimate of new HMM model parameters (14), (15)

4. If not converged, repeat from Step 2

4

	Introduction
	Viterbi Algorithm for Making Predictions
	Forward-Backward Algorithm for Computing Marginals
	Training

