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Matrices and Vectors

Matrix: A rectangular array of numbers, e.g., A ∈ Rm×n:

A =


a11 a12 . . . a1n
a21 a22 . . . a2n

...
...

...
am1 am2 . . . amn


Vector: A matrix with only one column (default) or one row, e.g.,
x ∈ Rn

x =


x1
x2
...
xn
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Matrix Multiplication

If A ∈ Rm×n, B ∈ Rn×p, C = AB, then C ∈ Rm×p:

Cij =
n∑

k=1

AikBkj

Properties of Matrix Multiplication:

Associative: (AB)C = A(BC )

Distributive: A(B + C ) = AB + AC

Non-commutative: AB 6= BA

Block multiplication: If A = [Aik ], B = [Bkj ], where Aik ’s and Bkj ’s
are matrix blocks, and the number of columns in Aik is equal to the
number of rows in Bkj , then C = AB = [Cij ] where Cij =

∑
k AikBkj
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Operators and properties

Transpose: A ∈ Rm×n, then AT ∈ Rn×m: (AT )ij = Aji

Properties:

(AT )T = A
(AB)T = BTAT

(A + B)T = AT + BT

Trace: A ∈ Rn×n, then: tr(A) =
∑n

i=1 Aii

Properties:

tr(A) = tr(AT )
tr(A + B) = tr(A) + tr(B)
tr(λA) = λtr(A)
If AB is a square matrix, tr(AB) = tr(BA)
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Special types of matrices

Identity matrix: I = In ∈ Rn×n:

Iij =

{
1 i=j,

0 otherwise.

∀A ∈ Rm×n: AIn = ImA = A

Diagonal matrix: D = diag(d1, d2, . . . , dn):

Dij =

{
di j=i,

0 otherwise.

Symmetric matrices: A ∈ Rn×n is symmetric if A = AT .

Orthogonal matrices: U ∈ Rn×n is orthogonal if UUT = I = UTU
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Vector Norms

A norm of a vector ||x || is a measure of it’s ”length” or ”magnitude”. The
most common is the Euclidean or `2 norm.

`p norm : ||x ||p =

(
n∑

i=1
|xi |p

) 1
p

`2 norm : ||x ||2 =

√
n∑

i=1
x2i

used in ridge regression: ||y − Xβ||2 + λ||β||22

`1 norm : ||x ||1 =
n∑

i=1
|xi |

used in `1 penalized regression: ||y − Xβ||2 + λ||β||1
`∞ norm : ||x ||∞ = max

i
|xi |
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Linear Independence and Rank

A set of vectors {x1, . . . , xn} is linearly independent if @{α1, . . . , αn}:∑n
i=1 αixi = 0

Rank: A ∈ Rm×n, then rank(A) is the maximum number of linearly
independent columns (or equivalently, rows)

Properties:

rank(A) ≤ min{m, n}
rank(A) = rank(AT )
rank(AB) ≤ min{rank(A), rank(B)}
rank(A + B) ≤ rank(A) + rank(B)
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Matrix Inversion

If A ∈ Rn×n, rank(A) = n, then the inverse of A, denoted A−1 is the
matrix that: AA−1 = A−1A = I

Properties:

(A−1)−1 = A
(AB)−1 = B−1A−1

(A−1)T = (AT )−1

The inverse of an orthogonal matrix is its transpose
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Range and Nullspace of a Matrix

Span: span({x1, . . . , xn}) = {
∑n

i=1 αixi |αi ∈ R}
Projection: Proj(y ; {xi}1≤i≤n) = argminv∈span({xi}1≤i≤n){||y − v ||2}
Range: A ∈ Rm×n, then R(A) = {Ax | x ∈ Rn} is the span of the
columns of A

Proj(y ,A) = A(ATA)−1AT y

Nullspace: null(A) = {x ∈ Rn|Ax = 0}
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Determinant

A ∈ Rn×n, a1, . . . , an the rows of A, then det(A) is the volume of the
S = {

∑n
i=1 αiai | 0 ≤ αi ≤ 1}.

Properties:

det(I ) = 1
det(λA) = λdet(A)
det(AT ) = det(A)
det(AB) = det(A)det(B)
det(A) 6= 0 if and only if A is invertible.
If A invertible, then det(A−1) = det(A)−1
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Quadratic Forms and Positive Semidefinite Matrices

A ∈ Rn×n, x ∈ Rn, xTAx is called a quadratic form:

xTAx =
∑

1≤i ,j≤n
Aijxixj

A is positive definite if ∀ x ∈ Rn : xTAx > 0

A is positive semidefinite if ∀ x ∈ Rn : xTAx ≥ 0

A is negative definite if ∀ x ∈ Rn : xTAx < 0

A is negative semidefinite if ∀ x ∈ Rn : xTAx ≤ 0
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Eigenvalues and Eigenvectors

A ∈ Rn×n, λ ∈ C is an eigenvalue of A with the corresponding
eigenvector x ∈ Cn (x 6= 0) if:

Ax = λx

eigenvalues: the n possibly complex roots of the polynomial equation
det(A− λI ) = 0, and denoted as λ1, . . . , λn
Properties:

tr(A) =
∑n

i=1 λi
det(A) =

∏n
i=1 λi

rank(A) = |{1 ≤ i ≤ n|λi 6= 0}|
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Matrix Eigendecomposition

A ∈ Rn×n, λ1, . . . , λn the eigenvalues, and x1, . . . , xn the eigenvectors.
X = [x1|x2| . . . |xn], Λ = diag(λ1, . . . , λn), then AX = XΛ.

A called diagonalizable if X invertible: A = XΛX−1

If A symmetric, then all eigenvalues real, and X orthogonal (hence
denoted by U = [u1|u2| . . . |un]):

A = UΛUT =
n∑

i=1

λiuiu
T
i

A special case of Singular Value Decomposition

15 / 28



The Gradient

Suppose f : Rm×n → R is a function that takes as input a matrix A and
returns a real value. Then the gradient of f is the matrix

Note that the size of this matrix is always the same as the size of A. In
particular, if A is the vector x ∈ Rn,
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The Hessian

Suppose f : Rn → R is a function that takes a vector in Rn and returns a
real number. Then Hessian matrix with respect to x , the n × n matrix:

Gradient and Hessian of Quadratic and Linear Functions:
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Least Squares Problem

Solve the following minimization problem:

Note that

Taking the gradient with respect to x we have (and using the properties
above):

Setting this to zero and solving for x gives the following closed form
solution (psuedo-inverse):
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Gradient Descent

Gradient Descent (GD): takes steps proportional to the negative of
the gradient (first order method)

Advantage: very general (we’ll see it many times)
Disadvantage: Local minima (sensitive to starting point)
Step size

not too large, not too small
Common choices:

Fixed
Linear with iteration (May want step size to decrease with iteration)
More advanced methods (e.g., Newton’s method)
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Gradient Descent

A typical machine learning problem aims to minimize Error(loss) +
Regularizer (penalty):

min
w

F (w) = f (w ; y , x) + g(w)

Gradient Descent (GD):

choose initial w (0)

repeat
w (t+1) = w (t) − ηtOF (w (t))

until
||w (t+1) − w (t)|| ≤ ε or ||OF (w (t))|| ≤ ε
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Stochastic (Online) Gradient Descent

Use updates based on individual data points chosen at random

Applicable when minimizing an objective function is sum of
differentiable functions:

f (w ; y , x) =
1

n

n∑
i=1

f (w ; yi , xi )

Suppose we receive an stream of samples (yt , xt) from the
distribution, the idea of SGD is:

w (t+1) = w (t) − ηtOw f (w (t); yt , xt)

In practice, we typically shuffle data points in the training set
randomly and use them one by one for the updates.
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Stochastic (Online) Gradient Descent

The objective does not always decrease for each step

comparing to GD, SGD needs more steps, but each step is cheaper

mini-batch (say pick up 100 samples and average) can potentially
accelerate the convergence
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Convex Optimization

A set of points S is convex if, for any x , y ∈ S and for any 0 ≤ θ ≤ 1,

θx + (1− θ)y ∈ S

A function f : S → R is convex if its domain S is a convex set and

f (θx + (1− θ)y) ≤ θf (x) + (1− θ)f (y)

for all x , y ∈ S , 0 ≤ θ ≤ 1.

Convex functions can be efficiently minimized.
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Convex Optimization

A convex optimization problem in an optimization problem of the form

where f is a convex function, C is a convex set, and x is the optimization
variable. Or equivalently:

where gi are convex functions, and hi are affine functions.

Theorem

All locally optimal points of a convex optimization problem are globally
optimal.

Note that the optimal solution is not necessarily unique.
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Special Classes of Convex Problems

Linear Programming:

Quadratic Programming:

Quadratically Constrained Quadratic Programming:

Semidefinite Programming:
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Example of Convex Problems in Machine learning

Support Vector Machine (SVM) Classifier:

This is a quadratic program with optimization variables ω ∈ Rn, ξ ∈ Rm,
b ∈ R, and the input data x(i), y(i), i = 1, . . .m, and the parameter C ∈ R
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Convex Optimization Tools

In many applications, we can write an optimization problem in a convex
form. Then we can use several software packages for convex optimization
to efficiently solve these problems. These convex optimization engines
include:

MATLAB-based: CVX, SeDuMi, Matlab Optimization Toolbox
(linprog, quadprog)

Machine Learning: Weka (Java)

libraries: CVXOPT (Python), GLPK (C), COIN-OR (C)

SVMs: LIBSVM, SVM-light

commerical packages: CPLEX, MOSEK
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