
A Quick Tour of Linear Algebra and Optimization
for Machine Learning

Masoud Farivar

January 8, 2015

1 / 28

Outline of Part I: Review of Basic Linear Algebra

Matrices and Vectors

Matrix Multiplication

Operators and Properties

Special Types of Matrices

Vector Norms

Linear Independence and Rank

Matrix Inversion

Range and Nullspace of a Matrix

Determinant

Quadratic Forms and Positive Semidefinite Matrices

Eigenvalues and Eigenvectors

Matrix Eigendecomposition

2 / 28

Outline of Part II: Review of Basic Optimization

The Gradient

The Hessian

Least Squares Problem

Gradient Descent

Stochastic Gradient Descent

Convex Optimization

Special Classes of Convex Problems

Example of Convex Problems in Machine learning

Convex Optimization Tools

3 / 28

Matrices and Vectors

Matrix: A rectangular array of numbers, e.g., A ∈ Rm×n:

A =

a11 a12 . . . a1n
a21 a22 . . . a2n

...
...

...
am1 am2 . . . amn

Vector: A matrix with only one column (default) or one row, e.g.,
x ∈ Rn

x =

x1
x2
...
xn

4 / 28

Matrix Multiplication

If A ∈ Rm×n, B ∈ Rn×p, C = AB, then C ∈ Rm×p:

Cij =
n∑

k=1

AikBkj

Properties of Matrix Multiplication:

Associative: (AB)C = A(BC)

Distributive: A(B + C) = AB + AC

Non-commutative: AB 6= BA

Block multiplication: If A = [Aik], B = [Bkj], where Aik ’s and Bkj ’s
are matrix blocks, and the number of columns in Aik is equal to the
number of rows in Bkj , then C = AB = [Cij] where Cij =

∑
k AikBkj

5 / 28

Operators and properties

Transpose: A ∈ Rm×n, then AT ∈ Rn×m: (AT)ij = Aji

Properties:

(AT)T = A
(AB)T = BTAT

(A + B)T = AT + BT

Trace: A ∈ Rn×n, then: tr(A) =
∑n

i=1 Aii

Properties:

tr(A) = tr(AT)
tr(A + B) = tr(A) + tr(B)
tr(λA) = λtr(A)
If AB is a square matrix, tr(AB) = tr(BA)

6 / 28

Special types of matrices

Identity matrix: I = In ∈ Rn×n:

Iij =

{
1 i=j,

0 otherwise.

∀A ∈ Rm×n: AIn = ImA = A

Diagonal matrix: D = diag(d1, d2, . . . , dn):

Dij =

{
di j=i,

0 otherwise.

Symmetric matrices: A ∈ Rn×n is symmetric if A = AT .

Orthogonal matrices: U ∈ Rn×n is orthogonal if UUT = I = UTU

7 / 28

Vector Norms

A norm of a vector ||x || is a measure of it’s ”length” or ”magnitude”. The
most common is the Euclidean or `2 norm.

`p norm : ||x ||p =

(
n∑

i=1
|xi |p

) 1
p

`2 norm : ||x ||2 =

√
n∑

i=1
x2i

used in ridge regression: ||y − Xβ||2 + λ||β||22

`1 norm : ||x ||1 =
n∑

i=1
|xi |

used in `1 penalized regression: ||y − Xβ||2 + λ||β||1
`∞ norm : ||x ||∞ = max

i
|xi |

8 / 28

Linear Independence and Rank

A set of vectors {x1, . . . , xn} is linearly independent if @{α1, . . . , αn}:∑n
i=1 αixi = 0

Rank: A ∈ Rm×n, then rank(A) is the maximum number of linearly
independent columns (or equivalently, rows)

Properties:

rank(A) ≤ min{m, n}
rank(A) = rank(AT)
rank(AB) ≤ min{rank(A), rank(B)}
rank(A + B) ≤ rank(A) + rank(B)

9 / 28

Matrix Inversion

If A ∈ Rn×n, rank(A) = n, then the inverse of A, denoted A−1 is the
matrix that: AA−1 = A−1A = I

Properties:

(A−1)−1 = A
(AB)−1 = B−1A−1

(A−1)T = (AT)−1

The inverse of an orthogonal matrix is its transpose

10 / 28

Range and Nullspace of a Matrix

Span: span({x1, . . . , xn}) = {
∑n

i=1 αixi |αi ∈ R}
Projection: Proj(y ; {xi}1≤i≤n) = argminv∈span({xi}1≤i≤n){||y − v ||2}
Range: A ∈ Rm×n, then R(A) = {Ax | x ∈ Rn} is the span of the
columns of A

Proj(y ,A) = A(ATA)−1AT y

Nullspace: null(A) = {x ∈ Rn|Ax = 0}

11 / 28

Determinant

A ∈ Rn×n, a1, . . . , an the rows of A, then det(A) is the volume of the
S = {

∑n
i=1 αiai | 0 ≤ αi ≤ 1}.

Properties:

det(I) = 1
det(λA) = λdet(A)
det(AT) = det(A)
det(AB) = det(A)det(B)
det(A) 6= 0 if and only if A is invertible.
If A invertible, then det(A−1) = det(A)−1

12 / 28

Quadratic Forms and Positive Semidefinite Matrices

A ∈ Rn×n, x ∈ Rn, xTAx is called a quadratic form:

xTAx =
∑

1≤i ,j≤n
Aijxixj

A is positive definite if ∀ x ∈ Rn : xTAx > 0

A is positive semidefinite if ∀ x ∈ Rn : xTAx ≥ 0

A is negative definite if ∀ x ∈ Rn : xTAx < 0

A is negative semidefinite if ∀ x ∈ Rn : xTAx ≤ 0

13 / 28

Eigenvalues and Eigenvectors

A ∈ Rn×n, λ ∈ C is an eigenvalue of A with the corresponding
eigenvector x ∈ Cn (x 6= 0) if:

Ax = λx

eigenvalues: the n possibly complex roots of the polynomial equation
det(A− λI) = 0, and denoted as λ1, . . . , λn
Properties:

tr(A) =
∑n

i=1 λi
det(A) =

∏n
i=1 λi

rank(A) = |{1 ≤ i ≤ n|λi 6= 0}|

14 / 28

Matrix Eigendecomposition

A ∈ Rn×n, λ1, . . . , λn the eigenvalues, and x1, . . . , xn the eigenvectors.
X = [x1|x2| . . . |xn], Λ = diag(λ1, . . . , λn), then AX = XΛ.

A called diagonalizable if X invertible: A = XΛX−1

If A symmetric, then all eigenvalues real, and X orthogonal (hence
denoted by U = [u1|u2| . . . |un]):

A = UΛUT =
n∑

i=1

λiuiu
T
i

A special case of Singular Value Decomposition

15 / 28

The Gradient

Suppose f : Rm×n → R is a function that takes as input a matrix A and
returns a real value. Then the gradient of f is the matrix

Note that the size of this matrix is always the same as the size of A. In
particular, if A is the vector x ∈ Rn,

16 / 28

The Hessian

Suppose f : Rn → R is a function that takes a vector in Rn and returns a
real number. Then Hessian matrix with respect to x , the n × n matrix:

Gradient and Hessian of Quadratic and Linear Functions:

17 / 28

Least Squares Problem

Solve the following minimization problem:

Note that

Taking the gradient with respect to x we have (and using the properties
above):

Setting this to zero and solving for x gives the following closed form
solution (psuedo-inverse):

18 / 28

Gradient Descent

Gradient Descent (GD): takes steps proportional to the negative of
the gradient (first order method)

Advantage: very general (we’ll see it many times)
Disadvantage: Local minima (sensitive to starting point)
Step size

not too large, not too small
Common choices:

Fixed
Linear with iteration (May want step size to decrease with iteration)
More advanced methods (e.g., Newton’s method)

19 / 28

Gradient Descent

A typical machine learning problem aims to minimize Error(loss) +
Regularizer (penalty):

min
w

F (w) = f (w ; y , x) + g(w)

Gradient Descent (GD):

choose initial w (0)

repeat
w (t+1) = w (t) − ηtOF (w (t))

until
||w (t+1) − w (t)|| ≤ ε or ||OF (w (t))|| ≤ ε

20 / 28

Stochastic (Online) Gradient Descent

Use updates based on individual data points chosen at random

Applicable when minimizing an objective function is sum of
differentiable functions:

f (w ; y , x) =
1

n

n∑
i=1

f (w ; yi , xi)

Suppose we receive an stream of samples (yt , xt) from the
distribution, the idea of SGD is:

w (t+1) = w (t) − ηtOw f (w (t); yt , xt)

In practice, we typically shuffle data points in the training set
randomly and use them one by one for the updates.

21 / 28

Stochastic (Online) Gradient Descent

The objective does not always decrease for each step

comparing to GD, SGD needs more steps, but each step is cheaper

mini-batch (say pick up 100 samples and average) can potentially
accelerate the convergence

22 / 28

Convex Optimization

A set of points S is convex if, for any x , y ∈ S and for any 0 ≤ θ ≤ 1,

θx + (1− θ)y ∈ S

A function f : S → R is convex if its domain S is a convex set and

f (θx + (1− θ)y) ≤ θf (x) + (1− θ)f (y)

for all x , y ∈ S , 0 ≤ θ ≤ 1.

Convex functions can be efficiently minimized.

23 / 28

Convex Optimization

A convex optimization problem in an optimization problem of the form

where f is a convex function, C is a convex set, and x is the optimization
variable. Or equivalently:

where gi are convex functions, and hi are affine functions.

Theorem

All locally optimal points of a convex optimization problem are globally
optimal.

Note that the optimal solution is not necessarily unique.
24 / 28

Special Classes of Convex Problems

Linear Programming:

Quadratic Programming:

Quadratically Constrained Quadratic Programming:

Semidefinite Programming:

25 / 28

Example of Convex Problems in Machine learning

Support Vector Machine (SVM) Classifier:

This is a quadratic program with optimization variables ω ∈ Rn, ξ ∈ Rm,
b ∈ R, and the input data x(i), y(i), i = 1, . . .m, and the parameter C ∈ R

26 / 28

Convex Optimization Tools

In many applications, we can write an optimization problem in a convex
form. Then we can use several software packages for convex optimization
to efficiently solve these problems. These convex optimization engines
include:

MATLAB-based: CVX, SeDuMi, Matlab Optimization Toolbox
(linprog, quadprog)

Machine Learning: Weka (Java)

libraries: CVXOPT (Python), GLPK (C), COIN-OR (C)

SVMs: LIBSVM, SVM-light

commerical packages: CPLEX, MOSEK

27 / 28

References

The source of this review are the following:

Boyd, S. and Vandenberghe, L. (2004). Convex Optimization.
Cambridge University Press.

Course notes from CMU’s 10-701.

Course notes from Stanford’s CS229, and CS224w

Course notes from UCI’s CS273a

28 / 28

	Basic Linear Algebra

