A Quick Tour of Linear Algebra and Optimization for Machine Learning

Masoud Farivar

January 8, 2015

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Outline of Part I: Review of Basic Linear Algebra

- Matrices and Vectors
- Matrix Multiplication
- Operators and Properties
- Special Types of Matrices
- Vector Norms
- Linear Independence and Rank
- Matrix Inversion
- Range and Nullspace of a Matrix
- Determinant
- Quadratic Forms and Positive Semidefinite Matrices
- Eigenvalues and Eigenvectors
- Matrix Eigendecomposition

- The Gradient
- The Hessian
- Least Squares Problem
- Gradient Descent
- Stochastic Gradient Descent
- Convex Optimization
- Special Classes of Convex Problems
- Example of Convex Problems in Machine learning
- Convex Optimization Tools

• Matrix: A rectangular array of numbers, e.g., $A \in \mathbb{R}^{m \times n}$:

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

• Vector: A matrix with only one column (default) or one row, e.g., $x \in \mathbb{R}^n$

$$x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

• If $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times p}$, C = AB, then $C \in \mathbb{R}^{m \times p}$:

$$C_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}$$

Properties of Matrix Multiplication:

- Associative: (AB)C = A(BC)
- Distributive: A(B + C) = AB + AC
- Non-commutative: $AB \neq BA$
- Block multiplication: If $A = [A_{ik}]$, $B = [B_{kj}]$, where A_{ik} 's and B_{kj} 's are matrix blocks, and the number of columns in A_{ik} is equal to the number of rows in B_{kj} , then $C = AB = [C_{ij}]$ where $C_{ij} = \sum_{k} A_{ik}B_{kj}$

Transpose: $A \in \mathbb{R}^{m \times n}$, then $A^T \in \mathbb{R}^{n \times m}$: $(A^T)_{ij} = A_{ji}$ Properties: • $(A^T)^T = A$ • $(AB)^T = B^T A^T$ • $(A + B)^T = A^T + B^T$

Trace: $A \in \mathbb{R}^{n \times n}$, then: $tr(A) = \sum_{i=1}^{n} A_{ii}$

Properties:

• If AB is a square matrix, tr(AB) = tr(BA)

<ロ> (四) (四) (三) (三) (三) (三)

Special types of matrices

• Identity matrix: $I = I_n \in \mathbb{R}^{n \times n}$:

$$I_{ij} = egin{cases} 1 & i=j, \ 0 & \text{otherwise}. \end{cases}$$

•
$$\forall A \in \mathbb{R}^{m \times n}$$
: $AI_n = I_m A = A$

• Diagonal matrix: $D = diag(d_1, d_2, \dots, d_n)$:

$$D_{ij} = \begin{cases} d_i & j=i, \\ 0 & \text{otherwise.} \end{cases}$$

• Symmetric matrices: $A \in \mathbb{R}^{n \times n}$ is symmetric if $A = A^T$.

• Orthogonal matrices: $U \in \mathbb{R}^{n \times n}$ is orthogonal if $UU^T = I = U^T U$

A norm of a vector ||x|| is a measure of it's "length" or "magnitude". The most common is the Euclidean or ℓ_2 norm.

•
$$\ell_p \text{ norm}$$
 : $||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}$
• $\ell_2 \text{ norm}$: $||x||_2 = \sqrt{\sum_{i=1}^n x_i^2}$
used in ridge regression: $||y - X\beta||^2 + \lambda ||\beta||_2^2$

•
$$\ell_1 \text{ norm}$$
: $||x||_1 = \sum_{i=1} |x_i|$
used in ℓ_1 penalized regression: $||y - X\beta||^2 + \lambda ||\beta||_1$
• $\ell_\infty \text{ norm}$: $||x||_\infty = \max_i |x_i|$

8 / 28

イロン イロン イヨン イヨン 三日

- A set of vectors $\{x_1, \ldots, x_n\}$ is linearly independent if $\nexists \{\alpha_1, \ldots, \alpha_n\}$: $\sum_{i=1}^n \alpha_i x_i = 0$
- Rank: A ∈ ℝ^{m×n}, then rank(A) is the maximum number of linearly independent columns (or equivalently, rows)

イロト 不得下 イヨト イヨト 二日

- Properties:
 - $rank(A) \leq min\{m, n\}$
 - $rank(A) = rank(A^T)$
 - $rank(AB) \le min\{rank(A), rank(B)\}$
 - $rank(A + B) \le rank(A) + rank(B)$

- If A ∈ ℝ^{n×n}, rank(A) = n, then the inverse of A, denoted A⁻¹ is the matrix that: AA⁻¹ = A⁻¹A = I
- Properties:
 - $(A^{-1})^{-1} = A$
 - $(AB)^{-1} = B^{-1}A^{-1}$
 - $(A^{-1})^T = (A^T)^{-1}$
- The inverse of an orthogonal matrix is its transpose

- Span: $span(\{x_1,\ldots,x_n\}) = \{\sum_{i=1}^n \alpha_i x_i | \alpha_i \in \mathbb{R}\}$
- Projection: $Proj(y; \{x_i\}_{1 \le i \le n}) = argmin_{v \in span(\{x_i\}_{1 \le i \le n})} \{||y v||_2\}$
- Range: $A \in \mathbb{R}^{m \times n}$, then $\mathcal{R}(A) = \{Ax | x \in R^n\}$ is the span of the columns of A

- $Proj(y, A) = A(A^T A)^{-1} A^T y$
- Nullspace: $null(A) = \{x \in \mathbb{R}^n | Ax = 0\}$

• $A \in \mathbb{R}^{n \times n}$, a_1, \ldots, a_n the rows of A, then det(A) is the volume of the $S = \{\sum_{i=1}^n \alpha_i a_i | 0 \le \alpha_i \le 1\}.$

イロト 不得下 イヨト イヨト 二日

- Properties:
 - det(I) = 1
 - $det(\lambda A) = \lambda det(A)$
 - $det(A^T) = det(A)$
 - det(AB) = det(A)det(B)
 - $det(A) \neq 0$ if and only if A is invertible.
 - If A invertible, then $det(A^{-1}) = det(A)^{-1}$

• $A \in \mathbb{R}^{n \times n}$, $x \in \mathbb{R}^n$, $x^T A x$ is called a quadratic form:

$$x^{T}Ax = \sum_{1 \le i,j \le n} A_{ij}x_{i}x_{j}$$

・ロン ・四 ・ ・ ヨ ・ ・

- A is positive definite if $\forall x \in \mathbb{R}^n : x^T A x > 0$
- A is positive semidefinite if $\forall x \in \mathbb{R}^n : x^T A x \ge 0$
- A is negative definite if $\forall x \in \mathbb{R}^n : x^T A x < 0$
- A is negative semidefinite if $\forall x \in \mathbb{R}^n : x^T A x \leq 0$

A ∈ ℝ^{n×n}, λ ∈ C is an eigenvalue of A with the corresponding eigenvector x ∈ Cⁿ (x ≠ 0) if:

$$Ax = \lambda x$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

- eigenvalues: the *n* possibly complex roots of the polynomial equation det(A - λI) = 0, and denoted as λ₁,..., λ_n
- Properties:
 - $tr(A) = \sum_{i=1}^{n} \lambda_i$ • $det(A) = \prod_{i=1}^{n} \lambda_i$
 - $det(A) = \prod_{i=1} \lambda_i$
 - $rank(A) = |\{1 \le i \le n | \lambda_i \ne 0\}|$

- $A \in \mathbb{R}^{n \times n}$, $\lambda_1, \ldots, \lambda_n$ the eigenvalues, and x_1, \ldots, x_n the eigenvectors. $X = [x_1|x_2| \ldots |x_n]$, $\Lambda = diag(\lambda_1, \ldots, \lambda_n)$, then $AX = X\Lambda$.
- A called diagonalizable if X invertible: $A = X\Lambda X^{-1}$
- If A symmetric, then all eigenvalues real, and X orthogonal (hence denoted by U = [u₁|u₂|...|u_n]):

$$A = U\Lambda U^{\mathsf{T}} = \sum_{i=1}^{n} \lambda_i u_i u_i^{\mathsf{T}}$$

A special case of Singular Value Decomposition

The Gradient

Suppose $f : \mathbb{R}^{m \times n} \to \mathbb{R}$ is a function that takes as input a matrix A and returns a real value. Then the gradient of f is the matrix

$$\nabla_A f(A) \in \mathbb{R}^{m \times n} = \begin{bmatrix} \frac{\partial f(A)}{\partial A_{11}} & \frac{\partial f(A)}{\partial A_{12}} & \dots & \frac{\partial f(A)}{\partial A_{1n}} \\ \frac{\partial f(A)}{\partial A_{21}} & \frac{\partial f(A)}{\partial A_{22}} & \dots & \frac{\partial f(A)}{\partial A_{2n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f(A)}{\partial A_{m1}} & \frac{\partial f(A)}{\partial A_{m2}} & \dots & \frac{\partial f(A)}{\partial A_{mn}} \end{bmatrix}$$

Note that the size of this matrix is always the same as the size of A. In particular, if A is the vector $x \in \mathbb{R}^n$,

$$\nabla_x f(x) = \begin{bmatrix} \frac{\partial f(x)}{\partial x_1} \\ \frac{\partial f(x)}{\partial x_2} \\ \vdots \\ \frac{\partial f(x)}{\partial x_n} \end{bmatrix}$$

The Hessian

Suppose $f : \mathbb{R}^n \to \mathbb{R}$ is a function that takes a vector in \mathbb{R}^n and returns a real number. Then Hessian matrix with respect to x, the $n \times n$ matrix:

$$\nabla_x^2 f(x) \in \mathbb{R}^{n \times n} = \begin{bmatrix} \frac{\partial^2 f(x)}{\partial x_1^2} & \frac{\partial^2 f(x)}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f(x)}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f(x)}{\partial x_2 \partial x_1} & \frac{\partial^2 f(x)}{\partial x_2^2} & \cdots & \frac{\partial^2 f(x)}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f(x)}{\partial x_n \partial x_1} & \frac{\partial^2 f(x)}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f(x)}{\partial x_n^2} \end{bmatrix}$$

Gradient and Hessian of Quadratic and Linear Functions:

- $\nabla_x b^T x = b$
- $\nabla_x x^T A x = 2Ax$ (if A symmetric)
- $\nabla_x^2 x^T A x = 2A$ (if A symmetric)

Least Squares Problem

Solve the following minimization problem:

minimize $\frac{1}{2} \|Ax - b\|_2^2$

Note that

$$||Ax - b||_{2}^{2} = (Ax - b)^{T}(Ax - b)$$

= $x^{T}A^{T}Ax - 2b^{T}Ax + b^{T}b$

Taking the gradient with respect to x we have (and using the properties above):

$$\nabla_x (x^T A^T A x - 2b^T A x + b^T b) = \nabla_x x^T A^T A x - \nabla_x 2b^T A x + \nabla_x b^T b$$
$$= 2A^T A x - 2A^T b$$

Setting this to zero and solving for x gives the following closed form solution (psuedo-inverse):

$$x = (A^T A)^{-1} A^T b$$

Gradient Descent

• Gradient Descent (GD): takes steps proportional to the negative of the gradient (first order method)

- Advantage: very general (we'll see it many times)
- Disadvantage: Local minima (sensitive to starting point)
- Step size
 - not too large, not too small
 - Common choices:
 - Fixed
 - Linear with iteration (May want step size to decrease with iteration)
 - More advanced methods (e.g., Newton's method)

A typical machine learning problem aims to minimize Error(loss) + Regularizer (penalty):

$$\min_{w}F(w)=f(w;y,x)+g(w)$$

Gradient Descent (GD):

• choose initial $w^{(0)}$

repeat

$$w^{(t+1)} = w^{(t)} - \eta_t \nabla F(w^{(t)})$$

until

$$||w^{(t+1)} - w^{(t)}|| \le \epsilon$$
 or $||\nabla F(w^{(t)})|| \le \epsilon$

・ロ ・ ・ 日 ・ ・ 言 ・ ・ 言 ・ う へ (* 20 / 28

Stochastic (Online) Gradient Descent

- Use updates based on individual data points chosen at random
- Applicable when minimizing an objective function is sum of differentiable functions:

$$f(w; y, x) = \frac{1}{n} \sum_{i=1}^{n} f(w; y_i, x_i)$$

• Suppose we receive an stream of samples (*y*_t, *x*_t) from the distribution, the idea of SGD is:

$$w^{(t+1)} = w^{(t)} - \eta_t \nabla_w f(w^{(t)}; y_t, x_t)$$

• In practice, we typically shuffle data points in the training set randomly and use them one by one for the updates.

- The objective does not always decrease for each step
- comparing to GD, SGD needs more steps, but each step is cheaper
- mini-batch (say pick up 100 samples and average) can potentially accelerate the convergence

• A set of points S is convex if, for any $x, y \in S$ and for any $0 \le \theta \le 1$,

$$heta x + (1 - heta) y \in S$$

• A function $f: S \to \mathbb{R}$ is convex if its domain S is a convex set and

$$f(heta x + (1 - heta)y) \leq heta f(x) + (1 - heta)f(y)$$

for all $x, y \in S$, $0 \le \theta \le 1$.

• Convex functions can be efficiently minimized.

Convex Optimization

A convex optimization problem in an optimization problem of the form

 $\begin{array}{ll} \text{minimize} & f(x) \\ \text{subject to} & x \in C \end{array}$

where f is a convex function, C is a convex set, and x is the optimization variable. Or equivalently:

minimize
$$f(x)$$

subject to $g_i(x) \le 0$, $i = 1, ..., m$
 $h_i(x) = 0$, $i = 1, ..., p$

where g_i are convex functions, and h_i are affine functions.

Theorem

All locally optimal points of a convex optimization problem are globally optimal.

Special Classes of Convex Problems

• Linear Programming:

 $\begin{array}{ll} \text{minimize} & c^T x + d \\ \text{subject to} & G x \leq h \\ & A x = b \end{array}$

• Quadratic Programming:

minimize
$$\frac{1}{2}x^T P x + c^T x + d$$

subject to $Gx \leq h$
 $Ax = b$

• Quadratically Constrained Quadratic Programming:

minimize
$$\frac{1}{2}x^T P x + c^T x + d$$

subject to $\frac{1}{2}x^T Q_i x + r_i^T x + s_i \leq 0, \quad i = 1, \dots, m$
 $Ax = b$

• Semidefinite Programming:

minimize
$$\operatorname{tr}(CX)$$

subject to $\operatorname{tr}(A_iX) = b_i, \quad i = 1, \dots, p$
 $X \succeq 0$

• Support Vector Machine (SVM) Classifier:

minimize
$$\frac{1}{2} ||w||_2^2 + C \sum_{i=1}^m \xi_i$$

subject to $y^{(i)}(w^T x^{(i)} + b) \ge 1 - \xi_i, \quad i = 1, \dots, m$
 $\xi_i \ge 0, \qquad \qquad i = 1, \dots, m$

This is a quadratic program with optimization variables $\omega \in \mathbb{R}^n$, $\xi \in \mathbb{R}^m$, $b \in \mathbb{R}$, and the input data x(i), y(i), i = 1, ..., m, and the parameter $C \in \mathbb{R}$

In many applications, we can write an optimization problem in a convex form. Then we can use several software packages for convex optimization to efficiently solve these problems. These convex optimization engines include:

- MATLAB-based: CVX, SeDuMi, Matlab Optimization Toolbox (linprog, quadprog)
- Machine Learning: Weka (Java)
- libraries: CVXOPT (Python), GLPK (C), COIN-OR (C)
- SVMs: LIBSVM, SVM-light
- commerical packages: CPLEX, MOSEK

The source of this review are the following:

• Boyd, S. and Vandenberghe, L. (2004). Convex Optimization. Cambridge University Press.

イロト 不得下 イヨト イヨト 二日

- Course notes from CMU's 10-701.
- Course notes from Stanford's CS229, and CS224w
- Course notes from UCI's CS273a