
Machine Learning & Data Mining Caltech CS/CNS/EE 155
Conditional Random Fields Last Updated: Feburary 8th, 2016

1 Introduction

Let x = (x1, . . . , xM) denote a sequence of inputs (e.g., a sequence fo words), and let y = (y1, . . . , yM)
denote the corresponding sequence of outputs (e.g., a sequence of part of speech tags. We use xj and yj

denote a single input and output token, respectively.
In general, we use M to denote the length of a sequence. For simplicity, we assume that x is encoded

usingDwords, so there areDM possible length-M sequences x. We also assume that there are areL possible
labels for each yj , so there are LM possible length-M sequences of y.

We are given a training set of N training examples:

S = {(xi,yi)}
N
i=1,

and our goal is to learn a good mapping from x to y using S. We will do so by fitting a 1st order sequential
Conditional Random Field (CRF) to S.

We use capital notation Y = (Y 1, . . . , YM) to denote random variables, i.e., variables that can take on
multiple values according to some probability distribution. A CRF is a “log-linear” conditional probabilistic
model that models the distribution of Y condition on a specific x as:

Pw(Y = y|x) = 1

Zw(x)
exp

M∑
j=1

w>φj(y
j , yj−1|x)

 ≡ 1

Zw(x)
exp {Fw(y, x)} , (1)

where Fw(y, x) is often referred to as the joint discriminant function:

Fw(y, x) ≡
M∑
j=1

w>φj(y
j , yj−1|x),

and the model is parameterized by a weight vector w. Zw(x) is the so-called partition function:

Zw(x) =
∑

y′
exp {Fw(y′, x)} , (2)

which sums over the scores of all possible y′, and acts as a normalizer so that (1) yields a valid probability.
In this writeup, we will see how to:

• Instantiate the feature map φj(y, y′|x) to correspond to a 1st order sequence labeling model.

• Compute the conditional probability Pw(Y = y|x) of a trained model w and a given (x,y).

• Make predictions given an input sequence x given a trained model w: argmaxy Pw(y|x).

• Compute gradients of the negative log likelihood of the training set S: ∂w −
∑N
i=1 logPw(Y = yi|xi)

2 Feature Representation

In (1), φj(y, y′|x) is a feature mapping function that takes:

• a location in the sequence j,

• a pair of adjacent labels (y, y′),

1

Machine Learning & Data Mining Caltech CS/CNS/EE 155
Conditional Random Fields Last Updated: Feburary 8th, 2016

• and the input sequence x,

and returns a feature vector. We now show how to instantiate φj(y, y′|x) to correspond to a 1st order
sequence labeling model.

Simplest Case. In the simplest case, the features in φj(y, y′|x) encode two types of information, and can
thus be broken down into two groups.

Input/Output Features. The first group, denoted φj1(y|x), are input/output indicator features:

φj1(y|x) =
{

1[(y=a)∧(xj=z)]

}a=L,z=D
a=1,z=1

.

For example, for L = 2 and D = 3, there are six such indicator features:

φj1(y|x) =

1[(y=1)∧(xj=1)]

1[(y=1)∧(xj=2)]

1[(y=1)∧(xj=3)]

1[(y=2)∧(xj=1)]

1[(y=2)∧(xj=2)]

1[(y=2)∧(xj=3)]

 . (3)

Output/Output Transition Features. The second group, denoted φ2(y, y′), are output/output transition
indicator features:

φ2(y, y
′) =

{
1[(y=a)∧(y′=b)]

}a=L,b=L
a=1,b=1

.

For example, for L = 2, there are six such indicator features:

φ2(y, y
′) =

1[(y=1)∧(y′=0)]

1[(y=1)∧(y′=1)]

1[(y=1)∧(y′=2)]

1[(y=2)∧(y′=0)]

1[(y=2)∧(y′=1)]

1[(y=2)∧(y′=2)]

 . (4)

Here we use y′ = 0 to refer to a transition from the special “Start” state to another output/state.
Overall Feature Representation. We can then write the overall feature mapping φj(y, y′|x) as the vector

concatenation:

φj(y, y′|x) =
[
φj1(y|x)
φ2(y, y

′)

]
.

The first group φj1(y|x) encodes the standard multi-task logistic regression features for each token y′j . The
second group φ2(y, y

′) encodes the 1-st order transition features. Because of this common demarcation
of two feature groups, one often writes the weight vector correspondingly as a concatenation of two sub-
vectors:

w =

[
w1

w2

]
. (5)

Thus we can rewrite w>φj(y, y′|x) equivalently as

w>φj(y, y′|x) = w>1 φ
j
1(y|x) + w>2 φ2(y, y

′).

2

Machine Learning & Data Mining Caltech CS/CNS/EE 155
Conditional Random Fields Last Updated: Feburary 8th, 2016

2.1 Example

We use the simple example defined in (3) and (4) to show how to use Conditional Random Fields. We will
also use the decomposition of the weight vector defined in (5) and instantiate w as:

w1 =

1
2
−3
0
0
1

 , w2 =

1
−2
2
−1
−1
0

 . (6)

In this example, we wish to compute Pw(Y|x = (1, 2)). Recall that:

Pw(Y = y|x = (1, 2)) =
1

Zw(x = (1, 2))
exp {F (y, x = (1, 2))} , (7)

and that:
Zw(x = (1, 2)) =

∑
y′

exp{F (y′, x = (1, 2))}.

Thus, we just need to compute F (y, x = (1, 2)) for all possible y in order to compute Pw(Y = y|x = (1, 2)
for all possible y. Using the feature maps in (3) and (4), we can write F (y|x = (1, 2)) as:

F (y, x = (1, 2)) = w>1 φ
1
1(y

1|x = (1, 2)) + w>2 φ2(y
1, y0 = 0) + w>1 φ

2
1(y

2|x = (1, 2)) + w>2 φ2(y
2, y1). (8)

For completeness, we show this computation in Table 1 below:

Table 1: Computation of the simple example based on feature maps (3) and (4) and weight vectors in (6)

y1 y2 F (y, x = (1, 2)) exp{F (y, x = (1, 2))}
1 1 w1,1 + w2,1 + w1,2 + w2,2 = 1 + 1 + 2− 2 = 2 exp{2}
1 2 w1,1 + w2,1 + w1,5 + w2,5 = 1 + 1 + 0− 1 = 1 exp{1}
2 1 w1,4 + w2,4 + w1,2 + w2,3 = 0− 1 + 2 + 2 = 3 exp{3}
2 2 w1,4 + w2,4 + w1,5 + w2,6 = 0− 1 + 0 + 0 = −1 exp{−1}

We can also see that the optimal prediction that has maximal conditional probability is y = (2, 1):

(2, 1) = argmaxy Pw(Y = y|x = (1, 2)) = argmaxy F (y|x = (1, 2)).

Our simple example was small enough to allow for exhaustive enumeration of all possible y. In general, the
number of possible y scales exponentially w.r.t. the sequence length M = |x|. The rest of this writeup de-
scribes how to efficiently compute conditional probabilities Pw(Y = y|x), compute the optimal predictions
argmaxy Pw(Y = y|x), and compute gradients for gradient descent training.

2.2 Reduction to Independent Logistic Regression

If φj1 were the only features in our feature map, then we can rewrite the discriminant as

Fw(y, x) =
M∑
j=1

w>φj1(y
j |x),

3

Machine Learning & Data Mining Caltech CS/CNS/EE 155
Conditional Random Fields Last Updated: Feburary 8th, 2016

which computes a completely disjoint score for each output token yj . In that case, the CRF model decom-
poses to

Pw(Y = y|x) = 1

Zw(x)
exp

M∑
j=1

w>φj1(y
j |x)

 =
1

Zw(x)

M∏
j=1

exp
{
w>φj1(y

j |x)
}
. (9)

We can also write Zw(x) as

Zw(x) =
∑

y′
exp {Fw(y′, x)} =

∑
y′

M∏
j=1

exp
{
w>φj1(y

′j |x)
}
=

M∏
j=1

∑
y′j

exp
{
w>φj1(y

′j |x)
}
. (10)

Using (10), we can re-write (9) as

M∏
j=1

exp
{
w>φj1(y

j |x)
}

∑
y′j exp

{
w>φj1(y

′j |x)
} =

M∏
j=1

Pw(Y
j = y′j |x),

which is the independent conditional probability of each output token y′j . Note that the independent con-
ditional probability of a single output token is exactly logistic regression. So without the pairwise features
φ2(y, y

′|x), the CRF reduces to a independent logistic regression per output token.

3 Computing Conditional Probability

In this section, we show how to efficiently compute the conditional probability Pw(Y = y|x) for any (x,y)
and model w. Since we restrict ourselves to a single (x,y) in this section, for brevity we suppress the use of
(x,y) in the notation wherever possible.

Define a matrix Gj as

Gj =
[
exp

{
w>φj(b, a|x)

}]
ba
, (11)

which encodes the un-normalized probability of transitioning from yj−1 = a to yj = b in the j-th token of
the sequence.

For j = 1, all transitions must come from the “Start” state, so we can write G1 as a vector:

G1 =
[
exp

{
w>φ1(a, 0|x)

}]
a
.

For length-1 sequences, we can write the partition function Zw(x) from (2) as:

Zw(x) =
∑
a

exp
{
w>φ1(a, 0|x)

}
=
∑
a

G1
a,

which is simply the sum of the vector G1.
For length-2 sequences, we can write the partition function as:

Zw(x) =
∑
a,b

exp
{
w>φ2(b, a|x) + w>φ1(a, 0|x)

}
(12)

=
∑
a,b

exp
{
w>φ2(b, a|x)

}
exp

{
w>φ1(a, 0|x)

}
(13)

=
∑
b

[
G2G1

]
b
, (14)

4

Machine Learning & Data Mining Caltech CS/CNS/EE 155
Conditional Random Fields Last Updated: Feburary 8th, 2016

where (14) is simply the sum of the vector G2G1. We now introduce the notation:

Gi:j = GjGj−1 . . . Gi+1Gi. (15)

Note that Gi:j is a vector when i = 1 and a matrix otherwise. We can now rewrite (14) as the sum of the
vector G1:2, and in general:

G1:j = GjG1:j−1. (16)

We can extend the computation of Zw(x) to arbitary length-M sequences via:

Zw(x) =
∑
b

G1:M
b . (17)

The running time of computing (17) is O(ML2), where M is the length of the sequence and L the number
of output labels per token. We can now efficiently compute Pw(Y = y|x) = exp{Fw(y, x)}/Zw(x).

Dealing with Numerical Instability. In practice, we often compute log(Zw(x)) instead for numerical
stability reasons:

log (Zw(x)) = log

(∑
b

G1:M
b

)
. (18)

One way to compute the log-sum in the RHS of (18) is to keep track of a multiplicative factor for each
computation of (16):

G̃1:j =
1

CjG

(
GjG̃1:j−1

)
, (19)

where CjG is a multiplicative factor that keeps G1:j from blowing up. For example, a common choice is

CjG =
∑
b

[
GjG̃1:j−1

]
b
,

which implies that the entries of G̃1:j in (19) sum to 1. Note that:

G1:j = G̃1:j

j∏
j′=1

Cj
′

G .

One can thus compute log(Zw(x)) in (18) as:

log (Zw(x)) = log

(∑
b

G̃1:M
b

)
+

M∑
j=1

log
(
CjG

)
.

One can then keep track of the log conditional probabilities as:

log (Pw(y|x)) = Fw(y, x)− log (Zw(x)) .

5

Machine Learning & Data Mining Caltech CS/CNS/EE 155
Conditional Random Fields Last Updated: Feburary 8th, 2016

4 Viterbi Algorithm for Making Predictions

Given a test instance x, we make predictions by selecting the y that maximizes Pw(Y = y|x), i.e.,:

argmaxy Pw(Y = y|x) = argmaxy
1

Zw(x)
exp {Fw(y, x)} = argmaxy Fw(y, x). (20)

Naively iterating over all possible y takes exponential time (w.r.t. the length |x| = M). We show here how
to use a dynamic programming approach known as the Viterbi algorithm to efficiently compute (20).

Let ŷja denote the best length-j prefix solution that ends in yj = a:

ŷja =
(
argmaxy1:j−1=(y1,...,yj−1) Fw(y

1:j−1 ⊕ a, x)
)
⊕ a, (21)

where ⊕ denotes sequence concatenation or appending (should be clear from context which one it is).
If one had already computed the length-M prefix solutions ŷMa , then one can predict by simply selecting

the ŷMa with highest score Fw(ŷ
M
a , x). For j = 1, computing each ŷ1

a is trivial since by definition ŷ1
a = a. Via

the Viterbi algorithm, one can compute ŷja for j > 1 by looping through all the ŷj−1b and choosing the best
one:

ŷja =
(
argmaxy1:j−1∈{ŷj−1

1 ,...,ŷj−1
L } F (y

1:j−1 ⊕ a, x)
)
⊕ a.

The running time of this approach is O(L2M).

5 Computing Gradients

Conditional Random Fields are typically trained using gradient descent to minimize the negative log loss
over a training set S = {(xi,yi)}Ni=1:

argminw −
N∑
i=1

logPw(Y = yi|xi) = argminw

N∑
i=1

[
−Fw(yi, xi) + log (Zw(xi))

]
. (22)

Note that we can also train a regularized version:

argminw λ‖w‖2 +
N∑
i=1

[
−Fw(yi, xi) + log (Zw(xi))

]
,

for some λ ≥ 0. The gradient w.r.t. the L2 regularization is straightforward and is omitted for the rest of
this writeup.

For clarity, we focus on deriving the gradient w.r.t. a single training example (x,y), i.e., for stochastic
gradient descent. The derivation extends trivially to the gradient over an entire training set by linearity of
differentiation.

We can compute the gradient with respect to both the discriminantFw(y, x) and the log partition logZw(x).
The derivation of∇wF (y, x) is fairly straightforward:

∇wFw(y, x) =
M∑
j=1

∇w
(
w>φj(yj , yj−1|x)

)
=

M∑
j=1

φj(yj , yj−1|x). (23)

6

Machine Learning & Data Mining Caltech CS/CNS/EE 155
Conditional Random Fields Last Updated: Feburary 8th, 2016

The derivation of∇w logZw(x) is more involved:

∇w logZw(x) =
1

Zw(x)
∇wZw(x) (24)

=
1

Zw(x)
∇w

∑
y′

exp {Fw(y′, x)} (25)

=
1

Zw(x)

∑
y′
∇w exp {Fw(y′, x)} (26)

=
1

Zw(x)

∑
y′

exp {Fw(y′, x)}∇wFw(y′, x) (27)

=
1

Zw(x)

∑
y′

exp {Fw(y′, x)}∇w

 M∑
j=1

w>φj(y′j , y′j−1|x

 (28)

=
1

Zw(x)

∑
y′

exp {Fw(y′, x)}
M∑
j=1

∇w
(
w>φj(y′j , y′j−1|x)

)
(29)

=
1

Zw(x)

∑
y′

exp {Fw(y′, x)}
M∑
j=1

φj(y′j , y′j−1|x) (30)

=
∑

y′

exp {Fw(y′, x)}
Zw(x)

M∑
j=1

φj(y′j , y′j−1|x) (31)

=
∑

y′
Pw(Y = y′|x)

M∑
j=1

φj(y′j , y′j−1|x) (32)

=

M∑
j=1

∑
y′
Pw(Y = y′|x)φj(y′j , y′j−1|x) (33)

=

M∑
j=1

Ey′∼Pw(Y|x)[φ
j(y′j , y′j−1|x)]. (34)

Thus the gradient ofZw(x),∇wZw(x), is equal the (sum of the) expected value of each feature φj(y′j , y′j−1)|x)
under the distribution induced by the current model Pw(Y = y′|x).

The gradient of (22) can thus be written as:

∇w = −
M∑
j=1

N∑
i=1

φj(yji , y
j−1
i |xi) +

M∑
j=1

N∑
i=1

Ey′∼Pw(Y|xi)[φ
j(y′j , y′j−1|xi)]. (35)

=

M∑
j=1

N∑
i=1

(
−φj(yji , y

j−1
i |xi) + Ey′∼Pw(Y|xi)[φ

j(y′j , y′j−1|xi)]
)
. (36)

Implication of Optimality Condition. The standard optimality condition of (22) requires that the gra-
dient (35) be 0 for the optimal w, which implies (assuming we’re not regularizing w):

M∑
j=1

N∑
i=1

φj(yji , y
j−1
i |xi) =

M∑
j=1

N∑
i=1

Ey′∼Pw(Y|xi)[φ
j(y′j , y′j−1|xi)]. (37)

7

Machine Learning & Data Mining Caltech CS/CNS/EE 155
Conditional Random Fields Last Updated: Feburary 8th, 2016

In other words, for the optimal w, the expected value of each feature φj(y′j , y′j − 1|x) over the conditional
probability Pw(Y = y′|x) should equal the frequency counts of that feature over the training set. In the case
where each φj(y′j , y′j−1|x) occupies a disjoint region of the total feature vector, then (37) can be decomposed
to:

∀j ∈ {1, . . . ,M} :
N∑
i=1

φj(yji , y
j−1
i |xi) =

N∑
i=1

Ey′∼Pw(Y|xi)[φ
j(y′j , y′j−1|xi)]. (38)

5.1 Forward-Backward Algorithm to Compute Conditional Probabilities

The expectation in (34) can be rewritten as

Ey∼Pw(Y|x)φ
j(yj , yj−1|x) ≡

∑
y

Pw(Y = y|x)φj(yj , yj−1|x) (39)

≡
∑

y1,...,yM

Pw(Y = (y1, . . . , yM |x)φj(yj , yj−1|x) (40)

=
∑
a,b

Pw(Y
j = a, Y j−1 = b|x)φj(a, b|x) (41)

We can further observe that for any specific transition Y j−1 = b to Y j = a:

Pw(Y
j = a, Y j−1 = b|x) =

∑
y1,...,yj−2

∑
yj+1,...,yM

Pw(Y = (y1, . . . yj−2, b, a, yj+1, . . . , yM)|x). (42)

Naively summing over all possible y1, . . . , yj−2 and yj+1, . . . , yM will take exponential time (w.r.t. M).
We will show how to use a dynamic programming approach called the Forward-Backward algorithm to
efficiently compute the two summations in (42).

We define a sequence of vectors αj which will roughly correspond to the unnormalized probability of:

αj(a) ∝
∑

y1,...,yj−1

Pw(Y1:j = (y1, . . . , yj−1, a)|x).

We similarly define a sequence of vectors βj which will roughly correspond to the unnormalized prob-
ability of:

βj(b) ∝
∑

yj+1,...,yM

Pw(Yj:M = (b, yj+1, . . . , yM)|x).

Note that this is just a rough interpretation, and is not exactly correct. The proper use of α and β to compute
probabilities and their formal definitions are given below.

Given the αj and βj vectors, we can write (42) as

Pw(Y
j−1 = a, Y j = b|x) = αj−1(a)Gj(b, a)βj(b)

Zw(x)
, (43)

for Gj defined as in Section 3. It remains to show how to compute each αj and βj efficiently.
We will compute αj recursively using αj−1 (i.e., the Forward Algorithm), and βj recursively using βj+1

(i.e., the Backward Algorithm).

8

Machine Learning & Data Mining Caltech CS/CNS/EE 155
Conditional Random Fields Last Updated: Feburary 8th, 2016

We inialize α0 and βM as:

α0(a) =

{
1 if a = Start
0 otherwise , βM (b) = 1.

Similar to the Viterbi algorithm, we recursively define each αj as:

αj(a) =
∑
a′

αj−1(a′)Gj(a, a′), (44)

which can be simplified in matrix notation as:

αj = Gjαj−1. (45)

We can also recursively define each βj as:

βj(b) =
∑
b′

βj+1(b′)Gj+1(b′, b), (46)

which can be simplified in matrix notation as:

βj = G(j+1)>βj+1. (47)

Dealing With Numerical Instability. Although (43) is mathematically elegant, in practice directly im-
plementing (45) and (47) leads to numerical instability. For instance, α, β, and Zw(x) can all overflow or
underflow if we compute them as is. The first observation we make from the definition of Zw(x) in (17) and
(18) is that for any j:

Zw(x) =
∑
a,b

αj−1(a)Gj(b, a)βj(b).

Thus, we do not need to actually compute Zw(x) in order to compute (43). All we need to do is to renor-
malize each αj and βj after each step in (45) and (47), i.e.:

α̃j =
1

Cjα

(
Gjα̃j−1

)
, (48)

and

β̃j =
1

Cjβ

(
G(j+1)>β̃j+1

)
, (49)

for some choice of Cjα and Cjβ such that overflow and underflow do not happen. Afterwards, we can
compute (43) as:

Pw(Y
j−1 = a, Y j = b|x) = α̃j−1(a)Gj(b, a)β̃j(b)∑

a′,b′ α̃
j−1(a′)Gj(b′, a′)β̃j(b′)

, (50)

because the Cjα’s and Cjβ ’s cancel out in the numerator and denomenator.
Relationship to Viterbi. The main difference between the Forward Algorithm described in (44) and the

Viterbi Algorithm is that the Forward Algorithm sums over all possibilities whereas the Viterbi Algorithm
only keeps the most likely possibility. Indeed the Forward-Backward Algorithm is known as a special case
of the more general Sum-Product Algorithm, whereas the Viterbi Algorithm is a special case of the more
general Max-Product Algorithm. The special case here is due to the fact that we are only considering linear
pairwise chains of variables, whereas the general Sum-Product and Max-Product algorithms can handle
more complex structural dependencies between the random variables.

9

	Introduction
	Feature Representation
	Example
	Reduction to Independent Logistic Regression

	Computing Conditional Probability
	Viterbi Algorithm for Making Predictions
	Computing Gradients
	Forward-Backward Algorithm to Compute Conditional Probabilities

