
Machine Learning & Data Mining Caltech CS/CNS/EE 155
Miniproject 2: Shakespearebot 5000 February 25th, 2016

1 Overview
• In this project, we will attempt to generate Shakespearean sonnets by training a HMM on the entire

corpus of Shakespeare’s sonnets.

• This miniproject is due 5pm, March 10th, via Moodle.

• You can work in groups of up to three. We encourage you to use the Search for Teamates feature on
Piazza to help you find teammates. You may keep the same group as in mini-project 1.

• You may use any language you want, but you must submit a report including documented code that
lays out everything you did. We recommend Python for this assignment.

• You are required to share one poem with the class on Piazza. There will be a small competition for
who can generate the best poem!

2 Introduction
William Shakespeare is perhaps the most famous poet and playwright of all time. Shakespeare is known

for works such as Hamlet and his 154 sonnets, of which the most famous begins:

Shall I compare thee to a summer’s day?
Thou art more lovely and more temperate:

Shakespeare’s poems are nice for the purpose of generative modeling because they follow a very specific
format, known as the Shakespearean (or English) sonnet1. Each sonnet is 14 lines, spread into 3 quatrains
(section with 4 lines) followed a couplet (section with 2 lines). The third quatrain is generally known as the
volta2 and has a change in tone or content. Shakespearean sonnets have a particular rhyme scheme, which
is abab cdcd efef gg.

Shakespearean sonnets also follows a specific meter called iambic pentameter3. All lines are exactly 10
syllables long, and have a pattern of unstressed stress. For example, the famous Sonnet 22 begins:

Stress x \ x \ x \ x \ x \
Syllable Shall I com - pare thee to a sum- mer’s day?

Here, each x represents an unstressed syllable and every \represents a stressed syllable. Try saying it
out loud!

The goal for this project is to generate poems that Shakespeare may have written by training a HMM on
his 154 sonnets. His sonnets are available in the data file shakespeare.txt.

1https://en.wikipedia.org/wiki/Sonnet#English_.28Shakespearean.29_sonnet
2https://en.wikipedia.org/wiki/Volta_%28literature%29
3https://en.wikipedia.org/wiki/Iambic_pentameter

1

https://piazza.com/class/iigtx6k96rvy6?cid=5
https://piazza.com/class/iigtx6k96rvy6?cid=5
https://en.wikipedia.org/wiki/Sonnet#English_.28Shakespearean.29_sonnet
https://en.wikipedia.org/wiki/Volta_%28literature%29
https://en.wikipedia.org/wiki/Iambic_pentameter


Machine Learning & Data Mining Caltech CS/CNS/EE 155
Miniproject 2: Shakespearebot 5000 February 25th, 2016

3 Unsupervized Learning (30 points)
The first task is to implement the unsupervized learning algorithm for HMMs. Use the forward-backwards

algorithm to train a HMM on the dataset. To determine the number of hidden states, you should try train-
ing models with different numbers of hidden states, and see how they perform. You may base the code
from the homework solution (which only solves the supervised M-step).

You should preprocess the dataset before you train on it. How you preprocess is completely up to you.
Here are a couple of questions to help you decide how to do preprocessing: How will you tokenize the
data set? What will consist of a singular sequence, a poem, a stanza, or a line? Do you keep some words
tokenized as bigrams? Do you split hyphenated words? How will you handle punctuation?

Report:
Your report should contain a section dedicated to proprocesssing. Explain your choices, as well why

you chose these choices initially. What was your final preprocessing? What changed as you continued on
your project? What did you try that didn’t work? Also write about any analysis you did on the dataset to
help you make these decisions.

Your report should also contain a section highlighting your unsupervized learning. How did you choose
the number of hidden states? How did you tokenize your words, and split up the data into separate
sequences?

NOTE: You may use an off-the-shelf implementation of HMMs for the other parts of the miniproject if
you cannot get your implementation working properly. However, you must write your own code for this
part of the project.

4 Visualization & Interpretation (30 points)
The next section of this project deals with interpreting and visualizing the learned model. Our goal is to

interpret what the hidden states and transisions capture about the data. Use the learned observation matrix
and transition matrix to determine what words associate most with each hidden state, and how the hidden
states interact with each other. Do the hidden states represent parts of speech, stressed or unstressed words,
number of syllables? What about anything else you can think of? You may use any open source tools to
help you perform some of the analysis. You can get syllable counts and syllable stress information from
CMU’s Pronuncing Dictionary available on NLTK

Report:
In your report, you should explain your interpretation of how a Hidden Markov Model learns patterns

in Shakespeare’s texts. You should briefly elaborate on the methods you used to analyze the model. In
addition, for at least 10 hidden states give a list of the top 10 words that associate with this hidden state and
state any common features these groups. Furthermore, try to interpret and visualize the learned transitions
between states. A possible suggestion is to draw a transition diagram of your markov model and give de-
scriptive names to the sates. Feel free to be creative with your visualizations, but remember that accurately
representing data is still your primary objective. Your figures, tables, and diagrams should contribute to a
discussion about your model.

2

http://www.nltk.org/_modules/nltk/corpus/reader/cmudict.html


Machine Learning & Data Mining Caltech CS/CNS/EE 155
Miniproject 2: Shakespearebot 5000 February 25th, 2016

5 Poetry Generation (20 points)

Some theory
Remember that the core of a HMM is the transition matrix and the observation matrix. Given a current

state y0, we can generate the next state by randomly choosing a state from the row in the transition matrix
based on the the probability of transitioning to that state. Now, with the next state, we can generate a word
by choosing randomly based on each word’s probability of generated from that state.

Naive Poem Generation from HMM’s
Write a program that generates a 14-line sonnet from a HMM model. You will need to choose one sonnet

that you generate and share it with the rest of the class on Piazza under the tag project2. The TAs will
read over your submissions and choose the best computer generated sonnet. Note that the poem that you
submit for the competition does not need to be from the naieve poem generation, and can be from a later
improved HMM model. However, the poem you submit must be computer generated. You may update
your poems until the deadline for the project.

Report:
In your report, describe your algorithm for generating the 14 line sonnet. Include at least one sonnet

generated from your unsupervized trained HMM in your final report as an example. You should comment
on the quality of geneating poems in this naive manner. How is the accurate is rhyme, rythym, and syllable
count to what a sonnet should be? Do your poems make any sense? Does it retain Shakespeare’s original
voice? How does training with different number of hidden states effect the poems generated (in a qualita-
tive manner)? For the good qualities that you describe, also discuss how you think the HMM was able to
capture these qualities.

6 Additional Goals (20 points)
”Though this be madness, yet there is method in’t” - Hamlet Act 2, scene 2

So far, the poems you have generated using the naive HMM generation are probably not very good
as sonnets. In this section, you will explore methods of improving your poems or extending them. You
do not need to attempt all of the tasks below for full marks on this section. If you have ideas for other
improvements to the poetry generation not listed here, feel free to talk to a TA and work on it. The sky is
the limit.

Report:
Talk about the extra improvements you made to your poem generation algorithm. What was the prob-

lems you were trying to fix? How did you go about attempting to fix it? Why did you think that what
you tried would work? Did your method succeed in making the sonnet more like a sonnet? If not, why do
you think what you tried didn’t work? What tradeoffs do you see in quality and creativity when you make
these changes?

3



Machine Learning & Data Mining Caltech CS/CNS/EE 155
Miniproject 2: Shakespearebot 5000 February 25th, 2016

Rhyme
Introducing rhyme into your poems is not actually that difficult. Since the sonnet follows a strict

rhyming patterns, we can figuring out what rhymes Shakespeare uses by looking at the last word of each
pair of lines that rhyme and add this to some sort of rhyming dictionary. Then, we can generate two lines
that rhyme by seeding the end of the line with words that rhyme, and then performing the HMM generation
in the reverse direction.

Meter
One way to incorporate meter is by creating states that represent the stresses of a word and limiting

transitions between stressed and unstressed words. For example, if a word ends in a stressed syllable, its
state should not transition to a state that represents words that start with a stressed syllable. You can also
guarentee a syllable count by using supervized learning and labeling words by syllable and stress, and
counting syllables when generating your poem. However, you may find that a more constrained HMM
may produce lower-quality sentence structure. If you use too many states, the HMM may lose variety in its
generation. To find a happy medium, try semi-supervised learning.

Incorporating additional texts
A powerful feature of HMMs is the ability to combine texts from different sources, with potentially silly

results.4. We have also provided the Amoretti5 by Spenser, a contemporary poet of Shakespeare. All 139 of
Spenser’s sonnets in the Amoretti follow the same rhyme scheme and meter as Shakespeare’s sonnets.

Generating other poetic forms
It may be an endeavor to try to generate other poetic forms using your HMMs. Can you generate

Haikus? How about Petrarchan sonnets, limmericks?

Choose your own!
This project is meant for you to have fun and explore new ideas. Talk to the TA’s about your own ideas

of how to make the poems better, and try it out. We may award bonus points for creativity.

7 Additional Resources
• TED talk: Can a computer write poetry?

• Botpoet

• Natural Language Processing Toolbox

• Markov Contraints for Generating Lyrics with Style

• Unsupervized Rhyme Scheme Identification Hip Hop Lyrics Using Hidden Markov Models

4King James bible mixed with SICP
5https://en.wikipedia.org/wiki/Amoretti

4

https://www.ted.com/talks/oscar_schwartz_can_a_computer_write_poetry?language=en
http://botpoet.com/what-is-computer-poetry/
http://www.nltk.org/
https://www.csl.sony.fr/downloads/papers/2012/barbieri-12a.pdf
http://link.springer.com/chapter/10.1007%2F978-3-642-39593-2_3
http://kingjamesprogramming.tumblr.com/
https://en.wikipedia.org/wiki/Amoretti

	Overview
	Introduction
	Unsupervized Learning (30 points)
	Report: 

	Visualization & Interpretation (30 points)
	Report: 

	Poetry Generation (20 points)
	Some theory
	Naive Poem Generation from HMM's
	Report: 

	Additional Goals (20 points)
	Report: 
	Rhyme
	Meter
	Incorporating additional texts
	Generating other poetic forms
	Choose your own!

	Additional Resources

