Caltech

Machine Learning & Data Mining CS/CNS/EE 155

Lecture 17:

The Multi-Armed Bandit Problem

Announcements

- Lecture Tuesday will be Course Review
- Final should only take a 4-5 hours to do
 - We give you 48 hours for your flexibility
- Homework 2 is graded
 - We graded pretty leniently
 - Approximate Grade Breakdown:
 - 64: A 61: A- 58: B+ 53: B 50: B- 47: C+ 42: C 39: C-
- Homework 3 will be graded soon

Today

- The Multi-Armed Bandits Problem
 - And extensions

Advanced topics course on this next year

Recap: Supervised Learning

• Training Data:
$$S = \{(x_i, y_i)\}_{i=1}^N$$

$$x \in R^D$$
$$y \in \{-1, +1\}$$

• Model Class: $f(x | w, b) = w^T x - b$ E.g., Linear Models

• Loss Function: $L(a,b) = (a-b)^2$

E.g., Squared Loss

Learning Objective:

$$\underset{w,b}{\operatorname{argmin}} \sum_{i=1}^{N} L(y_i, f(x_i \mid w, b))$$

Optimization Problem

But Labels are Expensive!

Image Source: http://www.cs.cmu.edu/~aarti/Class/10701/slides/Lecture23.pdf

Solution?

- Let's grab some labels!
 - Label images
 - Annotate webpages
 - Rate movies
 - Run Experiments
 - Etc...

How should we choose?

Interactive Machine Learning

- Start with unlabeled data:
- Loop:
 - select x_i
 - receive feedback/label y_i
- How to measure cost?
- How to define goal?

Crowdsourcing

Aside: Active Learning

Goal: Maximize Accuracy with Minimal Cost

Passive Learning

Comparison with Passive Learning

 Conventional Supervised Learning is considered "Passive" Learning

Unlabeled training set sampled according to test distribution

- So we label it at random
 - Very Expensive!

Aside: Active Learning

- Cost: uniform
 - E.g., each label costs \$0.10
- Goal: maximize accuracy of trained model

 Control distribution of labeled training data

Problems with Crowdsourcing

- Assumes you can label by proxy
 - E.g., have someone else label objects in images
- But sometimes you can't!
 - Personalized recommender systems
 - Need to ask the user whether content is interesting
 - Personalized medicine
 - Need to try treatment on patient
 - Requires actual target domain

Personalized Labels

The Multi-Armed Bandit Problem

Formal Definition

- K actions/classes
- Each action has an average reward: μ_k
 - Unknown to us
 - Assume WLOG that u₁ is largest

Basic Setting
K classes
No features

- For t = 1...T
 - Algorithm chooses action a(t)
 - Receives random reward y(t)
 - Expectation $\mu_{a(t)}$

Algorithm Simultaneously Predicts & Receives Labels

• Goal: minimize $Tu_1 - (\mu_{a(1)} + \mu_{a(2)} + ... + \mu_{a(T)})$

If we had perfect information to start

Expected Reward of Algorithm

(5 Classes, No features)

(5 Classes, No features)

Average Likes

Shown

			0	
0	0	0	1	0

(5 Classes, No features)

			0	
0	0	1	1	0

(5 Classes, No features)

		1	0	
0	0	1	1	0

(5 Classes, No features)

Average Likes

Shown

		1	0	
0	0	1	1	1

(5 Classes, No features)

	-	1	0	0
0	0	1	1	1

(5 Classes, No features)

			19	
	1	1	0	0
0	1	1	1	1

(5 Classes, No features)

	1	1	0	0
0	1	1	1	1

What should Algorithm Recommend?

Exploit:

Explore:

Best:

How to Optimally Balance Explore/Exploit Tradeoff? Characterized by the Multi-Armed Bandit Problem

	0.44	0.4	0.33	0.2
0	25	10	15	20

$$\mathfrak{J}(OPT) = \mathfrak{J}(\mathbb{N}) + \mathfrak{J}(\mathbb{N}) + \mathfrak{J}(\mathbb{N}) \dots$$

Regret: R(T) = (OPT) - (ALG)

- Opportunity cost of not knowing preferences
- "no-regret" if $R(T)/T \rightarrow 0$
 - Efficiency measured by convergence rate

Recap: The Multi-Armed Bandit Problem

- K actions/classes
- Each action has an average reward: μ_k
 - All unknown to us
 - Assume WLOG that u₁ is largest

Basic Setting K classes No features

- For t = 1...T
 - Algorithm chooses action a(t)
 - Receives random reward y(t)
 - Expectation $\mu_{a(t)}$

Algorithm Simultaneously Predicts & Receives Labels

• Goal: minimize $Tu_1 - (\mu_{a(1)} + \mu_{a(2)} + ... + \mu_{a(T)})$ Regret

The Motivating Problem

Slot Machine = One-Armed Bandit

Each Arm Has
Different Payoff

Goal: Minimize regret From pulling suboptimal arms

Implications of Regret

Regret: R(T) = (OPT) - (ALG)

- If R(T) grows linearly w.r.t. T:
 - Then R(T)/T → constant > 0
 - I.e., we converge to predicting something suboptimal
- If R(T) is sub-linear w.r.t. T:
 - Then $R(T)/T \rightarrow 0$
 - I.e., we converge to predicting the optimal action

Experimental Design

- How to split trials to collect information
- Static Experimental Design
 - Standard practice
 - (pre-planned)

Sequential Experimental Design

Adapt experiments based on outcomes

Sequential Experimental Design Matters

Monica Almeida/The New York Times, left

Two Cousins, Two Paths Thomas McLaughlin, left, was given a promising experimental drug to treat his lethal skin cancer in a medical trial; Brandon Ryan had to go without it.

http://www.nytimes.com/2010/09/19/health/research/19trial.html

Sequential Experimental Design

- MAB models sequential experimental design!
- Each treatment has hidden expected value
 - Need to run trials to gather information
 - "Exploration"
- In hindsight, should always have used treatment with highest expected value
- Regret = opportunity cost of exploration

Online Advertising

Largest Use-Case of Multi-Armed Bandit Problems

The UCB1 Algorithm

Confidence Intervals

- Maintain Confidence Interval for Each Action
 - Often derived using Chernoff-Hoeffding bounds (**)

= [0.1, 0.3]

= [0.25, 0.55]

Undefined

	0.44	0.4	0.33	0.2
0	25	10	15	20

^{**} http://www.cs.utah.edu/~jeffp/papers/Chern-Hoeff.pdf http://en.wikipedia.org/wiki/Hoeffding%27s inequality

UCB1 Confidence Interval

			- Ser.	
	0.44	0.4	0.33	0.2
0	25	10	15	20

The UCB1 Algorithm

- At each iteration
 - Play arm with highest Upper Confidence Bound:

$$\underset{k}{\operatorname{argmax}} \, \overline{\mu}_k + \sqrt{\left(2 \ln t\right) / t_k}$$

			10	
	0.44	0.4	0.33	0.2
0	25	10	15	20

Balancing Explore/Exploit

"Optimism in the Face of Uncertainty"

$$\underset{k}{\operatorname{argmax}} \overline{\mu}_k + \sqrt{(2 \ln t)/t_k}$$
 Exploitation Term Exploration Term

			410	
	0.44	0.4	0.33	0.2
0	25	10	15	20

Analysis (Intuition)

$$a(t+1) = \underset{k}{\operatorname{argmax}} \, \overline{\mu}_k + \sqrt{\left(2\ln t\right)/t_k}$$

With high probability (**): Upper Confidence Bound of Best Arm

Value of Best Arm

$$\bar{\mu}_{a(t+1)} + \sqrt{(2\ln t)/t_{a(t+1)}} \ge \bar{\mu}_1 + \sqrt{(2\ln t)/t_1} \ge \mu_1$$

$$\mu_{a(t+1)} \geq \overline{\mu}_{a(t+1)} - \sqrt{\left(2\ln t\right)/t_{a(t+1)}}$$

The true value is greater than the lower confidence bound.

$$\mu_1 - \mu_{a(t+1)} \le 2\sqrt{\left(2\ln t\right)/t_{a(t+1)}}$$

Bound on regret at time t+1

^{**} Proof of Theorem 1 in http://homes.di.unimi.it/~cesabian/Pubblicazioni/ml-02.pdf

How Often Sub-Optimal Arms Get Played

An arm never gets selected if:

- The number of times selected: $O\left(\frac{\ln t}{(u_n u_n)^2}\right)$
 - Prove using Hoeffding's Inequality

$$O\left(\frac{\ln t}{\left(\mu_1 - \mu_k\right)^2}\right)$$

Regret Guarantee

- With high probability:
 - UCB1 accumulates regret at most:

Recap: MAB & UCB1

- Interactive setting
 - Receives reward/label while making prediction

Must balance explore/exploit

- Sub-linear regret is good
 - Average regret converges to 0

Extensions

- Contextual Bandits
 - Features of environment
- Dependent-Arms Bandits
 - Features of actions/classes
- Dueling Bandits
- Combinatorial Bandits
- General Reinforcement Learning

Contextual Bandits

- K actions/classes
- Rewards depends on context x: μ(x)

K classes
Best class depends
on features

- For t = 1...T
 - Algorithm receives context x_t
 - Algorithm chooses action a(t)
 - Receives random reward y(t)
 - Expectation $\mu(x_t)$

Algorithm Simultaneously Predicts & Receives Labels Bandit multiclass prediction

Goal: Minimize Regret

http://arxiv.org/abs/1402.0555 http://www.research.rutgers.edu/~lihong/pub/Li10Contextual.pdf

Linear Bandits

- K actions/classes
 - Each action has features x_k
 - Reward function: $\mu(x) = w^Tx$

K classes Linear dependence Between Arms

- For t = 1...T
 - Algorithm chooses action a(t)
 - Receives random reward y(t)
 - Expectation $\mu_{a(t)}$

Algorithm Simultaneously Predicts & Receives Labels

Labels can share information to other actions

Goal: regret scaling independent of K

http://webdocs.cs.ualberta.ca/~abbasiya/linear-bandits-NIPS2011.pdf

Example

- Treatment of spinal cord injury patients
 - Studied by Joel Burdick's group @Caltech

Want regret bound that scales independently of #arms

E.g., linearly in dimensionality of features x describing arms

- Multi-armed bandit problem:
 - Thousands of arms

UCB1 Regret Bound:

$$R(T) = O\left(\frac{K}{\varepsilon} \ln T\right)$$

Images from Yanan Sui

Dueling Bandits

- K actions/classes
 - Preference model P(a_k > a_{k'})

Can only measure pairwise preferences

- For t = 1...T
 - Algorithm chooses actions a(t) & b(t)
 - Receives random reward y(t)
 - Expectation P(a(t) > b(t))

Algorithm Simultaneously Predicts & Receives Labels Only pairwise rewards

Goal: low regret despite only pairwise feedback

Example in Sensory Testing

- (Hypothetical) taste experiment:
 - Natural usage context

VS

Total: 8 cans Total: 9 cans

Example in Sensory Testing

- (Hypothetical) taste experiment:
 - Natural usage context

VS

Experiment 1: Relative Metrics

2 - 1

3 - 0

2 - 0

1 - 0

4 - 1

2 - 1

Example Revisited

- Treatment of spinal cord injury patients
 - Studied by Joel Burdick's group @Caltech

Patients cannot reliably rate individual treatments

Patients can reliably compare pairs of treatments

Dueling Bandits Problem!

Images from Yanan Sui

http://dl.acm.org/citation.cfm?id=2645773

Combinatorial Bandits

- Sometimes, actions must be selected from combinatorial action space:
 - E.g., shortest path problems with unknown costs on edges
 - aka: Routing under uncertainty
- If you knew all the parameters of model:
 - standard optimization problem

http://www.yisongyue.com/publications/nips2011_submod_bandit.pdf http://www.cs.cornell.edu/~rdk/papers/OLSP.pdf http://homes.di.unimi.it/cesa-bianchi/Pubblicazioni/comband.pdf

General Reinforcement Learning

- Bandit setting assumes actions do not affect the world
 - E.g., sequence of experiments does not affect the distribution of future trials

Markov Decision Process

- M states
- K actions
- Reward: μ(s,a)
 - Depends on state

Example: Personalized Tutoring

[Emma Brunskill et al.] (**)

- For t = 1...T
 - Algorithm (approximately) observes current state s_t
 - Depends on previous state & action taken
 - Algorithm chooses action a(t)
 - Receives random reward y(t)
 - Expectation μ(s₊,a(t))

^{**} http://www.cs.cmu.edu/~ebrun/FasterTeachingPOMDP_planning.pdf

Summary

- Interactive Machine Learning
 - Multi-armed Bandit Problem
 - Basic result: UCB1
 - Surveyed Extensions
- Advanced Topics in ML course next year
- Next lecture: course review
 - Bring your questions!