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Today	
  

•  Miniproject	
  1	
  Reports	
  Due	
  

•  Latent	
  Spa7al	
  Models	
  for	
  Basketball	
  Play	
  
Predic7on	
  

•  Latent	
  Tensor	
  Models	
  for	
  Collabora7ve	
  
Clustering	
  

•  aka:	
  Stuff	
  Yisong	
  Likes	
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Goal:	
  	
  
Learn	
  an	
  Interpretable	
  Predic7ve	
  

Model	
  for	
  Play	
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Predic7on	
  

•  Game	
  state:	
  x	
  
–  Coordinates	
  of	
  all	
  players	
  
–  Who	
  is	
  the	
  ball	
  handler	
  

•  Event:	
  y	
  
–  Ball	
  handler	
  will	
  shoot	
  
–  Ball	
  handler	
  will	
  pass	
  (to	
  whom?)	
  
–  Ball	
  handler	
  will	
  hold	
  onto	
  the	
  ball	
  
–  6	
  possibili7es	
  

•  Goal:	
  	
  Learn	
  P(y|x)	
  
–  Interpretable	
  

hSp://www.yisongyue.com/publica7ons/icdm2014_bball_predict.pdf	
  
Lecture	
  15:	
  Recent	
  Applica7ons	
  of	
  Latent	
  Factor	
  Models	
   6	
  



Logis7c	
  Regression	
  
(Simple	
  Version:	
  Just	
  for	
  Shoo7ng)	
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P(y | x) =
exp F(y | x){ }
Z(x | F)

Z(x | F) = exp F(y ' | x){ }
y '∈{s,⊥}
∑

F(y ' | x) =
Fs (x) y ' = s
F⊥ y ' =⊥

"
#
$

%$

Offset	
  or	
  bias	
  

P(y = s | x) = 1
1+ exp −Fs (x)+F⊥{ }

Shot	
  

Hold	
  on	
  to	
  ball	
  

7	
  



Example	
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1 2 3 4 5 6 7 8 9 10

Shooting Factors (L)

Kawhi Carmelo Dirk Dion John Tim Kyrie Shawn Jeremy David
Leonard Anthony Nowitzki Waiters Wall Duncan Irving Marion Lin Lee

Fig. 5. Top Row: Depicting the spatial coefficents of the latent factors corresponding to the spatial coefficients contributing to the ball handler taking a shot at
each location (L). Each player’s shooting model can be represented as a combination of these factors. Bottom Row: Depicting the spatial coefficients of a player
with high affinity to each of the latent factors.

1 2 3 4 5 6 7 8 9 10

Receiving Pass Factors (M )

Tony Dirk LeBron Monta Manu David Jose Chandler Goran Joachim
Parker Nowitzki James Ellis Ginobili Lee Calderon Parsons Dragic Noah

Fig. 6. Top Row: Depicting the spatial coefficents of the latent factors corresponding to spatial coefficients contributing to a player receiving a pass at each
location (M ). Each player’s conditional shooting probabilities can be represented as a combination of these factors. Bottom Row: Depicting the spatial coefficents
of a player with high affinity to each of the latent factors.

left column. We evaluated using both ROC curves as well
as average log loss, and we observe that our latent factor
models offer significant improvement. The gain from adding
the temporal spatial components is small (i.e., +SDT offers
about a 0.1% relative reduction in average log loss compared
to +SD), but this gain is still statistically significant given the
approximately 6 million examples/frames in our test set.

Our dataset exhibits a notable amount of class imbalance
– about 70% of frames have no action events forthcoming in
the next 1 second. To further tease out the interesting effects
learned by our model, we also evaluate predictive performance
when conditioned on an action event (shot or pass), and also
on a pass event. These results are depicted in the second
and third columns of Figure 4(a), respectively. We observe a
more significant performance gain from our spatial latent factor
models compared to the baseline, although the performance of
+SDT is no longer distinguishable from +SD.

Figure 4(b) depicts how predictive performance varies
across the basketball court. We see that the spatial latent factor
model improves performance throughout the court. When

comparing all events (top row), we observe a significant error
reduction in the two “low post” locations.9 When comparing
action events (middle row), we observe a significant error
reduction along the baseline behind the basket (for +SD and
+SDT). We comparing only passing events (bottom row), we
observe a significant error reduction around the basket area
(for +SD and +SDT). Our inspection of the learned factors in
Section VI will shed light on how components of our model
contribute to the various reductions in error.

VI. MODEL INSPECTION

We now provide a detailed inspection our learned model
in order to identify patterns that match known intuitions of
basketball game play. We will also identify aspects of our
model that contribute to the various gains in performance
depicted in Figure 4(b). Although our focus is on basketball,
this type of analysis is applicable to a wide range of domains
with fine-grained spatial patterns.

9The two low post locations are situated about 10 feet and directed at 45
degree angles away from the basket.

Fs (x)

Tim	
  Duncan	
  

P(y = s | x) = 1
1+ exp −Fs (x)+F⊥{ }
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Fine-­‐Grained	
  	
  
Spa7al	
  Models	
  
•  Discre7ze	
  court	
  
– 1x1	
  foot	
  cells	
  
– 2000	
  cells	
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Fig. 6. Top Row: Depicting the spatial coefficents of the latent factors corresponding to spatial coefficients contributing to a player receiving a pass at each
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left column. We evaluated using both ROC curves as well
as average log loss, and we observe that our latent factor
models offer significant improvement. The gain from adding
the temporal spatial components is small (i.e., +SDT offers
about a 0.1% relative reduction in average log loss compared
to +SD), but this gain is still statistically significant given the
approximately 6 million examples/frames in our test set.

Our dataset exhibits a notable amount of class imbalance
– about 70% of frames have no action events forthcoming in
the next 1 second. To further tease out the interesting effects
learned by our model, we also evaluate predictive performance
when conditioned on an action event (shot or pass), and also
on a pass event. These results are depicted in the second
and third columns of Figure 4(a), respectively. We observe a
more significant performance gain from our spatial latent factor
models compared to the baseline, although the performance of
+SDT is no longer distinguishable from +SD.

Figure 4(b) depicts how predictive performance varies
across the basketball court. We see that the spatial latent factor
model improves performance throughout the court. When

comparing all events (top row), we observe a significant error
reduction in the two “low post” locations.9 When comparing
action events (middle row), we observe a significant error
reduction along the baseline behind the basket (for +SD and
+SDT). We comparing only passing events (bottom row), we
observe a significant error reduction around the basket area
(for +SD and +SDT). Our inspection of the learned factors in
Section VI will shed light on how components of our model
contribute to the various reductions in error.

VI. MODEL INSPECTION

We now provide a detailed inspection our learned model
in order to identify patterns that match known intuitions of
basketball game play. We will also identify aspects of our
model that contribute to the various gains in performance
depicted in Figure 4(b). Although our focus is on basketball,
this type of analysis is applicable to a wide range of domains
with fine-grained spatial patterns.

9The two low post locations are situated about 10 feet and directed at 45
degree angles away from the basket.
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Story	
  so	
  Far:	
  Spa7al	
  Logis7c	
  Regression	
  

•  Probability	
  of	
  shoo7ng	
  log-­‐linear	
  
–  In	
  spa7al	
  cell	
  feature	
  representa7on	
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P(y = s | x) = 1
1+ exp −Fs (x)+F⊥{ }

                 = 1
1+ exp − Fs
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Fig. 5. Top Row: Depicting the spatial coefficents of the latent factors corresponding to the spatial coefficients contributing to the ball handler taking a shot at
each location (L). Each player’s shooting model can be represented as a combination of these factors. Bottom Row: Depicting the spatial coefficients of a player
with high affinity to each of the latent factors.
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Fig. 6. Top Row: Depicting the spatial coefficents of the latent factors corresponding to spatial coefficients contributing to a player receiving a pass at each
location (M ). Each player’s conditional shooting probabilities can be represented as a combination of these factors. Bottom Row: Depicting the spatial coefficents
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left column. We evaluated using both ROC curves as well
as average log loss, and we observe that our latent factor
models offer significant improvement. The gain from adding
the temporal spatial components is small (i.e., +SDT offers
about a 0.1% relative reduction in average log loss compared
to +SD), but this gain is still statistically significant given the
approximately 6 million examples/frames in our test set.

Our dataset exhibits a notable amount of class imbalance
– about 70% of frames have no action events forthcoming in
the next 1 second. To further tease out the interesting effects
learned by our model, we also evaluate predictive performance
when conditioned on an action event (shot or pass), and also
on a pass event. These results are depicted in the second
and third columns of Figure 4(a), respectively. We observe a
more significant performance gain from our spatial latent factor
models compared to the baseline, although the performance of
+SDT is no longer distinguishable from +SD.

Figure 4(b) depicts how predictive performance varies
across the basketball court. We see that the spatial latent factor
model improves performance throughout the court. When

comparing all events (top row), we observe a significant error
reduction in the two “low post” locations.9 When comparing
action events (middle row), we observe a significant error
reduction along the baseline behind the basket (for +SD and
+SDT). We comparing only passing events (bottom row), we
observe a significant error reduction around the basket area
(for +SD and +SDT). Our inspection of the learned factors in
Section VI will shed light on how components of our model
contribute to the various reductions in error.

VI. MODEL INSPECTION

We now provide a detailed inspection our learned model
in order to identify patterns that match known intuitions of
basketball game play. We will also identify aspects of our
model that contribute to the various gains in performance
depicted in Figure 4(b). Although our focus is on basketball,
this type of analysis is applicable to a wide range of domains
with fine-grained spatial patterns.

9The two low post locations are situated about 10 feet and directed at 45
degree angles away from the basket.
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  Data	
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STATS	
  SportsVU	
  
2012/2013	
  Season,	
  630	
  Games,	
  	
  

80K	
  Possessions,	
  380	
  frames	
  per	
  possession	
  
11	
  



Learning	
  the	
  Model	
  

•  Given	
  training	
  data:	
  

•  Learn	
  parameters	
  of	
  model:	
  

Lecture	
  15:	
  Recent	
  Applica7ons	
  of	
  Latent	
  Factor	
  Models	
  

argmin
Fs ,F⊥

λ Fs
2
+ ℓ y,Fs

Tφs (x)−F⊥( )
(x,y)∈S
∑

S = (x, y){ }

Log	
  Loss	
  

Player	
  	
  
Configura7on	
   What	
  Happened	
  	
  

Next	
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Spa7al	
  Regulariza7on	
  

•  Self-­‐defined	
  feature	
  vector	
  
– Has	
  spa7al	
  structure	
  

•  Expect	
  Fs	
  to	
  vary	
  smoothly	
  
– But	
  not	
  enough	
  training	
  data	
  
– Spa?al	
  Regulariza?on:	
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Fig. 5. Top Row: Depicting the spatial coefficents of the latent factors corresponding to the spatial coefficients contributing to the ball handler taking a shot at
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with high affinity to each of the latent factors.

1 2 3 4 5 6 7 8 9 10

Receiving Pass Factors (M )

Tony Dirk LeBron Monta Manu David Jose Chandler Goran Joachim
Parker Nowitzki James Ellis Ginobili Lee Calderon Parsons Dragic Noah

Fig. 6. Top Row: Depicting the spatial coefficents of the latent factors corresponding to spatial coefficients contributing to a player receiving a pass at each
location (M ). Each player’s conditional shooting probabilities can be represented as a combination of these factors. Bottom Row: Depicting the spatial coefficents
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left column. We evaluated using both ROC curves as well
as average log loss, and we observe that our latent factor
models offer significant improvement. The gain from adding
the temporal spatial components is small (i.e., +SDT offers
about a 0.1% relative reduction in average log loss compared
to +SD), but this gain is still statistically significant given the
approximately 6 million examples/frames in our test set.

Our dataset exhibits a notable amount of class imbalance
– about 70% of frames have no action events forthcoming in
the next 1 second. To further tease out the interesting effects
learned by our model, we also evaluate predictive performance
when conditioned on an action event (shot or pass), and also
on a pass event. These results are depicted in the second
and third columns of Figure 4(a), respectively. We observe a
more significant performance gain from our spatial latent factor
models compared to the baseline, although the performance of
+SDT is no longer distinguishable from +SD.

Figure 4(b) depicts how predictive performance varies
across the basketball court. We see that the spatial latent factor
model improves performance throughout the court. When

comparing all events (top row), we observe a significant error
reduction in the two “low post” locations.9 When comparing
action events (middle row), we observe a significant error
reduction along the baseline behind the basket (for +SD and
+SDT). We comparing only passing events (bottom row), we
observe a significant error reduction around the basket area
(for +SD and +SDT). Our inspection of the learned factors in
Section VI will shed light on how components of our model
contribute to the various reductions in error.

VI. MODEL INSPECTION

We now provide a detailed inspection our learned model
in order to identify patterns that match known intuitions of
basketball game play. We will also identify aspects of our
model that contribute to the various gains in performance
depicted in Figure 4(b). Although our focus is on basketball,
this type of analysis is applicable to a wide range of domains
with fine-grained spatial patterns.

9The two low post locations are situated about 10 feet and directed at 45
degree angles away from the basket.

argmin
Fs ,F⊥

λ1 Fs
2
+λ2 κ ij Fs,i −Fs, j( )

2

i, j∈N (i)
∑ + ℓ y,Fs

Tφs (x)−F⊥( )
(x,y)∈S
∑

κ ij = exp −d(i, j)2 /σ{ }

13	
  



Combining	
  Several	
  Ideas	
  

•  Mul7class	
  predic7on	
  
–  Predict	
  different	
  outcomes	
  (e.g.,	
  shot,	
  pass,	
  etc)	
  

•  Spa7al	
  Model	
  
–  Captures	
  spa7al	
  structure	
  

•  Mul7task	
  predic7on	
  
–  One	
  predic7on	
  task	
  per	
  player	
  

•  Interpretable	
  Model	
  
–  Low-­‐dimensional	
  representa7on	
  
–  Easy	
  to	
  visualize	
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Discre7ze	
  into	
  fine-­‐grained	
  cells	
  
(regularize	
  neighbors	
  to	
  be	
  similar)	
  

We’ve	
  only	
  seen	
  shots	
  so	
  far	
  

Latent	
  factor	
  part	
  
Related	
  to	
  mul7task	
  predic7on	
  

Talk	
  about	
  this	
  next	
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Mul7task	
  Predic7on	
  

•  One	
  task	
  per	
  player	
  
–  Fs	
  is	
  actually	
  a	
  matrix	
  of	
  coefficients	
  
–  Each	
  row	
  is	
  a	
  player	
  

•  Input	
  data	
  x	
  contains	
  id	
  of	
  	
  
	
  	
  	
  	
  ball	
  handler	
  
–  One	
  task	
  per	
  ball	
  handler	
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1 2 3 4 5 6 7 8 9 10

Shooting Factors (L)

Kawhi Carmelo Dirk Dion John Tim Kyrie Shawn Jeremy David
Leonard Anthony Nowitzki Waiters Wall Duncan Irving Marion Lin Lee

Fig. 5. Top Row: Depicting the spatial coefficents of the latent factors corresponding to the spatial coefficients contributing to the ball handler taking a shot at
each location (L). Each player’s shooting model can be represented as a combination of these factors. Bottom Row: Depicting the spatial coefficients of a player
with high affinity to each of the latent factors.

1 2 3 4 5 6 7 8 9 10

Receiving Pass Factors (M )

Tony Dirk LeBron Monta Manu David Jose Chandler Goran Joachim
Parker Nowitzki James Ellis Ginobili Lee Calderon Parsons Dragic Noah

Fig. 6. Top Row: Depicting the spatial coefficents of the latent factors corresponding to spatial coefficients contributing to a player receiving a pass at each
location (M ). Each player’s conditional shooting probabilities can be represented as a combination of these factors. Bottom Row: Depicting the spatial coefficents
of a player with high affinity to each of the latent factors.

left column. We evaluated using both ROC curves as well
as average log loss, and we observe that our latent factor
models offer significant improvement. The gain from adding
the temporal spatial components is small (i.e., +SDT offers
about a 0.1% relative reduction in average log loss compared
to +SD), but this gain is still statistically significant given the
approximately 6 million examples/frames in our test set.

Our dataset exhibits a notable amount of class imbalance
– about 70% of frames have no action events forthcoming in
the next 1 second. To further tease out the interesting effects
learned by our model, we also evaluate predictive performance
when conditioned on an action event (shot or pass), and also
on a pass event. These results are depicted in the second
and third columns of Figure 4(a), respectively. We observe a
more significant performance gain from our spatial latent factor
models compared to the baseline, although the performance of
+SDT is no longer distinguishable from +SD.

Figure 4(b) depicts how predictive performance varies
across the basketball court. We see that the spatial latent factor
model improves performance throughout the court. When

comparing all events (top row), we observe a significant error
reduction in the two “low post” locations.9 When comparing
action events (middle row), we observe a significant error
reduction along the baseline behind the basket (for +SD and
+SDT). We comparing only passing events (bottom row), we
observe a significant error reduction around the basket area
(for +SD and +SDT). Our inspection of the learned factors in
Section VI will shed light on how components of our model
contribute to the various reductions in error.

VI. MODEL INSPECTION

We now provide a detailed inspection our learned model
in order to identify patterns that match known intuitions of
basketball game play. We will also identify aspects of our
model that contribute to the various gains in performance
depicted in Figure 4(b). Although our focus is on basketball,
this type of analysis is applicable to a wide range of domains
with fine-grained spatial patterns.

9The two low post locations are situated about 10 feet and directed at 45
degree angles away from the basket.

1 2 3 4 5 6 7 8 9 10

Shooting Factors (L)

Kawhi Carmelo Dirk Dion John Tim Kyrie Shawn Jeremy David
Leonard Anthony Nowitzki Waiters Wall Duncan Irving Marion Lin Lee

Fig. 5. Top Row: Depicting the spatial coefficents of the latent factors corresponding to the spatial coefficients contributing to the ball handler taking a shot at
each location (L). Each player’s shooting model can be represented as a combination of these factors. Bottom Row: Depicting the spatial coefficients of a player
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Fig. 6. Top Row: Depicting the spatial coefficents of the latent factors corresponding to spatial coefficients contributing to a player receiving a pass at each
location (M ). Each player’s conditional shooting probabilities can be represented as a combination of these factors. Bottom Row: Depicting the spatial coefficents
of a player with high affinity to each of the latent factors.

left column. We evaluated using both ROC curves as well
as average log loss, and we observe that our latent factor
models offer significant improvement. The gain from adding
the temporal spatial components is small (i.e., +SDT offers
about a 0.1% relative reduction in average log loss compared
to +SD), but this gain is still statistically significant given the
approximately 6 million examples/frames in our test set.

Our dataset exhibits a notable amount of class imbalance
– about 70% of frames have no action events forthcoming in
the next 1 second. To further tease out the interesting effects
learned by our model, we also evaluate predictive performance
when conditioned on an action event (shot or pass), and also
on a pass event. These results are depicted in the second
and third columns of Figure 4(a), respectively. We observe a
more significant performance gain from our spatial latent factor
models compared to the baseline, although the performance of
+SDT is no longer distinguishable from +SD.

Figure 4(b) depicts how predictive performance varies
across the basketball court. We see that the spatial latent factor
model improves performance throughout the court. When

comparing all events (top row), we observe a significant error
reduction in the two “low post” locations.9 When comparing
action events (middle row), we observe a significant error
reduction along the baseline behind the basket (for +SD and
+SDT). We comparing only passing events (bottom row), we
observe a significant error reduction around the basket area
(for +SD and +SDT). Our inspection of the learned factors in
Section VI will shed light on how components of our model
contribute to the various reductions in error.

VI. MODEL INSPECTION

We now provide a detailed inspection our learned model
in order to identify patterns that match known intuitions of
basketball game play. We will also identify aspects of our
model that contribute to the various gains in performance
depicted in Figure 4(b). Although our focus is on basketball,
this type of analysis is applicable to a wide range of domains
with fine-grained spatial patterns.

9The two low post locations are situated about 10 feet and directed at 45
degree angles away from the basket.

Tim	
  	
  
Duncan	
  

Dirk	
  
Nowitski	
  

15	
  



Mul7task	
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argmin
Fs ,F⊥

 λ1 Fs
2
+λ2 κ ij Fs,b,i −Fs,b, j( )

2

i, j∈N (i)
∑

b
∑

            + ℓ y,Fs,b(x ),l (x ) −F⊥( )
(x,y)∈S
∑

κ ij = exp −d(i, j)2 /σ{ }

P(y = s | x) = 1
1+ exp −Fs (x)+F⊥{ }

                 = 1
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Not	
  Enough	
  Training	
  Data!	
  

•  Most	
  players	
  don’t	
  shoot	
  that	
  onen	
  
–  2000	
  weights	
  per	
  player	
  

•  Cell	
  discre7za7on	
  is	
  very	
  fine-­‐grained	
  
–  Spa7al	
  regulariza7on	
  helps	
  some	
  

•  How	
  to	
  share	
  data	
  across	
  players?	
  
–  Latent	
  Factor	
  Model!	
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Latent	
  Factor	
  Model	
  (Shoo7ng)	
  

•  Shoo?ng	
  Score:	
  

Fs	
   BT	
  

L	
  

=	
  

D	
  

M	
  

D	
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left column. We evaluated using both ROC curves as well
as average log loss, and we observe that our latent factor
models offer significant improvement. The gain from adding
the temporal spatial components is small (i.e., +SDT offers
about a 0.1% relative reduction in average log loss compared
to +SD), but this gain is still statistically significant given the
approximately 6 million examples/frames in our test set.

Our dataset exhibits a notable amount of class imbalance
– about 70% of frames have no action events forthcoming in
the next 1 second. To further tease out the interesting effects
learned by our model, we also evaluate predictive performance
when conditioned on an action event (shot or pass), and also
on a pass event. These results are depicted in the second
and third columns of Figure 4(a), respectively. We observe a
more significant performance gain from our spatial latent factor
models compared to the baseline, although the performance of
+SDT is no longer distinguishable from +SD.

Figure 4(b) depicts how predictive performance varies
across the basketball court. We see that the spatial latent factor
model improves performance throughout the court. When

comparing all events (top row), we observe a significant error
reduction in the two “low post” locations.9 When comparing
action events (middle row), we observe a significant error
reduction along the baseline behind the basket (for +SD and
+SDT). We comparing only passing events (bottom row), we
observe a significant error reduction around the basket area
(for +SD and +SDT). Our inspection of the learned factors in
Section VI will shed light on how components of our model
contribute to the various reductions in error.

VI. MODEL INSPECTION

We now provide a detailed inspection our learned model
in order to identify patterns that match known intuitions of
basketball game play. We will also identify aspects of our
model that contribute to the various gains in performance
depicted in Figure 4(b). Although our focus is on basketball,
this type of analysis is applicable to a wide range of domains
with fine-grained spatial patterns.

9The two low post locations are situated about 10 feet and directed at 45
degree angles away from the basket.
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Figure 1: Depicting probabilities that the ball handler (Dun-
can) will pass to his teammates (blue lines) or shoot (black line).
Thicker lines indicates the higher probability.

change under varying game states.

2. RELATED WORK
Leveraging spatiotemporal data in sports analytics has become

increasingly popular in recent years through the deployment of
commercial tracking systems [19, 22, 9]. Compared to crowd and
surveillance domains [18, 21], analyzing behaviors in the sports do-
main is somewhat more complex as it is: 1) adversarial compared
to cooperative, 2) it is contingent on the interaction between and
within groups compared to individuals, 3) players constantly swap
position due to movement and substitutions making representing
play difficult, and 4) it is continuous and often lack labels describ-
ing team play. Due to these challenges, most previous work in the
sporting domain have focused on relatively small datasets [8, 16,
6], did not build predictive models [15, 17], used coarse aggregate
statistics that do not model specific in-game scenarios [2], did not
focus on adversarial team environments [24] or do not model spa-
tial information [1, 7]. In contrast, we are interested in making
in-game predictions of near-term events over a large selection of
in-game scenarios.

A particularly illuminating paper by Miller et al. [17] showed
how to incorporate spatial priors and non-negative matrix factoriza-
tion to build a latent-factor generative model in order to summarize
basketball shot selection. They showed that their learned factors
correspond to an interpretable representation that summarizes shot
selection charts of NBA players. Non-negative matrix factorization
techniques have been shown to yield very interpretable data repre-
sentations in a wide range applications, including learning parts of
objects [12], molecular patern discovery [3], and overlapping com-
munity detection [25]. We will also build upon this technique in
developing our approach.

Our approach also bears affinity to Bayesian techniques for spa-
tial regularization such as Gaussian processes [20, 26]. In fact, our
spatial regularization approach can be viewed as a frequentist ana-
log to theirs.

From a dynamics perspective, our approach can be thought of as
a one-step filtering method, whereby we estimate the probability
distribution of observing the next in-game event given the current
game state. A recent paper by Fewell et al. [6] did estimate a tran-
sition graph of passes between players; however, their model was
estimated at a rather coarse level of granularity and on a relatively
small dataset, and did not take into account spatial properties such
as the location of the players.

The topics of greatest relevance to sports analysts are developing

metrics [4] to quantify the quality of a possession, and suggesting
more optimal game-play strategies using analytical approaches [7].
Our approach can be naturally integrated with such methods.

3. PREDICTING GAME EVENTS
We consider the problem of predicting future game event y given

the current game state x. We develop our approach using basketball
as the motivating application, although our approach can be applied
to other team sports as well as modeling richer event classes. We
assume the following information is provied in every game state x;

• The identity b and location `

b

of the ball handler

• The identities and locations {(p
m

, `

m

)}4
m=1 of the ball han-

dler’s four teammates

• The locations {p̃
m

,

˜

`

m

)}5
m=1 of the five opponents

We are interested in predicting near-term events y from the ball
handler such as:

• Passing to teammate p

i

within the next t seconds

• Shooting the ball within the next t seconds

• Holding on to the ball (i.e., none of the above)

In the case where multiple events occur within t seconds of each
other (e.g., the ball handler passes to a teammate who then imme-
diately takes a shot), we only consider the first such event (i.e., the
pass). Given a training set S = {(y

i

, x
i

)}
i=1N , the goal is to learn

a model that can accurately predict the correct y given x.

3.1 Model
A natural approach is to model the response variable y using a

multi-class conditional random field [11]. Let

Y (x) = {s, p1, p2, p3, p4,?}

denote the space of possible predictions given x, which corresponds
to taking a shot, pass to one of four teammates, or none of the
above, respectively. We can model the conditional probability of
each event y 2 Y (x) as being log-linear w.r.t. a response function
F (y|x):

P (y|x) = 1

Z(x|F )

exp{F (y|x)},

where Z(x|F ) denotes the standard normalizing or partition func-
tion:

Z(x|F ) =

X

y

02Y (x)

exp{F (y

0|x)}.

Intuitively, each F (y

0|x) can be interpreted as the log-odds of event
y

0 happening given game state x.
Perhaps the most obvious aspects to model are the distances be-

tween the ball handler to the basket and to his teammates. It is
widely known that shooting percentages increase as one moves
closer to the basket. Similarly, players are more likely to pass the
ball to teammates that are reasonably close to them. So an obvious
first step is instantiate F as:

F (y|x) =
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<

:
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are feature mapping functions that characterize
the distance between the ball handler with the basket and his team-
mates, respectively (e.g., whether the player is between 3 and 5 feet
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y

0 happening given game state x.
Perhaps the most obvious aspects to model are the distances be-

tween the ball handler to the basket and to his teammates. It is
widely known that shooting percentages increase as one moves
closer to the basket. Similarly, players are more likely to pass the
ball to teammates that are reasonably close to them. So an obvious
first step is instantiate F as:

F (y|x) =

8
<

:

F

s

(x) if y = s

F

p

(i, x) if y = p

i

F?(x) if y = ?
, (1)

F (y|x) =

8
<

:

F

s

(x) ⌘ w

>
s

�

s

(b, `

b

) if y = s

F

p

(i, x) ⌘ w

>
p

�

p

(p

i

, `

i
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b
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i

F?(x) ⌘ w? if y = ?
, (2)
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1 2 3 4 5 6 7 8 9 10

Shooting Factors (L)

Kawhi Carmelo Dirk Dion John Tim Kyrie Shawn Jeremy David
Leonard Anthony Nowitzki Waiters Wall Duncan Irving Marion Lin Lee

Fig. 5. Top Row: Depicting the spatial coefficents of the latent factors corresponding to the spatial coefficients contributing to the ball handler taking a shot at
each location (L). Each player’s shooting model can be represented as a combination of these factors. Bottom Row: Depicting the spatial coefficients of a player
with high affinity to each of the latent factors.

1 2 3 4 5 6 7 8 9 10

Receiving Pass Factors (M )

Tony Dirk LeBron Monta Manu David Jose Chandler Goran Joachim
Parker Nowitzki James Ellis Ginobili Lee Calderon Parsons Dragic Noah

Fig. 6. Top Row: Depicting the spatial coefficents of the latent factors corresponding to spatial coefficients contributing to a player receiving a pass at each
location (M ). Each player’s conditional shooting probabilities can be represented as a combination of these factors. Bottom Row: Depicting the spatial coefficents
of a player with high affinity to each of the latent factors.

left column. We evaluated using both ROC curves as well
as average log loss, and we observe that our latent factor
models offer significant improvement. The gain from adding
the temporal spatial components is small (i.e., +SDT offers
about a 0.1% relative reduction in average log loss compared
to +SD), but this gain is still statistically significant given the
approximately 6 million examples/frames in our test set.

Our dataset exhibits a notable amount of class imbalance
– about 70% of frames have no action events forthcoming in
the next 1 second. To further tease out the interesting effects
learned by our model, we also evaluate predictive performance
when conditioned on an action event (shot or pass), and also
on a pass event. These results are depicted in the second
and third columns of Figure 4(a), respectively. We observe a
more significant performance gain from our spatial latent factor
models compared to the baseline, although the performance of
+SDT is no longer distinguishable from +SD.

Figure 4(b) depicts how predictive performance varies
across the basketball court. We see that the spatial latent factor
model improves performance throughout the court. When

comparing all events (top row), we observe a significant error
reduction in the two “low post” locations.9 When comparing
action events (middle row), we observe a significant error
reduction along the baseline behind the basket (for +SD and
+SDT). We comparing only passing events (bottom row), we
observe a significant error reduction around the basket area
(for +SD and +SDT). Our inspection of the learned factors in
Section VI will shed light on how components of our model
contribute to the various reductions in error.

VI. MODEL INSPECTION

We now provide a detailed inspection our learned model
in order to identify patterns that match known intuitions of
basketball game play. We will also identify aspects of our
model that contribute to the various gains in performance
depicted in Figure 4(b). Although our focus is on basketball,
this type of analysis is applicable to a wide range of domains
with fine-grained spatial patterns.

9The two low post locations are situated about 10 feet and directed at 45
degree angles away from the basket.

1 2 3 4 5 6 7 8 9 10

Shooting Factors (L)

Kawhi Carmelo Dirk Dion John Tim Kyrie Shawn Jeremy David
Leonard Anthony Nowitzki Waiters Wall Duncan Irving Marion Lin Lee

Fig. 5. Top Row: Depicting the spatial coefficents of the latent factors corresponding to the spatial coefficients contributing to the ball handler taking a shot at
each location (L). Each player’s shooting model can be represented as a combination of these factors. Bottom Row: Depicting the spatial coefficients of a player
with high affinity to each of the latent factors.

1 2 3 4 5 6 7 8 9 10

Receiving Pass Factors (M )

Tony Dirk LeBron Monta Manu David Jose Chandler Goran Joachim
Parker Nowitzki James Ellis Ginobili Lee Calderon Parsons Dragic Noah

Fig. 6. Top Row: Depicting the spatial coefficents of the latent factors corresponding to spatial coefficients contributing to a player receiving a pass at each
location (M ). Each player’s conditional shooting probabilities can be represented as a combination of these factors. Bottom Row: Depicting the spatial coefficents
of a player with high affinity to each of the latent factors.

left column. We evaluated using both ROC curves as well
as average log loss, and we observe that our latent factor
models offer significant improvement. The gain from adding
the temporal spatial components is small (i.e., +SDT offers
about a 0.1% relative reduction in average log loss compared
to +SD), but this gain is still statistically significant given the
approximately 6 million examples/frames in our test set.

Our dataset exhibits a notable amount of class imbalance
– about 70% of frames have no action events forthcoming in
the next 1 second. To further tease out the interesting effects
learned by our model, we also evaluate predictive performance
when conditioned on an action event (shot or pass), and also
on a pass event. These results are depicted in the second
and third columns of Figure 4(a), respectively. We observe a
more significant performance gain from our spatial latent factor
models compared to the baseline, although the performance of
+SDT is no longer distinguishable from +SD.

Figure 4(b) depicts how predictive performance varies
across the basketball court. We see that the spatial latent factor
model improves performance throughout the court. When

comparing all events (top row), we observe a significant error
reduction in the two “low post” locations.9 When comparing
action events (middle row), we observe a significant error
reduction along the baseline behind the basket (for +SD and
+SDT). We comparing only passing events (bottom row), we
observe a significant error reduction around the basket area
(for +SD and +SDT). Our inspection of the learned factors in
Section VI will shed light on how components of our model
contribute to the various reductions in error.

VI. MODEL INSPECTION

We now provide a detailed inspection our learned model
in order to identify patterns that match known intuitions of
basketball game play. We will also identify aspects of our
model that contribute to the various gains in performance
depicted in Figure 4(b). Although our focus is on basketball,
this type of analysis is applicable to a wide range of domains
with fine-grained spatial patterns.

9The two low post locations are situated about 10 feet and directed at 45
degree angles away from the basket.
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Fig. 7. Top Row: Depicting the spatial coefficents of the latent factors corresponding to passing from each location. Bottom Row: Depicting the associated
spatial coefficents of the latent corresponding to receiving a pass at each location. Figure 8 shows examples of aggregate passing and receiving coefficients.

A. Where do Players Tend to Shoot?

We begin by inspecting the player-by-location shooting fac-
tors B and L. We estimated a 10-dimensional representation,
which visually correspond to known shooting patterns. Our
results are shown in Figure 5. The top row depicts the ten
learned factors (i.e., the rows of L), and the bottom row depicts
the spatial coefficients of players which have high affinity for
each of the factors. The first three factors correspond to players
who shoot at the 3 point line. The next three factor correspond
to players who shoot midrange shots. The seventh factor
corresponds to players who shoot just inside the lane. The
eight factor corresponds to players who shoot while attacking
the basket from the baseline. The final two factors correspond
to players who shoot near the basket.

We note that the first factor and the last two factors have
the strongest coefficients, which is unsurprising since those are
the most valuable shooting locations. Note that the first factor
also corresponds to the large error reduction in the “corner
three” locations in the middle row of Figure 4(b). We further
note that none of the factors have strong coefficients along the
baseline behind the basket, which is also a region of large error
reduction in the middle row of Figure 4(b).

A similar analysis was conducted by [8], but with two
key differences. First, [8] did not consider the in-game state
but only modeled the shot selection chart. In contrast, we are
interested in modeling the conditional probability of a player
shooting given the current game state. For example, a player
may often occupy a certain location without shooting the ball.
Second, as described below, we also model and analyze many
more spatial factors than just player shooting tendencies.

B. Where do Players Tend to Receive Passes?

We now inspect the player-by-location passing factors P

and M . We estimated a 10-dimensional representation, which
visually correspond to known passing patterns. The top row in
Figure 6 shows the ten learned factors (i.e., the rows of M ),
and the bottom row depicts the spatial coefficients of players
which have high affinity for each of the factors.

The first factor corresponds to players that receive passes
while cutting across the baseline. In fact, many of the factors
give off a visual effect of being in motion (i.e., spatial blur),

Fig. 8. Top Row: Depicting spatial coefficients of passing to different locations
on the court. The “X” denotes the location of the passer and corresponds to
a row in Q>

1 Q2. Bottom Row: Depicting the spatial coefficients of receiving
a pass from different locations on the court. The “X” denotes the location of
the receiver, and corresponds to a column in Q>

1 Q2.

which suggests that players are often moving right before
receiving a pass.10 The second factor corresponds to players
that receive passes in the low post, which also corresponds
to areas of high error reduction in the top row of Figure
4(b).11 The next three factors depict various midrange regions.
Typically, right handed players associate more with the fourth
factor, and left handed players associate more with the fifth
factor.12 The next three factors depict regions at the three-
point line, and the final two factors depict regions in the back
court.

The players with the strongest coefficients tend to be from
playoff teams that have tracking equipment deployed on their
home courts during the 2012-2013 NBA season, since those
players have the most training data available for them. For
example, we see that Figure 5 and Figure 6 contain several
players from the San Antonio Spurs, which had the most games
in our dataset.

10This effect is most likely an artifact of how we formulated our task to
predict events up to 1 second into the future. It may be beneficial to model
multiple time intervals into the future (e.g., half a second, one second).

11Note that although players often receive passes in the low post, they
typically do not shoot from that location, as evidenced in the shooting factors
in Figure 5. Capturing this sharp spatial contrast between receiving passes and
shooting contributes to the error reduction in those regions in Figure 4(b).

12This effect is due to players preferring to drive with their strong hand.
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Passer Factors (Q1)

1 2 3 4 5 6 7 8 9 10 11 12

Receiver Factors (Q2)

Fig. 7. Top Row: Depicting the spatial coefficents of the latent factors corresponding to passing from each location. Bottom Row: Depicting the associated
spatial coefficents of the latent corresponding to receiving a pass at each location. Figure 8 shows examples of aggregate passing and receiving coefficients.

A. Where do Players Tend to Shoot?

We begin by inspecting the player-by-location shooting fac-
tors B and L. We estimated a 10-dimensional representation,
which visually correspond to known shooting patterns. Our
results are shown in Figure 5. The top row depicts the ten
learned factors (i.e., the rows of L), and the bottom row depicts
the spatial coefficients of players which have high affinity for
each of the factors. The first three factors correspond to players
who shoot at the 3 point line. The next three factor correspond
to players who shoot midrange shots. The seventh factor
corresponds to players who shoot just inside the lane. The
eight factor corresponds to players who shoot while attacking
the basket from the baseline. The final two factors correspond
to players who shoot near the basket.

We note that the first factor and the last two factors have
the strongest coefficients, which is unsurprising since those are
the most valuable shooting locations. Note that the first factor
also corresponds to the large error reduction in the “corner
three” locations in the middle row of Figure 4(b). We further
note that none of the factors have strong coefficients along the
baseline behind the basket, which is also a region of large error
reduction in the middle row of Figure 4(b).

A similar analysis was conducted by [8], but with two
key differences. First, [8] did not consider the in-game state
but only modeled the shot selection chart. In contrast, we are
interested in modeling the conditional probability of a player
shooting given the current game state. For example, a player
may often occupy a certain location without shooting the ball.
Second, as described below, we also model and analyze many
more spatial factors than just player shooting tendencies.

B. Where do Players Tend to Receive Passes?

We now inspect the player-by-location passing factors P

and M . We estimated a 10-dimensional representation, which
visually correspond to known passing patterns. The top row in
Figure 6 shows the ten learned factors (i.e., the rows of M ),
and the bottom row depicts the spatial coefficients of players
which have high affinity for each of the factors.

The first factor corresponds to players that receive passes
while cutting across the baseline. In fact, many of the factors
give off a visual effect of being in motion (i.e., spatial blur),

Fig. 8. Top Row: Depicting spatial coefficients of passing to different locations
on the court. The “X” denotes the location of the passer and corresponds to
a row in Q>

1 Q2. Bottom Row: Depicting the spatial coefficients of receiving
a pass from different locations on the court. The “X” denotes the location of
the receiver, and corresponds to a column in Q>

1 Q2.

which suggests that players are often moving right before
receiving a pass.10 The second factor corresponds to players
that receive passes in the low post, which also corresponds
to areas of high error reduction in the top row of Figure
4(b).11 The next three factors depict various midrange regions.
Typically, right handed players associate more with the fourth
factor, and left handed players associate more with the fifth
factor.12 The next three factors depict regions at the three-
point line, and the final two factors depict regions in the back
court.

The players with the strongest coefficients tend to be from
playoff teams that have tracking equipment deployed on their
home courts during the 2012-2013 NBA season, since those
players have the most training data available for them. For
example, we see that Figure 5 and Figure 6 contain several
players from the San Antonio Spurs, which had the most games
in our dataset.

10This effect is most likely an artifact of how we formulated our task to
predict events up to 1 second into the future. It may be beneficial to model
multiple time intervals into the future (e.g., half a second, one second).

11Note that although players often receive passes in the low post, they
typically do not shoot from that location, as evidenced in the shooting factors
in Figure 5. Capturing this sharp spatial contrast between receiving passes and
shooting contributes to the error reduction in those regions in Figure 4(b).

12This effect is due to players preferring to drive with their strong hand.
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Fig. 7. Top Row: Depicting the spatial coefficents of the latent factors corresponding to passing from each location. Bottom Row: Depicting the associated
spatial coefficents of the latent corresponding to receiving a pass at each location. Figure 8 shows examples of aggregate passing and receiving coefficients.

A. Where do Players Tend to Shoot?

We begin by inspecting the player-by-location shooting fac-
tors B and L. We estimated a 10-dimensional representation,
which visually correspond to known shooting patterns. Our
results are shown in Figure 5. The top row depicts the ten
learned factors (i.e., the rows of L), and the bottom row depicts
the spatial coefficients of players which have high affinity for
each of the factors. The first three factors correspond to players
who shoot at the 3 point line. The next three factor correspond
to players who shoot midrange shots. The seventh factor
corresponds to players who shoot just inside the lane. The
eight factor corresponds to players who shoot while attacking
the basket from the baseline. The final two factors correspond
to players who shoot near the basket.

We note that the first factor and the last two factors have
the strongest coefficients, which is unsurprising since those are
the most valuable shooting locations. Note that the first factor
also corresponds to the large error reduction in the “corner
three” locations in the middle row of Figure 4(b). We further
note that none of the factors have strong coefficients along the
baseline behind the basket, which is also a region of large error
reduction in the middle row of Figure 4(b).

A similar analysis was conducted by [8], but with two
key differences. First, [8] did not consider the in-game state
but only modeled the shot selection chart. In contrast, we are
interested in modeling the conditional probability of a player
shooting given the current game state. For example, a player
may often occupy a certain location without shooting the ball.
Second, as described below, we also model and analyze many
more spatial factors than just player shooting tendencies.

B. Where do Players Tend to Receive Passes?

We now inspect the player-by-location passing factors P

and M . We estimated a 10-dimensional representation, which
visually correspond to known passing patterns. The top row in
Figure 6 shows the ten learned factors (i.e., the rows of M ),
and the bottom row depicts the spatial coefficients of players
which have high affinity for each of the factors.

The first factor corresponds to players that receive passes
while cutting across the baseline. In fact, many of the factors
give off a visual effect of being in motion (i.e., spatial blur),

Fig. 8. Top Row: Depicting spatial coefficients of passing to different locations
on the court. The “X” denotes the location of the passer and corresponds to
a row in Q>

1 Q2. Bottom Row: Depicting the spatial coefficients of receiving
a pass from different locations on the court. The “X” denotes the location of
the receiver, and corresponds to a column in Q>

1 Q2.

which suggests that players are often moving right before
receiving a pass.10 The second factor corresponds to players
that receive passes in the low post, which also corresponds
to areas of high error reduction in the top row of Figure
4(b).11 The next three factors depict various midrange regions.
Typically, right handed players associate more with the fourth
factor, and left handed players associate more with the fifth
factor.12 The next three factors depict regions at the three-
point line, and the final two factors depict regions in the back
court.

The players with the strongest coefficients tend to be from
playoff teams that have tracking equipment deployed on their
home courts during the 2012-2013 NBA season, since those
players have the most training data available for them. For
example, we see that Figure 5 and Figure 6 contain several
players from the San Antonio Spurs, which had the most games
in our dataset.

10This effect is most likely an artifact of how we formulated our task to
predict events up to 1 second into the future. It may be beneficial to model
multiple time intervals into the future (e.g., half a second, one second).

11Note that although players often receive passes in the low post, they
typically do not shoot from that location, as evidenced in the shooting factors
in Figure 5. Capturing this sharp spatial contrast between receiving passes and
shooting contributes to the error reduction in those regions in Figure 4(b).

12This effect is due to players preferring to drive with their strong hand.
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Passer Factors (Q1)
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Receiver Factors (Q2)

Fig. 7. Top Row: Depicting the spatial coefficents of the latent factors corresponding to passing from each location. Bottom Row: Depicting the associated
spatial coefficents of the latent corresponding to receiving a pass at each location. Figure 8 shows examples of aggregate passing and receiving coefficients.

A. Where do Players Tend to Shoot?

We begin by inspecting the player-by-location shooting fac-
tors B and L. We estimated a 10-dimensional representation,
which visually correspond to known shooting patterns. Our
results are shown in Figure 5. The top row depicts the ten
learned factors (i.e., the rows of L), and the bottom row depicts
the spatial coefficients of players which have high affinity for
each of the factors. The first three factors correspond to players
who shoot at the 3 point line. The next three factor correspond
to players who shoot midrange shots. The seventh factor
corresponds to players who shoot just inside the lane. The
eight factor corresponds to players who shoot while attacking
the basket from the baseline. The final two factors correspond
to players who shoot near the basket.

We note that the first factor and the last two factors have
the strongest coefficients, which is unsurprising since those are
the most valuable shooting locations. Note that the first factor
also corresponds to the large error reduction in the “corner
three” locations in the middle row of Figure 4(b). We further
note that none of the factors have strong coefficients along the
baseline behind the basket, which is also a region of large error
reduction in the middle row of Figure 4(b).

A similar analysis was conducted by [8], but with two
key differences. First, [8] did not consider the in-game state
but only modeled the shot selection chart. In contrast, we are
interested in modeling the conditional probability of a player
shooting given the current game state. For example, a player
may often occupy a certain location without shooting the ball.
Second, as described below, we also model and analyze many
more spatial factors than just player shooting tendencies.

B. Where do Players Tend to Receive Passes?

We now inspect the player-by-location passing factors P

and M . We estimated a 10-dimensional representation, which
visually correspond to known passing patterns. The top row in
Figure 6 shows the ten learned factors (i.e., the rows of M ),
and the bottom row depicts the spatial coefficients of players
which have high affinity for each of the factors.

The first factor corresponds to players that receive passes
while cutting across the baseline. In fact, many of the factors
give off a visual effect of being in motion (i.e., spatial blur),

Fig. 8. Top Row: Depicting spatial coefficients of passing to different locations
on the court. The “X” denotes the location of the passer and corresponds to
a row in Q>

1 Q2. Bottom Row: Depicting the spatial coefficients of receiving
a pass from different locations on the court. The “X” denotes the location of
the receiver, and corresponds to a column in Q>

1 Q2.

which suggests that players are often moving right before
receiving a pass.10 The second factor corresponds to players
that receive passes in the low post, which also corresponds
to areas of high error reduction in the top row of Figure
4(b).11 The next three factors depict various midrange regions.
Typically, right handed players associate more with the fourth
factor, and left handed players associate more with the fifth
factor.12 The next three factors depict regions at the three-
point line, and the final two factors depict regions in the back
court.

The players with the strongest coefficients tend to be from
playoff teams that have tracking equipment deployed on their
home courts during the 2012-2013 NBA season, since those
players have the most training data available for them. For
example, we see that Figure 5 and Figure 6 contain several
players from the San Antonio Spurs, which had the most games
in our dataset.

10This effect is most likely an artifact of how we formulated our task to
predict events up to 1 second into the future. It may be beneficial to model
multiple time intervals into the future (e.g., half a second, one second).

11Note that although players often receive passes in the low post, they
typically do not shoot from that location, as evidenced in the shooting factors
in Figure 5. Capturing this sharp spatial contrast between receiving passes and
shooting contributes to the error reduction in those regions in Figure 4(b).

12This effect is due to players preferring to drive with their strong hand.
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(a) Defending Duncan’s Receiv-
ing Lane
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(c) Defending Green’s Receiving
Lane

0 10 20 30 40 50

0

10

20

30

40

50

Duncan

Parker

Green

Splitter

Leonard

Johnson

Bogans

Williams

Evans

Lopez

(d) Defending Green’s Shot

Figure 3: Visual depiction of how coordinate system of defenders are transformed to be relative w.r.t. a potential pass recipient
teammate. Figure (a) considers the passing direction from Parker to Duncan, and Williams is considered to be near Duncan and
to his right. Figure (b) considers the shooting of Duncan towards the basket, and no defenders are considered to be in front of
him. Figure (c) considers the passing direction from Parker to Green, and Bogans is considered to be somewhat near Green but
significantly to the left. Figure (d) considers the shooting direction of Green towards the basket, and Bogans is considred to be
relatively close and directly in front of Green.

for F `

s

defined in (2). Note that we do not model the identities of
players here. Although we expect different players to react differ-
ently to being defended in the same way, our initial results sug-
gested that we lack sufficient data to learn a reliable three-way la-
tent factor interaction model.

3.3.2 Modeling Passing
We finally consider modeling the positions of defenders relative

a potential pass recipient teammmate, which can suppress the prob-
ability of the ball handler passing that teammate the ball. We con-
sider two sets of views or coordinate systems here. The first view
considers defenders relative to the direction of the pass, and the sec-
ond view considers defenders relative to the direction of the basket
(which is similar to the defender model for shooting).

Figure 3 depicts examples of these two views. Figures 3(a) and
3(c) show the first view which computes the positions of defend-
ers relative to the the direction of the pass. Figures 3(b) and 3(d)
show the second view which computes the positions of the defend-
ers relative to the pass recipient teammate’s path towards the bas-
ket. Have defenders blocking the foward direction in either view
can contribute to reducing the probability that the ball handler will
pass to that teammate.

Let ˜

C1,˜̀ and ˜

C2,˜̀ denote the latent factors representing the rel-
ative position ˜

` of the defender w.r.t. the two views. Let ˜

M1,` and
˜

M2,` denote the latent factors representing the location of the pass
recipient on the court. We can write the scoring function for how
defenders impact a teammate from receiving a pass as:
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where ṽ1,˜̀ and ṽ2,˜̀ are global parameters that do not depend on
the location, and �

d

is a feature function that computes a small
set of global distance features, such as the location-independent
distance between the defenders and the teammate, and the ratio of

the passing distance to the defender’s distance. This leads us to our
final scoring function for passing events:
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p

(x) = F
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(x)� F

d
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(x), (9)

for F `

p

defined as in (3).

3.4 Learning Objective
We now describe our learning criterion to be optimized during

model fitting. Let ⇥ denote all of the parameters of our model. We
formulate our learning objective as a discriminative training prob-
lem common to training conditional random fields. In particular,
we wish to minimize a trade-off between the negative conditional
log likelihood of the training data and regularization term control-
ling the complexity of our model:
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) + �R(⇥), (10)

where C denotes the feasible space of model parameters, R(⇥) de-
notes the regularization function, and � is a hyperparameter that
trades off between the two.

We define R(⇥) using two components that decompose addi-
tively. The first component is the standard squared two norm that
encourages parameter weights to be small. The second compo-
nent is a spatial regularization term that encourages parameters of
nearby cells to be similar to each other.

3.4.1 Spatial Regularization
As an example, consider the latent factors L representing the

locations on the court that players tend to shoot from (see Section
3.2). We can write the regularization term as
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0.
This has the effect of encouraging the spatial parameters to vary
smoothly. In general, the similarity terms  can be chosen using
any kernel function. We use the RBF kernel:
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Figure 3: Visual depiction of how coordinate system of defenders are transformed to be relative w.r.t. a potential pass recipient
teammate. Figure (a) considers the passing direction from Parker to Duncan, and Williams is considered to be near Duncan and
to his right. Figure (b) considers the shooting of Duncan towards the basket, and no defenders are considered to be in front of
him. Figure (c) considers the passing direction from Parker to Green, and Bogans is considered to be somewhat near Green but
significantly to the left. Figure (d) considers the shooting direction of Green towards the basket, and Bogans is considred to be
relatively close and directly in front of Green.
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defined in (2). Note that we do not model the identities of
players here. Although we expect different players to react differ-
ently to being defended in the same way, our initial results sug-
gested that we lack sufficient data to learn a reliable three-way la-
tent factor interaction model.

3.3.2 Modeling Passing
We finally consider modeling the positions of defenders relative

a potential pass recipient teammmate, which can suppress the prob-
ability of the ball handler passing that teammate the ball. We con-
sider two sets of views or coordinate systems here. The first view
considers defenders relative to the direction of the pass, and the sec-
ond view considers defenders relative to the direction of the basket
(which is similar to the defender model for shooting).

Figure 3 depicts examples of these two views. Figures 3(a) and
3(c) show the first view which computes the positions of defend-
ers relative to the the direction of the pass. Figures 3(b) and 3(d)
show the second view which computes the positions of the defend-
ers relative to the pass recipient teammate’s path towards the bas-
ket. Have defenders blocking the foward direction in either view
can contribute to reducing the probability that the ball handler will
pass to that teammate.

Let ˜

C1,˜̀ and ˜

C2,˜̀ denote the latent factors representing the rel-
ative position ˜

` of the defender w.r.t. the two views. Let ˜

M1,` and
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M2,` denote the latent factors representing the location of the pass
recipient on the court. We can write the scoring function for how
defenders impact a teammate from receiving a pass as:
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is a feature function that computes a small
set of global distance features, such as the location-independent
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model fitting. Let ⇥ denote all of the parameters of our model. We
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where C denotes the feasible space of model parameters, R(⇥) de-
notes the regularization function, and � is a hyperparameter that
trades off between the two.

We define R(⇥) using two components that decompose addi-
tively. The first component is the standard squared two norm that
encourages parameter weights to be small. The second compo-
nent is a spatial regularization term that encourages parameters of
nearby cells to be similar to each other.

3.4.1 Spatial Regularization
As an example, consider the latent factors L representing the
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Fig. 9. Top Row: Depicting the spatial coefficients of the latent factors ˜D
corresponding to how defender positions relative to the ball handler suppresses
the conditional probability that the ball handler will shoot. The “X” denotes
the ball handler, and the up direction corresponds to toward the basket. Bottom
Row: Depicting the corresponding spatial coefficents on the court ˜L.

C. Where Does the Ball Tend to Get Passed To and From?

We now inspect the twelve Q1 and Q2 factors which
correspond to pairwise passer and teammate locations. The top
row of Figure 7 depicts the factors Q1 representing locations
of the passer, and the bottom row depicts the associated factors
Q2 representing the locations of the pass recipient.13 We
observe that the passing factors tend to exhibit more local
coherence, which fits with our intuition that players tend to be
stationary when passing. In contrast, we see that the receiving
factors exhibit more complex spatial structure. For example,
the seventh and eighth factors depict players who receive
passes after cutting across the baseline from behind the basket.
These results suggest a direction for future work: modeling
not only the current game state but also the recent trajectories
between the current state and the previous game states.

Figure 8 depictes the aggregate spatial coefficients Q

>
1 Q2

of passing and receiving at a few example locations on the
court. Interestingly, one could interpret Q>

1 Q2 as analogous to
the transition matrix of a Markov chain random walk in terms
of passing the ball. It would be interesting to combine this
approach with the approach in [16] to model and analyze the
flow of basketball passes during a possession.

D. What Defensive Positions Suppress Shot Probability?

We now inspect the defender factors, starting with the shot
suppression factors ˜

D and ˜

L. Figure 9 depicts the five factors
we estimated here. The top row corresponds to the relative
positioning of defenders around the ball handler ( ˜D), and the
bottom row corresponds to the locations on the court that are
most affected by this kind of defensive positioning (˜L).

We see that the ˜

D factors naturally correspond to different
defensive positionings, which is unsurprising since defenders
are known the defend more closely the closer the ball handler
is to the basket. We also note a complete lack of spatial
coefficients in the region around the basket, indicating that
defensive positioning does not suppress shot probability near
the basket14 – this effect also contributes indirectly to the error
reduction in the bottom row of Figure 4(b), since it allows for
estimating stronger coefficients elsewhere in the court and then
suppressing those scores through the defender factors.

13Players located in areas where the passing factor is strong tend to pass
to players located where the associated receiving factor is strong.

14Although it certainly affects the probability of making the shot.

(a) Defending Passing Lane (b) Defending Shooting Angle

Fig. 10. Depicting spatial coefficients corresponding to how the positions
of defenders relative to a player can suppress the probability of that player
receiving a pass. The “X” denotes the ball handler. In the left plots, the up
direction is towards the passer. In the right plots, the up direction is towards
the basket.
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Fig. 11. Top Row: Depicting the spatial coefficients (five factors of V ) of
the tendency to shoot, pass, and keep the ball (null). Bottom Row: Depicting
the time-varying coefficients for shooting Ts, passing Tp and keeping the ball
T? over seven seconds.

E. What Defensive Positions Suppress Pass Probability?

We now inspect the factors ˜

C1, ˜

M1, ˜

C2, ˜

M2 that cor-
respond to pass suppression. These factors are depicted in
Figure 10. The left plots in the figure correspond to defending
the direction towards the ball handler, and the right plots
correspond to defending in the direction towards the basket.

In Figure 10(a), we see that the defenders tend to defend
more closely when the player is closer to the basket in order
to suppress a pass, which agrees with our intuition. In Figure
10(b), we see that defenders tend to hedge towards the middle
of the court, while still defending the path to the basket, which
also agrees with our intuition.15 We also see in the first factor
in Figure 4(b) that suppressing passes into the region near the
basket is best accomplished by “fronting” the offensive player
which leads to playing behind the player’s path to the basket.
Both sets of defender factors devote significant model capacity
to the region near the basket, which also contributes to the error
reduction in the bottom row of Figure 4(b).

F. How Does Behavior Vary with Duration of Possession?

We finally inspect the temporally varying factors T

s

, T
p

,
T?, and their corresponding spatial factors V . The top row of
Figure 11 depicts the five dimensions of V that we estimated,
and the bottom row depicts the corresponding temporally
varying coefficients of the five factors of T

s

, T

p

, and T?.
The first factor corresponds to locations where the ball handler

15Intuitively, pass to the corner often comes from the middle of the court,
so hedging against the middle should lead to suppressing passing probability.
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Fig. 9. Top Row: Depicting the spatial coefficients of the latent factors ˜D
corresponding to how defender positions relative to the ball handler suppresses
the conditional probability that the ball handler will shoot. The “X” denotes
the ball handler, and the up direction corresponds to toward the basket. Bottom
Row: Depicting the corresponding spatial coefficents on the court ˜L.

C. Where Does the Ball Tend to Get Passed To and From?

We now inspect the twelve Q1 and Q2 factors which
correspond to pairwise passer and teammate locations. The top
row of Figure 7 depicts the factors Q1 representing locations
of the passer, and the bottom row depicts the associated factors
Q2 representing the locations of the pass recipient.13 We
observe that the passing factors tend to exhibit more local
coherence, which fits with our intuition that players tend to be
stationary when passing. In contrast, we see that the receiving
factors exhibit more complex spatial structure. For example,
the seventh and eighth factors depict players who receive
passes after cutting across the baseline from behind the basket.
These results suggest a direction for future work: modeling
not only the current game state but also the recent trajectories
between the current state and the previous game states.

Figure 8 depictes the aggregate spatial coefficients Q

>
1 Q2

of passing and receiving at a few example locations on the
court. Interestingly, one could interpret Q>

1 Q2 as analogous to
the transition matrix of a Markov chain random walk in terms
of passing the ball. It would be interesting to combine this
approach with the approach in [16] to model and analyze the
flow of basketball passes during a possession.

D. What Defensive Positions Suppress Shot Probability?

We now inspect the defender factors, starting with the shot
suppression factors ˜

D and ˜

L. Figure 9 depicts the five factors
we estimated here. The top row corresponds to the relative
positioning of defenders around the ball handler ( ˜D), and the
bottom row corresponds to the locations on the court that are
most affected by this kind of defensive positioning (˜L).

We see that the ˜

D factors naturally correspond to different
defensive positionings, which is unsurprising since defenders
are known the defend more closely the closer the ball handler
is to the basket. We also note a complete lack of spatial
coefficients in the region around the basket, indicating that
defensive positioning does not suppress shot probability near
the basket14 – this effect also contributes indirectly to the error
reduction in the bottom row of Figure 4(b), since it allows for
estimating stronger coefficients elsewhere in the court and then
suppressing those scores through the defender factors.

13Players located in areas where the passing factor is strong tend to pass
to players located where the associated receiving factor is strong.

14Although it certainly affects the probability of making the shot.

(a) Defending Passing Lane (b) Defending Shooting Angle

Fig. 10. Depicting spatial coefficients corresponding to how the positions
of defenders relative to a player can suppress the probability of that player
receiving a pass. The “X” denotes the ball handler. In the left plots, the up
direction is towards the passer. In the right plots, the up direction is towards
the basket.

0 1 2 3 4 5 6 7 

 
shot
pass
null

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Fig. 11. Top Row: Depicting the spatial coefficients (five factors of V ) of
the tendency to shoot, pass, and keep the ball (null). Bottom Row: Depicting
the time-varying coefficients for shooting Ts, passing Tp and keeping the ball
T? over seven seconds.

E. What Defensive Positions Suppress Pass Probability?

We now inspect the factors ˜

C1, ˜

M1, ˜

C2, ˜

M2 that cor-
respond to pass suppression. These factors are depicted in
Figure 10. The left plots in the figure correspond to defending
the direction towards the ball handler, and the right plots
correspond to defending in the direction towards the basket.

In Figure 10(a), we see that the defenders tend to defend
more closely when the player is closer to the basket in order
to suppress a pass, which agrees with our intuition. In Figure
10(b), we see that defenders tend to hedge towards the middle
of the court, while still defending the path to the basket, which
also agrees with our intuition.15 We also see in the first factor
in Figure 4(b) that suppressing passes into the region near the
basket is best accomplished by “fronting” the offensive player
which leads to playing behind the player’s path to the basket.
Both sets of defender factors devote significant model capacity
to the region near the basket, which also contributes to the error
reduction in the bottom row of Figure 4(b).

F. How Does Behavior Vary with Duration of Possession?

We finally inspect the temporally varying factors T

s

, T
p

,
T?, and their corresponding spatial factors V . The top row of
Figure 11 depicts the five dimensions of V that we estimated,
and the bottom row depicts the corresponding temporally
varying coefficients of the five factors of T

s

, T

p

, and T?.
The first factor corresponds to locations where the ball handler

15Intuitively, pass to the corner often comes from the middle of the court,
so hedging against the middle should lead to suppressing passing probability.
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This paper makes the following contributions: 

• A new approach to social access control – using end-user 
interactive machine learning to help people create custom 
groups on-demand in the context of sharing decisions.  

• A discussion of several new challenges for the design of 
effective end-user interaction with machine learning 
systems, as exposed in our application to social networks.  

• Novel example and feature-based interaction techniques 
for addressing the above design challenges in ReGroup.  

• An evaluation of ReGroup compared to traditional 
methods of on-demand group creation. Our quantitative 
and qualitative analyses indicate that different techniques 
are effective for different types of groups and therefore 
integrating all techniques in online social networks can 
support a wider range of desired groups. 

REGROUP 
ReGroup uses end-user interactive machine learning to help 
people create custom groups on-demand. In this section, we 
first use an example to illustrate how a person can create a 
group with ReGroup. We then discuss the challenges 
inherent to interactive machine learning for group creation 
and how we address them in our design of ReGroup. 

Example Usage Scenario 
Ada wants to advertise a confidential research talk to 
relevant friends at the University of Washington, so she 
decides to use ReGroup to create a private group for the ad. 
To start, she thinks of a friend she knows will be interested 
in the talk, searches for them by name (via a search box, left 
in Figure 1) and adds them to her group (Selected display, 
top in Figure 1). ReGroup learns from this example and 
then tries to help Ada find other friends to include. It 

 
Figure 1. ReGroup uses end-user interactive machine learning to help people create custom, on-demand groups. As a person 
selects group members (in the Selected display), ReGroup suggests additional members (in the Suggestions display) and suggests 
group characteristics as filters for narrowing down a friend list (see five suggested filters at the top of the Filters display). 
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Apolo: Making Sense of Large Network Data by Combining
Rich User Interaction and Machine Learning
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ABSTRACT
Extracting useful knowledge from large network datasets has
become a fundamental challenge in many domains, from sci-
entific literature to social networks and the web. We intro-
duce Apolo, a system that uses a mixed-initiative approach—
combining visualization, rich user interaction and machine
learning—to guide the user to incrementally and interac-
tively explore large network data and make sense of it. Apolo
engages the user in bottom-up sensemaking to gradually build
up an understanding over time by starting small, rather than
starting big and drilling down. Apolo also helps users find
relevant information by specifying exemplars, and then us-
ing a machine learning method called Belief Propagation to
infer which other nodes may be of interest. We evaluated
Apolo with twelve participants in a between-subjects study,
with the task being to find relevant new papers to update
an existing survey paper. Using expert judges, participants
using Apolo found significantly more relevant papers. Sub-
jective feedback of Apolo was also very positive.

Author Keywords
Sensemaking, large network, Belief Propagation
ACM Classification Keywords
H.3.3 Information Storage and Retrieval: Relevance feed-
back; H.5.2 Information Interfaces and Presentation: User
Interfaces
General Terms
Algorithms, Design, Human Factors

INTRODUCTION
Making sense of large networks is an increasingly important
problem in domains ranging from citation networks of sci-
entific literature; social networks of friends and colleagues;
links between web pages in the World Wide Web; and per-
sonal information networks of emails, contacts, and appoint-
ments. Theories of sensemaking provide a way to character-
ize and address the challenges faced by people trying to or-
ganize and understand large amounts of network-based data.
Sensemaking refers to the iterative process of building up a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CHI 2011, May 7–12, 2011, Vancouver, BC, Canada.
Copyright 2011 ACM 978-1-4503-0267-8/11/05...$10.00.

Figure 1. Apolo displaying citation network data around the article The

Cost Structure of Sensemaking. The user gradually builds up a mental
model of the research areas around the article by manually inspect-
ing some neighboring articles in the visualization and specifying them
as exemplar articles (with colored dots underneath) for some ad hoc
groups, and instructs Apolo to find more articles relevant to them.

representation or schema of an information space that is use-
ful for achieving the user’s goal [31]. For example, a scien-
tist interested in connecting her work to a new domain must
build up a mental representation of the existing literature in
the new domain to understand and contribute to it.

For the above scientist, she may forage to find papers that
she thinks are relevant, and build up a representation of how
those papers relate to each other. As she continues to read
more papers and realizes her mental model may not well fit
the data she may engage in representational shifts to alter her
mental model to better match the data [31]. Such representa-
tional shifts is a hallmark of insight and problem solving, in
which re-representing a problem in a different form can lead
to previously unseen connections and solutions [11]. The
practical importance of organizing and re-representing in-
formation in the sensemaking process of knowledge workers
has significant empirical and theoretical support [28].

We focus on helping people develop and evolve external-
ized representations of their internal mental models to sup-
port sensemaking in large network data. Finding, filtering,
and extracting information have already been the subjects
of significant research, involving both specific applications
[7] and a rich variety of general-purpose tools, including
search engines, recommendation systems, and summariza-
tion and extraction algorithms. However, just finding and
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Palaces' Gardens' City'Strolling' Architecture' Art'Museums' Outdoors'

“Art Enthusiast” “City Stroller” (a) “City Stroller”

Palaces' Gardens' City'Strolling' Architecture' Art'Museums' Outdoors'

“Art Enthusiast” “City Stroller” 
(b) “Art Enthusiast”

Figure 1: Showing clusterings from two hypothetical users.
The top user enjoys a good stroll, and groups the “River Seine”
with nice walking spots in the city. The bottom user is more
interested in art and architecture, and groups the “River Seine”
in a broader “Outdoors” category.

assumption is that, although different users have different similarity
preferences, most users share similarity preferences with other users.
To tackle this problem, we propose a latent factor model, which we
call “Latent Collaborative Clustering,” to automatically learn a low-
dimensional feature representation to reliably characterize the space
(or variability) of users’ similarity preferences. One interesting
aspect of our approach is that it inherits the benefits of both tensor
factorization as well as metric learning approaches (see Section 6).

We evaluate our approach using usage data collected from a clus-
tering interface we developed for the sensemaking task of exploring
and organizing attractions in Paris with the intention of planning a
trip there (see Section 5 for more details). We conduct our evalua-
tion based on several realistic use cases, and show that our approach
learns more effective user models than conventional clustering and
metric learning approaches. An implementation of our method as
well as our collected dataset is publicly available.2

2. COLLABORATIVE CLUSTERING
We now define the problem of collaborative clustering. Suppose

we have M users and N items. We assume each user has generated
a clustering on a subset of the N items.3 This type of preference
data can be naturally collected from rich interfaces that support
clustering (e.g., [9]). Figure 1 shows example clusterings that can
be collected from our user interface (see Section 5 and Figure 4 for
more details on our user interface and data collection process).

Our entire training data Y can be written as:

Y = {Y
m

}M
m=1 . (1)

We define each user’s feedback Y
m

as:

Y
m

=

n

Y 1
m

, . . . , Y Cm
m

o

, (2)

2See: http://projects.yisongyue.com/collab_cluster
3This is analogous to the assumption common in collaborative
filtering that each user has rated a subset of the items.

where each Y i

m

denotes a set of items that user m has indicated
as belonging to the same group or cluster, and C

m

indicates the
total number of groups for user m. We also use the notation ¯Y

m

=

{Y 1
m

[ . . .[Y Cm
m

} to denote all the items that user m has clustered.
Similar to previous work on clustering with side information (e.g.,

[29, 13]), we model clustering feedback in the form of pairwise
must-link and cannot-link labels: for each user m and every pair of
items i, j 2 ¯Y

m

clustered by user m, define y
mij

= 1 if user m
groups items i and j into the same cluster, and y

mij

= �1 if user
m clusters items i and j into different clusters.

For example, the user in Figure 1(a) placed “Luxembourg Gar-
dens” and “River Seine” into different clusters, so we would assign

y“CityStroller

00
,“LuxembourgGardens

00
,“RiverSeine

00
= �1.

On the other hand, the user in Figure 1(b) placed the two attractions
into the same cluster, so we would assign

y“ArtEnthusiast

00
,“LuxembourgGardens

00
,“RiverSeine

00
= +1.

Our goal is to learn a similarity model F (m, i, j) such that:

8m, 8i, j 2 ¯Y
m

: F (m, i, j) ⇡ y
mij

.

2.1 Predicting Cluster Memberships
Given a partial clustering of items Y

m

for user m, we are inter-
ested in having a model that can generalize to new items not yet
recommended (and thus not yet clustered) by user m. For simplic-
ity, we focus here on predicting the cluster membership of a single
unclustered item at a time.4

For any unclustered item i, we score its affinity to cluster c created
by user m as:

F (m, i, Y c

m

) = mean{F (m, i, j) : j 2 Y c

m

}, (3)

and define c̄
mi

as the most likely cluster:

c̄
mi

= argmax

c2{1,...,Cm}
F (m, i, Y c

m

). (4)

We define our cluster prediction function for item i given partial
clustering Y

m

as predicting the cluster with highest affinity:

predict(i|m,Y
m

) =

⇢

c̄
mi

if F (m, i, Y c̄mi
m

) > 0

? if F (m, i, Y c̄mi
m

)  0

, (5)

where ? denotes “new cluster” or “none of the above.”
The two cases in (5) represent two types of generalization tasks.

The first case corresponds to a conventional setting where all clusters
are assumed known during evaluation. In this case, we simply
predict the cluster with highest affinity to the unclustered item.

The second case (predicting whether an item belongs to a nonex-
istent cluster), which is arguably more interesting, is motivated by
the intuition that recommending non-redundant items (i.e., those not
belonging to any existing cluster) maximizes the novel information
presented to the user. One appealing property of the affinity for-
mulation F (m, i, j) is that it naturally accommodates this type of
generalization – we simply predict ? whenever item i has negative
affinity with all existing clusters.

A priori, it may seem difficult to learn to predict cluster mem-
berships for nonexistent clusters. We will present an approach that
explicitly models how clusters are different through the must-link
and cannot-link pairs across all users, thus allowing the resulting
model to generalize to nonexistent clusters (for any given user) in a
straightforward way.
4Predicting for multiple items simultaneously will lead to a more
structured prediction problem analogous to semi-supervised (or
transductive) clustering [4].

Palaces' Gardens' City'Strolling' Architecture' Art'Museums' Outdoors'

“Art Enthusiast” “City Stroller” (a) “City Stroller”

Palaces' Gardens' City'Strolling' Architecture' Art'Museums' Outdoors'

“Art Enthusiast” “City Stroller” 
(b) “Art Enthusiast”

Figure 1: Showing clusterings from two hypothetical users.
The top user enjoys a good stroll, and groups the “River Seine”
with nice walking spots in the city. The bottom user is more
interested in art and architecture, and groups the “River Seine”
in a broader “Outdoors” category.

assumption is that, although different users have different similarity
preferences, most users share similarity preferences with other users.
To tackle this problem, we propose a latent factor model, which we
call “Latent Collaborative Clustering,” to automatically learn a low-
dimensional feature representation to reliably characterize the space
(or variability) of users’ similarity preferences. One interesting
aspect of our approach is that it inherits the benefits of both tensor
factorization as well as metric learning approaches (see Section 6).

We evaluate our approach using usage data collected from a clus-
tering interface we developed for the sensemaking task of exploring
and organizing attractions in Paris with the intention of planning a
trip there (see Section 5 for more details). We conduct our evalua-
tion based on several realistic use cases, and show that our approach
learns more effective user models than conventional clustering and
metric learning approaches. An implementation of our method as
well as our collected dataset is publicly available.2

2. COLLABORATIVE CLUSTERING
We now define the problem of collaborative clustering. Suppose

we have M users and N items. We assume each user has generated
a clustering on a subset of the N items.3 This type of preference
data can be naturally collected from rich interfaces that support
clustering (e.g., [9]). Figure 1 shows example clusterings that can
be collected from our user interface (see Section 5 and Figure 4 for
more details on our user interface and data collection process).

Our entire training data Y can be written as:

Y = {Y
m

}M
m=1 . (1)

We define each user’s feedback Y
m

as:

Y
m

=

n

Y 1
m

, . . . , Y Cm
m

o

, (2)

2See: http://projects.yisongyue.com/collab_cluster
3This is analogous to the assumption common in collaborative
filtering that each user has rated a subset of the items.

where each Y i

m

denotes a set of items that user m has indicated
as belonging to the same group or cluster, and C

m

indicates the
total number of groups for user m. We also use the notation ¯Y

m

=

{Y 1
m

[ . . .[Y Cm
m

} to denote all the items that user m has clustered.
Similar to previous work on clustering with side information (e.g.,

[29, 13]), we model clustering feedback in the form of pairwise
must-link and cannot-link labels: for each user m and every pair of
items i, j 2 ¯Y

m

clustered by user m, define y
mij

= 1 if user m
groups items i and j into the same cluster, and y

mij

= �1 if user
m clusters items i and j into different clusters.

For example, the user in Figure 1(a) placed “Luxembourg Gar-
dens” and “River Seine” into different clusters, so we would assign

y“CityStroller

00
,“LuxembourgGardens

00
,“RiverSeine

00
= �1.

On the other hand, the user in Figure 1(b) placed the two attractions
into the same cluster, so we would assign

y“ArtEnthusiast

00
,“LuxembourgGardens

00
,“RiverSeine

00
= +1.

Our goal is to learn a similarity model F (m, i, j) such that:

8m, 8i, j 2 ¯Y
m

: F (m, i, j) ⇡ y
mij

.

2.1 Predicting Cluster Memberships
Given a partial clustering of items Y

m

for user m, we are inter-
ested in having a model that can generalize to new items not yet
recommended (and thus not yet clustered) by user m. For simplic-
ity, we focus here on predicting the cluster membership of a single
unclustered item at a time.4

For any unclustered item i, we score its affinity to cluster c created
by user m as:

F (m, i, Y c

m

) = mean{F (m, i, j) : j 2 Y c

m

}, (3)

and define c̄
mi

as the most likely cluster:

c̄
mi

= argmax

c2{1,...,Cm}
F (m, i, Y c

m

). (4)

We define our cluster prediction function for item i given partial
clustering Y

m

as predicting the cluster with highest affinity:

predict(i|m,Y
m

) =

⇢

c̄
mi

if F (m, i, Y c̄mi
m

) > 0

? if F (m, i, Y c̄mi
m

)  0

, (5)

where ? denotes “new cluster” or “none of the above.”
The two cases in (5) represent two types of generalization tasks.

The first case corresponds to a conventional setting where all clusters
are assumed known during evaluation. In this case, we simply
predict the cluster with highest affinity to the unclustered item.

The second case (predicting whether an item belongs to a nonex-
istent cluster), which is arguably more interesting, is motivated by
the intuition that recommending non-redundant items (i.e., those not
belonging to any existing cluster) maximizes the novel information
presented to the user. One appealing property of the affinity for-
mulation F (m, i, j) is that it naturally accommodates this type of
generalization – we simply predict ? whenever item i has negative
affinity with all existing clusters.

A priori, it may seem difficult to learn to predict cluster mem-
berships for nonexistent clusters. We will present an approach that
explicitly models how clusters are different through the must-link
and cannot-link pairs across all users, thus allowing the resulting
model to generalize to nonexistent clusters (for any given user) in a
straightforward way.
4Predicting for multiple items simultaneously will lead to a more
structured prediction problem analogous to semi-supervised (or
transductive) clustering [4].
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Figure 1: Showing clusterings from two hypothetical users.
The top user enjoys a good stroll, and groups the “River Seine”
with nice walking spots in the city. The bottom user is more
interested in art and architecture, and groups the “River Seine”
in a broader “Outdoors” category.

assumption is that, although different users have different similarity
preferences, most users share similarity preferences with other users.
To tackle this problem, we propose a latent factor model, which we
call “Latent Collaborative Clustering,” to automatically learn a low-
dimensional feature representation to reliably characterize the space
(or variability) of users’ similarity preferences. One interesting
aspect of our approach is that it inherits the benefits of both tensor
factorization as well as metric learning approaches (see Section 6).

We evaluate our approach using usage data collected from a clus-
tering interface we developed for the sensemaking task of exploring
and organizing attractions in Paris with the intention of planning a
trip there (see Section 5 for more details). We conduct our evalua-
tion based on several realistic use cases, and show that our approach
learns more effective user models than conventional clustering and
metric learning approaches. An implementation of our method as
well as our collected dataset is publicly available.2

2. COLLABORATIVE CLUSTERING
We now define the problem of collaborative clustering. Suppose

we have M users and N items. We assume each user has generated
a clustering on a subset of the N items.3 This type of preference
data can be naturally collected from rich interfaces that support
clustering (e.g., [9]). Figure 1 shows example clusterings that can
be collected from our user interface (see Section 5 and Figure 4 for
more details on our user interface and data collection process).

Our entire training data Y can be written as:

Y = {Y
m

}M
m=1 . (1)

We define each user’s feedback Y
m

as:

Y
m

=

n

Y 1
m

, . . . , Y Cm
m

o

, (2)

2See: http://projects.yisongyue.com/collab_cluster
3This is analogous to the assumption common in collaborative
filtering that each user has rated a subset of the items.

where each Y i

m

denotes a set of items that user m has indicated
as belonging to the same group or cluster, and C

m

indicates the
total number of groups for user m. We also use the notation ¯Y

m

=

{Y 1
m

[ . . .[Y Cm
m

} to denote all the items that user m has clustered.
Similar to previous work on clustering with side information (e.g.,

[29, 13]), we model clustering feedback in the form of pairwise
must-link and cannot-link labels: for each user m and every pair of
items i, j 2 ¯Y

m

clustered by user m, define y
mij

= 1 if user m
groups items i and j into the same cluster, and y

mij

= �1 if user
m clusters items i and j into different clusters.

For example, the user in Figure 1(a) placed “Luxembourg Gar-
dens” and “River Seine” into different clusters, so we would assign

y“CityStroller

00
,“LuxembourgGardens

00
,“RiverSeine

00
= �1.

On the other hand, the user in Figure 1(b) placed the two attractions
into the same cluster, so we would assign

y“ArtEnthusiast

00
,“LuxembourgGardens

00
,“RiverSeine

00
= +1.

Our goal is to learn a similarity model F (m, i, j) such that:

8m, 8i, j 2 ¯Y
m

: F (m, i, j) ⇡ y
mij

.

2.1 Predicting Cluster Memberships
Given a partial clustering of items Y

m

for user m, we are inter-
ested in having a model that can generalize to new items not yet
recommended (and thus not yet clustered) by user m. For simplic-
ity, we focus here on predicting the cluster membership of a single
unclustered item at a time.4

For any unclustered item i, we score its affinity to cluster c created
by user m as:

F (m, i, Y c

m

) = mean{F (m, i, j) : j 2 Y c

m

}, (3)

and define c̄
mi

as the most likely cluster:

c̄
mi

= argmax

c2{1,...,Cm}
F (m, i, Y c

m

). (4)

We define our cluster prediction function for item i given partial
clustering Y

m

as predicting the cluster with highest affinity:

predict(i|m,Y
m

) =

⇢

c̄
mi

if F (m, i, Y c̄mi
m

) > 0

? if F (m, i, Y c̄mi
m

)  0

, (5)

where ? denotes “new cluster” or “none of the above.”
The two cases in (5) represent two types of generalization tasks.

The first case corresponds to a conventional setting where all clusters
are assumed known during evaluation. In this case, we simply
predict the cluster with highest affinity to the unclustered item.

The second case (predicting whether an item belongs to a nonex-
istent cluster), which is arguably more interesting, is motivated by
the intuition that recommending non-redundant items (i.e., those not
belonging to any existing cluster) maximizes the novel information
presented to the user. One appealing property of the affinity for-
mulation F (m, i, j) is that it naturally accommodates this type of
generalization – we simply predict ? whenever item i has negative
affinity with all existing clusters.

A priori, it may seem difficult to learn to predict cluster mem-
berships for nonexistent clusters. We will present an approach that
explicitly models how clusters are different through the must-link
and cannot-link pairs across all users, thus allowing the resulting
model to generalize to nonexistent clusters (for any given user) in a
straightforward way.
4Predicting for multiple items simultaneously will lead to a more
structured prediction problem analogous to semi-supervised (or
transductive) clustering [4].
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(a) “City Stroller”

(b) “Art Enthusiast”

Figure 2: Showing the top eight most similar attractions to
“River Seine” with respect to the two users in Figure 1 (see
Section 3.1). For the top user (Figure 1(a)), the most similar
attractions are related to “City Strolling”. For the bottom user
(Figure 1(b), the most similar attractions are related to “Out-
doors”. See Section 3.1 for more details.

where ¯V =

1
M

P

m

V
m

, although other multi-task regularization
terms are possible (e.g., [32]).

Transformed Feature-Based Model. We can further extend our
feature-based baseline (12) using a latent tranform SDz⇥D (which
is similar to the approach in [6]),

F (m, i, j) = z>
i

SV
m

ST z
j

+ b, (14)

where D
z

denotes here the dimensionality of the observed features
z
i

, and D  D
z

denotes the latent dimensionality. Essentially, S>z
transforms the observed features z into a “latent” space whereas
our LCC model (6) directly learns the latent representation without
using observed features.

One potential advantage of this model over the feature-based
model is that it can fully model three-way interactions (between a
user and a pair of items) using a latent representation (however, the
model is limited to linear transforms of observable features). We
will regularize S using the squared norm

R
s

(S) = �
s

kSk2.

Appendix A.6 gives a gradient descent formulation for training S.
Note that our LCC model is actually equivalent to having each

item i assigned a unique feature, i.e., z
i

= e
i

for e
i

being the canon-
ical unit vector along the i-th axis (so that D

z

= M ). In this case,
we can establish an equivalence between LCC and the feature trans-
form as x

i

= S
i

where S
i

denotes the i-th column of S. The special

form of our LCC model yields significantly more efficient training
algorithms due to having closed form solutions (see Appendix A).
Furthermore, as we shall see in the experiments, it is unclear if
leveraging observable features yields improved performance over
directly learning a latent item representation in our problem setting.

Augmented LCC Model. The augmented LCC model is a natu-
ral extension that incorporates both latent and feature-based compo-
nents. We can combine (6) and (12) (or (14)) to yield:

F (m, i, j) = x>
i

U
m

x
j

+ z>
i

V
m

z
j

+ b, (15)

and define the modified learning objective as L(U,V, x, b) =

R
x

(x) +R
u

(U) +R
v

(V) +

˜R
v

(V) +

X

m

L
m

. (16)

4. EXPERIMENTS
We evaluated our approach using usage data collected from a

clustering interface we developed for the data exploration task of
organizing attractions in Paris. Each user was asked to organize in
groups a small subset of 250 attractions in Paris (that they found
interesting), with the intention of planning a trip there. We refer to
Section 5 for more details regarding our user study. Overall, we col-
lected data from 218 users, with an average of 18.7 items clustered
and 4.5 clusters created per user. We evaluated both static as well as
dynamic prediction tasks, which we describe in the following.

4.1 Static Prediction Experiments
4.1.1 Experiment Setup

We conducted 5-fold cross validation using the collected usage
data. Each fold comprises approximately 125 training users, 50
validation users, and 43 test users. For each fold, we train all models
using the training set with a range of hyperparameter settings (in-
cluding regularization parameters and latent dimensions). We select
the best model based on prediction performance on the validation
set, and report performance on the test set.

For each user in the validation and test sets, at prediction time, we
split the attractions clustered by the user into an input clustering and
a held-out set. Each model is given the input clustering, and must
predict to which of the existing clusters (or none) each held-out
item belongs to. For our LCC model, the input clustering is used to
learn the user-specific transform U . For the feature-based models,
the input clustering is used to learn the user-specific V . Recall that
predictions are made via predict (5).

We evaluate three types of static prediction tasks:
• Hold 50%. We randomly hold out 50% of the attractions the

user clustered, and use the remaining clustered attractions as
the input to the model.

• Hold 25% per Cluster. We randomly hold out 25% of each
cluster the user created, and use the remaining clustered at-
tractions as the input to the model. This setting is analogous
to the first prediction task in Section 2.1, and is most analo-
gous to conventional clustering tasks where all clusters are
assumed to be known (i.e., none of the held out attractions
belong to a nonexistent cluster).

• Hold One Cluster. We randomly hold out an entire cluster
the user created, and use the remaining clustered attractions
as the input to the model. The model must predict that none of
the held out attractions belong to any existing clusters. This
setting is analogous to the second prediction task in Section
2.1 (where the goal is to predict ?), and is arguably the most
interesting task since it directly relates to predicting which
attractions have maximal novel information (to the user).

Palaces' Gardens' City'Strolling' Architecture' Art'Museums' Outdoors'

“Art Enthusiast” “City Stroller” (a) “City Stroller”

Palaces' Gardens' City'Strolling' Architecture' Art'Museums' Outdoors'

“Art Enthusiast” “City Stroller” 
(b) “Art Enthusiast”

Figure 1: Showing clusterings from two hypothetical users.
The top user enjoys a good stroll, and groups the “River Seine”
with nice walking spots in the city. The bottom user is more
interested in art and architecture, and groups the “River Seine”
in a broader “Outdoors” category.

assumption is that, although different users have different similarity
preferences, most users share similarity preferences with other users.
To tackle this problem, we propose a latent factor model, which we
call “Latent Collaborative Clustering,” to automatically learn a low-
dimensional feature representation to reliably characterize the space
(or variability) of users’ similarity preferences. One interesting
aspect of our approach is that it inherits the benefits of both tensor
factorization as well as metric learning approaches (see Section 6).

We evaluate our approach using usage data collected from a clus-
tering interface we developed for the sensemaking task of exploring
and organizing attractions in Paris with the intention of planning a
trip there (see Section 5 for more details). We conduct our evalua-
tion based on several realistic use cases, and show that our approach
learns more effective user models than conventional clustering and
metric learning approaches. An implementation of our method as
well as our collected dataset is publicly available.2

2. COLLABORATIVE CLUSTERING
We now define the problem of collaborative clustering. Suppose

we have M users and N items. We assume each user has generated
a clustering on a subset of the N items.3 This type of preference
data can be naturally collected from rich interfaces that support
clustering (e.g., [9]). Figure 1 shows example clusterings that can
be collected from our user interface (see Section 5 and Figure 4 for
more details on our user interface and data collection process).

Our entire training data Y can be written as:

Y = {Y
m

}M
m=1 . (1)

We define each user’s feedback Y
m

as:

Y
m

=

n

Y 1
m

, . . . , Y Cm
m

o

, (2)

2See: http://projects.yisongyue.com/collab_cluster
3This is analogous to the assumption common in collaborative
filtering that each user has rated a subset of the items.

where each Y i

m

denotes a set of items that user m has indicated
as belonging to the same group or cluster, and C

m

indicates the
total number of groups for user m. We also use the notation ¯Y

m

=

{Y 1
m

[ . . .[Y Cm
m

} to denote all the items that user m has clustered.
Similar to previous work on clustering with side information (e.g.,

[29, 13]), we model clustering feedback in the form of pairwise
must-link and cannot-link labels: for each user m and every pair of
items i, j 2 ¯Y

m

clustered by user m, define y
mij

= 1 if user m
groups items i and j into the same cluster, and y

mij

= �1 if user
m clusters items i and j into different clusters.

For example, the user in Figure 1(a) placed “Luxembourg Gar-
dens” and “River Seine” into different clusters, so we would assign

y“CityStroller

00
,“LuxembourgGardens

00
,“RiverSeine

00
= �1.

On the other hand, the user in Figure 1(b) placed the two attractions
into the same cluster, so we would assign

y“ArtEnthusiast

00
,“LuxembourgGardens

00
,“RiverSeine

00
= +1.

Our goal is to learn a similarity model F (m, i, j) such that:

8m, 8i, j 2 ¯Y
m

: F (m, i, j) ⇡ y
mij

.

2.1 Predicting Cluster Memberships
Given a partial clustering of items Y

m

for user m, we are inter-
ested in having a model that can generalize to new items not yet
recommended (and thus not yet clustered) by user m. For simplic-
ity, we focus here on predicting the cluster membership of a single
unclustered item at a time.4

For any unclustered item i, we score its affinity to cluster c created
by user m as:

F (m, i, Y c

m

) = mean{F (m, i, j) : j 2 Y c

m

}, (3)

and define c̄
mi

as the most likely cluster:

c̄
mi

= argmax

c2{1,...,Cm}
F (m, i, Y c

m

). (4)

We define our cluster prediction function for item i given partial
clustering Y

m

as predicting the cluster with highest affinity:

predict(i|m,Y
m

) =

⇢

c̄
mi

if F (m, i, Y c̄mi
m

) > 0

? if F (m, i, Y c̄mi
m

)  0

, (5)

where ? denotes “new cluster” or “none of the above.”
The two cases in (5) represent two types of generalization tasks.

The first case corresponds to a conventional setting where all clusters
are assumed known during evaluation. In this case, we simply
predict the cluster with highest affinity to the unclustered item.

The second case (predicting whether an item belongs to a nonex-
istent cluster), which is arguably more interesting, is motivated by
the intuition that recommending non-redundant items (i.e., those not
belonging to any existing cluster) maximizes the novel information
presented to the user. One appealing property of the affinity for-
mulation F (m, i, j) is that it naturally accommodates this type of
generalization – we simply predict ? whenever item i has negative
affinity with all existing clusters.

A priori, it may seem difficult to learn to predict cluster mem-
berships for nonexistent clusters. We will present an approach that
explicitly models how clusters are different through the must-link
and cannot-link pairs across all users, thus allowing the resulting
model to generalize to nonexistent clusters (for any given user) in a
straightforward way.
4Predicting for multiple items simultaneously will lead to a more
structured prediction problem analogous to semi-supervised (or
transductive) clustering [4].
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Figure 1: Showing clusterings from two hypothetical users.
The top user enjoys a good stroll, and groups the “River Seine”
with nice walking spots in the city. The bottom user is more
interested in art and architecture, and groups the “River Seine”
in a broader “Outdoors” category.

assumption is that, although different users have different similarity
preferences, most users share similarity preferences with other users.
To tackle this problem, we propose a latent factor model, which we
call “Latent Collaborative Clustering,” to automatically learn a low-
dimensional feature representation to reliably characterize the space
(or variability) of users’ similarity preferences. One interesting
aspect of our approach is that it inherits the benefits of both tensor
factorization as well as metric learning approaches (see Section 6).

We evaluate our approach using usage data collected from a clus-
tering interface we developed for the sensemaking task of exploring
and organizing attractions in Paris with the intention of planning a
trip there (see Section 5 for more details). We conduct our evalua-
tion based on several realistic use cases, and show that our approach
learns more effective user models than conventional clustering and
metric learning approaches. An implementation of our method as
well as our collected dataset is publicly available.2

2. COLLABORATIVE CLUSTERING
We now define the problem of collaborative clustering. Suppose

we have M users and N items. We assume each user has generated
a clustering on a subset of the N items.3 This type of preference
data can be naturally collected from rich interfaces that support
clustering (e.g., [9]). Figure 1 shows example clusterings that can
be collected from our user interface (see Section 5 and Figure 4 for
more details on our user interface and data collection process).

Our entire training data Y can be written as:

Y = {Y
m

}M
m=1 . (1)

We define each user’s feedback Y
m

as:

Y
m

=

n

Y 1
m

, . . . , Y Cm
m
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, (2)

2See: http://projects.yisongyue.com/collab_cluster
3This is analogous to the assumption common in collaborative
filtering that each user has rated a subset of the items.

where each Y i

m

denotes a set of items that user m has indicated
as belonging to the same group or cluster, and C

m

indicates the
total number of groups for user m. We also use the notation ¯Y

m

=

{Y 1
m

[ . . .[Y Cm
m

} to denote all the items that user m has clustered.
Similar to previous work on clustering with side information (e.g.,

[29, 13]), we model clustering feedback in the form of pairwise
must-link and cannot-link labels: for each user m and every pair of
items i, j 2 ¯Y

m

clustered by user m, define y
mij

= 1 if user m
groups items i and j into the same cluster, and y

mij

= �1 if user
m clusters items i and j into different clusters.

For example, the user in Figure 1(a) placed “Luxembourg Gar-
dens” and “River Seine” into different clusters, so we would assign

y“CityStroller

00
,“LuxembourgGardens

00
,“RiverSeine

00
= �1.

On the other hand, the user in Figure 1(b) placed the two attractions
into the same cluster, so we would assign

y“ArtEnthusiast

00
,“LuxembourgGardens

00
,“RiverSeine

00
= +1.

Our goal is to learn a similarity model F (m, i, j) such that:

8m, 8i, j 2 ¯Y
m

: F (m, i, j) ⇡ y
mij

.

2.1 Predicting Cluster Memberships
Given a partial clustering of items Y

m

for user m, we are inter-
ested in having a model that can generalize to new items not yet
recommended (and thus not yet clustered) by user m. For simplic-
ity, we focus here on predicting the cluster membership of a single
unclustered item at a time.4

For any unclustered item i, we score its affinity to cluster c created
by user m as:

F (m, i, Y c

m

) = mean{F (m, i, j) : j 2 Y c

m

}, (3)

and define c̄
mi

as the most likely cluster:

c̄
mi

= argmax

c2{1,...,Cm}
F (m, i, Y c

m

). (4)

We define our cluster prediction function for item i given partial
clustering Y

m

as predicting the cluster with highest affinity:

predict(i|m,Y
m

) =

⇢

c̄
mi

if F (m, i, Y c̄mi
m

) > 0

? if F (m, i, Y c̄mi
m

)  0

, (5)

where ? denotes “new cluster” or “none of the above.”
The two cases in (5) represent two types of generalization tasks.

The first case corresponds to a conventional setting where all clusters
are assumed known during evaluation. In this case, we simply
predict the cluster with highest affinity to the unclustered item.

The second case (predicting whether an item belongs to a nonex-
istent cluster), which is arguably more interesting, is motivated by
the intuition that recommending non-redundant items (i.e., those not
belonging to any existing cluster) maximizes the novel information
presented to the user. One appealing property of the affinity for-
mulation F (m, i, j) is that it naturally accommodates this type of
generalization – we simply predict ? whenever item i has negative
affinity with all existing clusters.

A priori, it may seem difficult to learn to predict cluster mem-
berships for nonexistent clusters. We will present an approach that
explicitly models how clusters are different through the must-link
and cannot-link pairs across all users, thus allowing the resulting
model to generalize to nonexistent clusters (for any given user) in a
straightforward way.
4Predicting for multiple items simultaneously will lead to a more
structured prediction problem analogous to semi-supervised (or
transductive) clustering [4].

(a) “City Stroller”

(b) “Art Enthusiast”

Figure 2: Showing the top eight most similar attractions to
“River Seine” with respect to the two users in Figure 1 (see
Section 3.1). For the top user (Figure 1(a)), the most similar
attractions are related to “City Strolling”. For the bottom user
(Figure 1(b), the most similar attractions are related to “Out-
doors”. See Section 3.1 for more details.

where ¯V =

1
M

P

m

V
m

, although other multi-task regularization
terms are possible (e.g., [32]).

Transformed Feature-Based Model. We can further extend our
feature-based baseline (12) using a latent tranform SDz⇥D (which
is similar to the approach in [6]),

F (m, i, j) = z>
i

SV
m

ST z
j

+ b, (14)

where D
z

denotes here the dimensionality of the observed features
z
i

, and D  D
z

denotes the latent dimensionality. Essentially, S>z
transforms the observed features z into a “latent” space whereas
our LCC model (6) directly learns the latent representation without
using observed features.

One potential advantage of this model over the feature-based
model is that it can fully model three-way interactions (between a
user and a pair of items) using a latent representation (however, the
model is limited to linear transforms of observable features). We
will regularize S using the squared norm

R
s

(S) = �
s

kSk2.

Appendix A.6 gives a gradient descent formulation for training S.
Note that our LCC model is actually equivalent to having each

item i assigned a unique feature, i.e., z
i

= e
i

for e
i

being the canon-
ical unit vector along the i-th axis (so that D

z

= M ). In this case,
we can establish an equivalence between LCC and the feature trans-
form as x

i

= S
i

where S
i

denotes the i-th column of S. The special

form of our LCC model yields significantly more efficient training
algorithms due to having closed form solutions (see Appendix A).
Furthermore, as we shall see in the experiments, it is unclear if
leveraging observable features yields improved performance over
directly learning a latent item representation in our problem setting.

Augmented LCC Model. The augmented LCC model is a natu-
ral extension that incorporates both latent and feature-based compo-
nents. We can combine (6) and (12) (or (14)) to yield:

F (m, i, j) = x>
i

U
m

x
j

+ z>
i

V
m

z
j

+ b, (15)

and define the modified learning objective as L(U,V, x, b) =

R
x

(x) +R
u

(U) +R
v

(V) +

˜R
v

(V) +

X

m

L
m

. (16)

4. EXPERIMENTS
We evaluated our approach using usage data collected from a

clustering interface we developed for the data exploration task of
organizing attractions in Paris. Each user was asked to organize in
groups a small subset of 250 attractions in Paris (that they found
interesting), with the intention of planning a trip there. We refer to
Section 5 for more details regarding our user study. Overall, we col-
lected data from 218 users, with an average of 18.7 items clustered
and 4.5 clusters created per user. We evaluated both static as well as
dynamic prediction tasks, which we describe in the following.

4.1 Static Prediction Experiments
4.1.1 Experiment Setup

We conducted 5-fold cross validation using the collected usage
data. Each fold comprises approximately 125 training users, 50
validation users, and 43 test users. For each fold, we train all models
using the training set with a range of hyperparameter settings (in-
cluding regularization parameters and latent dimensions). We select
the best model based on prediction performance on the validation
set, and report performance on the test set.

For each user in the validation and test sets, at prediction time, we
split the attractions clustered by the user into an input clustering and
a held-out set. Each model is given the input clustering, and must
predict to which of the existing clusters (or none) each held-out
item belongs to. For our LCC model, the input clustering is used to
learn the user-specific transform U . For the feature-based models,
the input clustering is used to learn the user-specific V . Recall that
predictions are made via predict (5).

We evaluate three types of static prediction tasks:
• Hold 50%. We randomly hold out 50% of the attractions the

user clustered, and use the remaining clustered attractions as
the input to the model.

• Hold 25% per Cluster. We randomly hold out 25% of each
cluster the user created, and use the remaining clustered at-
tractions as the input to the model. This setting is analogous
to the first prediction task in Section 2.1, and is most analo-
gous to conventional clustering tasks where all clusters are
assumed to be known (i.e., none of the held out attractions
belong to a nonexistent cluster).

• Hold One Cluster. We randomly hold out an entire cluster
the user created, and use the remaining clustered attractions
as the input to the model. The model must predict that none of
the held out attractions belong to any existing clusters. This
setting is analogous to the second prediction task in Section
2.1 (where the goal is to predict ?), and is arguably the most
interesting task since it directly relates to predicting which
attractions have maximal novel information (to the user).
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• Maximize Number of Clusters. For each test user, the goal
is to iteratively recommend (unclustered) items in order to
maximize the number of clusters created by that user (ac-
cording to that user’s collected training labels). Intuitively,
this task measures a model’s ability to recommend interesting
items that the current user has not yet seen, and is related to
the static prediction task HOLD ONE CLUSTER. .

Procedurally, for a given model and user m, the following happens:

• The model is initialized with an empty clustering.
• The model iteratively selects the unclustered item i with the

lowest predicted affinity to any existing cluster, i.e., the item
i with the lowest F (m, i, c̄

mi

) (4) (which can also be inter-
preted as predicting the item i with the highest likelihood that
predict(i|m,Y

m

) = ? (5)). Ties are broken arbitrarily.
• The selected item is clustered according to the user’s training

labels (either added to an existing cluster or made into a new
cluster).

Using the models selected in Section 4.1, we tested on users in
the held-out test set using the same setup as in Section 4.1.1. We
compared our LCC model against the following approaches:

• Transformed Feature 1. This model had the highest HOLD
ONE CLUSTER performance.

• Transformed Feature 2. This model had the second highest
HOLD ONE CLUSTER performance.

• Random. Randomly recommend an unclustered result.

Figure 3 shows the results. We observe that our LCC model
is able to adaptively help the user create more clusters than the
baselines. We further observe that the Transformed Feature 2 model
actually does not outperform random guessing. Like in the HOLD
ONE CLUSTER static prediction task, these results suggest that
our LCC approach of directly learning a latent item representation
can be an effective yet simple approach to making personalized
recommendations to help the user discover novel (i.e., previously
unseen) clusters.

5. USER STUDY DETAILS
We collected 250 attractions in Paris from the TripAdvisor web-

site.7 We then constructed two datasets based on these attractions
using human intelligence workers on Amazon Mechanical Turk.8

The first dataset is the clustering data Y (1) used for training and
evaluating our model. The second dataset is used to generate the
second feature representation described in Section 4.1.2.

5.1 Cluster Feedback
To collect clustered feedback Y

m

(2) from any given user, we
ask that user to use a clustering interface that we developed. Figure
4(a) shows the first screen shown to the user. The user is asked to
imagine that he or she is learning about and organizing attractions in
Paris for a hypothetical trip there, and to use our clustering interface
accordingly. The user study proceeds in four rounds, with each
round comprising the following two parts:

• Part 1. Shown in Figure 4(a), the first part asks the user to
select which of twelve randomly recommended attractions

7
http://www.tripadvisor.com

8
https://www.mturk.com/

(a) Part 1

(b) Part 2

Figure 4: Showing the two phases of clustering interface de-
veloped for the goal-oriented data browsing task of organizing
attractions in Paris.

the user finds interesting in the context of planning a hypo-
thetical trip to Paris.9 More popular attractions (i.e., those
ranked higher by TripAdvisor) have higher probability of
being recommended.

• Part 2. Shown in Figure 4(b), the second part asks the user to
organize the selected items from Part 1 into clusters. Clusters
created in previous rounds are carried over.

In total, 48 attractions are recommended to each user. Since our
focus is on learning from clustering feedback, we only retain items
that the users found interesting (and thus clustered).10 On average,
there are 18.7 clustered items and 4.5 clusters created per user.

Upon completion, we asked each user to self-report how well
they understood the instructions and how useful they thought their
generated clusterings would be for planning a hypothetical trip to
9Although we recommended results at random for data collection
purposes, it is straightforward to modify our user study to evalu-
ate adaptive recommendations algorithms (which were beyond the
scope of this work) that reason about the entire interactive session
and learn on-the-fly from user feedback.

10It would be interesting to develop models that jointly model both
interest and similarity preferences. Note that modeling user interest
is a conventional collaborative filtering problem.

• Maximize Number of Clusters. For each test user, the goal
is to iteratively recommend (unclustered) items in order to
maximize the number of clusters created by that user (ac-
cording to that user’s collected training labels). Intuitively,
this task measures a model’s ability to recommend interesting
items that the current user has not yet seen, and is related to
the static prediction task HOLD ONE CLUSTER. .

Procedurally, for a given model and user m, the following happens:

• The model is initialized with an empty clustering.
• The model iteratively selects the unclustered item i with the

lowest predicted affinity to any existing cluster, i.e., the item
i with the lowest F (m, i, c̄

mi

) (4) (which can also be inter-
preted as predicting the item i with the highest likelihood that
predict(i|m,Y

m

) = ? (5)). Ties are broken arbitrarily.
• The selected item is clustered according to the user’s training

labels (either added to an existing cluster or made into a new
cluster).

Using the models selected in Section 4.1, we tested on users in
the held-out test set using the same setup as in Section 4.1.1. We
compared our LCC model against the following approaches:

• Transformed Feature 1. This model had the highest HOLD
ONE CLUSTER performance.

• Transformed Feature 2. This model had the second highest
HOLD ONE CLUSTER performance.

• Random. Randomly recommend an unclustered result.

Figure 3 shows the results. We observe that our LCC model
is able to adaptively help the user create more clusters than the
baselines. We further observe that the Transformed Feature 2 model
actually does not outperform random guessing. Like in the HOLD
ONE CLUSTER static prediction task, these results suggest that
our LCC approach of directly learning a latent item representation
can be an effective yet simple approach to making personalized
recommendations to help the user discover novel (i.e., previously
unseen) clusters.

5. USER STUDY DETAILS
We collected 250 attractions in Paris from the TripAdvisor web-

site.7 We then constructed two datasets based on these attractions
using human intelligence workers on Amazon Mechanical Turk.8

The first dataset is the clustering data Y (1) used for training and
evaluating our model. The second dataset is used to generate the
second feature representation described in Section 4.1.2.

5.1 Cluster Feedback
To collect clustered feedback Y

m

(2) from any given user, we
ask that user to use a clustering interface that we developed. Figure
4(a) shows the first screen shown to the user. The user is asked to
imagine that he or she is learning about and organizing attractions in
Paris for a hypothetical trip there, and to use our clustering interface
accordingly. The user study proceeds in four rounds, with each
round comprising the following two parts:

• Part 1. Shown in Figure 4(a), the first part asks the user to
select which of twelve randomly recommended attractions

7
http://www.tripadvisor.com

8
https://www.mturk.com/

(a) Part 1

(b) Part 2

Figure 4: Showing the two phases of clustering interface de-
veloped for the goal-oriented data browsing task of organizing
attractions in Paris.

the user finds interesting in the context of planning a hypo-
thetical trip to Paris.9 More popular attractions (i.e., those
ranked higher by TripAdvisor) have higher probability of
being recommended.

• Part 2. Shown in Figure 4(b), the second part asks the user to
organize the selected items from Part 1 into clusters. Clusters
created in previous rounds are carried over.

In total, 48 attractions are recommended to each user. Since our
focus is on learning from clustering feedback, we only retain items
that the users found interesting (and thus clustered).10 On average,
there are 18.7 clustered items and 4.5 clusters created per user.

Upon completion, we asked each user to self-report how well
they understood the instructions and how useful they thought their
generated clusterings would be for planning a hypothetical trip to
9Although we recommended results at random for data collection
purposes, it is straightforward to modify our user study to evalu-
ate adaptive recommendations algorithms (which were beyond the
scope of this work) that reason about the entire interactive session
and learn on-the-fly from user feedback.

10It would be interesting to develop models that jointly model both
interest and similarity preferences. Note that modeling user interest
is a conventional collaborative filtering problem.
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• Maximize Number of Clusters. For each test user, the goal
is to iteratively recommend (unclustered) items in order to
maximize the number of clusters created by that user (ac-
cording to that user’s collected training labels). Intuitively,
this task measures a model’s ability to recommend interesting
items that the current user has not yet seen, and is related to
the static prediction task HOLD ONE CLUSTER. .

Procedurally, for a given model and user m, the following happens:

• The model is initialized with an empty clustering.
• The model iteratively selects the unclustered item i with the

lowest predicted affinity to any existing cluster, i.e., the item
i with the lowest F (m, i, c̄

mi

) (4) (which can also be inter-
preted as predicting the item i with the highest likelihood that
predict(i|m,Y

m

) = ? (5)). Ties are broken arbitrarily.
• The selected item is clustered according to the user’s training

labels (either added to an existing cluster or made into a new
cluster).

Using the models selected in Section 4.1, we tested on users in
the held-out test set using the same setup as in Section 4.1.1. We
compared our LCC model against the following approaches:

• Transformed Feature 1. This model had the highest HOLD
ONE CLUSTER performance.

• Transformed Feature 2. This model had the second highest
HOLD ONE CLUSTER performance.

• Random. Randomly recommend an unclustered result.

Figure 3 shows the results. We observe that our LCC model
is able to adaptively help the user create more clusters than the
baselines. We further observe that the Transformed Feature 2 model
actually does not outperform random guessing. Like in the HOLD
ONE CLUSTER static prediction task, these results suggest that
our LCC approach of directly learning a latent item representation
can be an effective yet simple approach to making personalized
recommendations to help the user discover novel (i.e., previously
unseen) clusters.

5. USER STUDY DETAILS
We collected 250 attractions in Paris from the TripAdvisor web-

site.7 We then constructed two datasets based on these attractions
using human intelligence workers on Amazon Mechanical Turk.8

The first dataset is the clustering data Y (1) used for training and
evaluating our model. The second dataset is used to generate the
second feature representation described in Section 4.1.2.

5.1 Cluster Feedback
To collect clustered feedback Y

m

(2) from any given user, we
ask that user to use a clustering interface that we developed. Figure
4(a) shows the first screen shown to the user. The user is asked to
imagine that he or she is learning about and organizing attractions in
Paris for a hypothetical trip there, and to use our clustering interface
accordingly. The user study proceeds in four rounds, with each
round comprising the following two parts:

• Part 1. Shown in Figure 4(a), the first part asks the user to
select which of twelve randomly recommended attractions
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(b) Part 2

Figure 4: Showing the two phases of clustering interface de-
veloped for the goal-oriented data browsing task of organizing
attractions in Paris.

the user finds interesting in the context of planning a hypo-
thetical trip to Paris.9 More popular attractions (i.e., those
ranked higher by TripAdvisor) have higher probability of
being recommended.

• Part 2. Shown in Figure 4(b), the second part asks the user to
organize the selected items from Part 1 into clusters. Clusters
created in previous rounds are carried over.

In total, 48 attractions are recommended to each user. Since our
focus is on learning from clustering feedback, we only retain items
that the users found interesting (and thus clustered).10 On average,
there are 18.7 clustered items and 4.5 clusters created per user.

Upon completion, we asked each user to self-report how well
they understood the instructions and how useful they thought their
generated clusterings would be for planning a hypothetical trip to
9Although we recommended results at random for data collection
purposes, it is straightforward to modify our user study to evalu-
ate adaptive recommendations algorithms (which were beyond the
scope of this work) that reason about the entire interactive session
and learn on-the-fly from user feedback.

10It would be interesting to develop models that jointly model both
interest and similarity preferences. Note that modeling user interest
is a conventional collaborative filtering problem.

• Maximize Number of Clusters. For each test user, the goal
is to iteratively recommend (unclustered) items in order to
maximize the number of clusters created by that user (ac-
cording to that user’s collected training labels). Intuitively,
this task measures a model’s ability to recommend interesting
items that the current user has not yet seen, and is related to
the static prediction task HOLD ONE CLUSTER. .

Procedurally, for a given model and user m, the following happens:

• The model is initialized with an empty clustering.
• The model iteratively selects the unclustered item i with the

lowest predicted affinity to any existing cluster, i.e., the item
i with the lowest F (m, i, c̄

mi

) (4) (which can also be inter-
preted as predicting the item i with the highest likelihood that
predict(i|m,Y

m

) = ? (5)). Ties are broken arbitrarily.
• The selected item is clustered according to the user’s training

labels (either added to an existing cluster or made into a new
cluster).

Using the models selected in Section 4.1, we tested on users in
the held-out test set using the same setup as in Section 4.1.1. We
compared our LCC model against the following approaches:

• Transformed Feature 1. This model had the highest HOLD
ONE CLUSTER performance.

• Transformed Feature 2. This model had the second highest
HOLD ONE CLUSTER performance.

• Random. Randomly recommend an unclustered result.

Figure 3 shows the results. We observe that our LCC model
is able to adaptively help the user create more clusters than the
baselines. We further observe that the Transformed Feature 2 model
actually does not outperform random guessing. Like in the HOLD
ONE CLUSTER static prediction task, these results suggest that
our LCC approach of directly learning a latent item representation
can be an effective yet simple approach to making personalized
recommendations to help the user discover novel (i.e., previously
unseen) clusters.

5. USER STUDY DETAILS
We collected 250 attractions in Paris from the TripAdvisor web-

site.7 We then constructed two datasets based on these attractions
using human intelligence workers on Amazon Mechanical Turk.8

The first dataset is the clustering data Y (1) used for training and
evaluating our model. The second dataset is used to generate the
second feature representation described in Section 4.1.2.

5.1 Cluster Feedback
To collect clustered feedback Y
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(2) from any given user, we
ask that user to use a clustering interface that we developed. Figure
4(a) shows the first screen shown to the user. The user is asked to
imagine that he or she is learning about and organizing attractions in
Paris for a hypothetical trip there, and to use our clustering interface
accordingly. The user study proceeds in four rounds, with each
round comprising the following two parts:

• Part 1. Shown in Figure 4(a), the first part asks the user to
select which of twelve randomly recommended attractions
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Figure 4: Showing the two phases of clustering interface de-
veloped for the goal-oriented data browsing task of organizing
attractions in Paris.

the user finds interesting in the context of planning a hypo-
thetical trip to Paris.9 More popular attractions (i.e., those
ranked higher by TripAdvisor) have higher probability of
being recommended.

• Part 2. Shown in Figure 4(b), the second part asks the user to
organize the selected items from Part 1 into clusters. Clusters
created in previous rounds are carried over.

In total, 48 attractions are recommended to each user. Since our
focus is on learning from clustering feedback, we only retain items
that the users found interesting (and thus clustered).10 On average,
there are 18.7 clustered items and 4.5 clusters created per user.

Upon completion, we asked each user to self-report how well
they understood the instructions and how useful they thought their
generated clusterings would be for planning a hypothetical trip to
9Although we recommended results at random for data collection
purposes, it is straightforward to modify our user study to evalu-
ate adaptive recommendations algorithms (which were beyond the
scope of this work) that reason about the entire interactive session
and learn on-the-fly from user feedback.

10It would be interesting to develop models that jointly model both
interest and similarity preferences. Note that modeling user interest
is a conventional collaborative filtering problem.
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• Maximize Number of Clusters. For each test user, the goal
is to iteratively recommend (unclustered) items in order to
maximize the number of clusters created by that user (ac-
cording to that user’s collected training labels). Intuitively,
this task measures a model’s ability to recommend interesting
items that the current user has not yet seen, and is related to
the static prediction task HOLD ONE CLUSTER. .

Procedurally, for a given model and user m, the following happens:

• The model is initialized with an empty clustering.
• The model iteratively selects the unclustered item i with the

lowest predicted affinity to any existing cluster, i.e., the item
i with the lowest F (m, i, c̄

mi

) (4) (which can also be inter-
preted as predicting the item i with the highest likelihood that
predict(i|m,Y

m

) = ? (5)). Ties are broken arbitrarily.
• The selected item is clustered according to the user’s training

labels (either added to an existing cluster or made into a new
cluster).

Using the models selected in Section 4.1, we tested on users in
the held-out test set using the same setup as in Section 4.1.1. We
compared our LCC model against the following approaches:

• Transformed Feature 1. This model had the highest HOLD
ONE CLUSTER performance.

• Transformed Feature 2. This model had the second highest
HOLD ONE CLUSTER performance.

• Random. Randomly recommend an unclustered result.

Figure 3 shows the results. We observe that our LCC model
is able to adaptively help the user create more clusters than the
baselines. We further observe that the Transformed Feature 2 model
actually does not outperform random guessing. Like in the HOLD
ONE CLUSTER static prediction task, these results suggest that
our LCC approach of directly learning a latent item representation
can be an effective yet simple approach to making personalized
recommendations to help the user discover novel (i.e., previously
unseen) clusters.

5. USER STUDY DETAILS
We collected 250 attractions in Paris from the TripAdvisor web-

site.7 We then constructed two datasets based on these attractions
using human intelligence workers on Amazon Mechanical Turk.8

The first dataset is the clustering data Y (1) used for training and
evaluating our model. The second dataset is used to generate the
second feature representation described in Section 4.1.2.

5.1 Cluster Feedback
To collect clustered feedback Y

m

(2) from any given user, we
ask that user to use a clustering interface that we developed. Figure
4(a) shows the first screen shown to the user. The user is asked to
imagine that he or she is learning about and organizing attractions in
Paris for a hypothetical trip there, and to use our clustering interface
accordingly. The user study proceeds in four rounds, with each
round comprising the following two parts:

• Part 1. Shown in Figure 4(a), the first part asks the user to
select which of twelve randomly recommended attractions
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Figure 4: Showing the two phases of clustering interface de-
veloped for the goal-oriented data browsing task of organizing
attractions in Paris.

the user finds interesting in the context of planning a hypo-
thetical trip to Paris.9 More popular attractions (i.e., those
ranked higher by TripAdvisor) have higher probability of
being recommended.

• Part 2. Shown in Figure 4(b), the second part asks the user to
organize the selected items from Part 1 into clusters. Clusters
created in previous rounds are carried over.

In total, 48 attractions are recommended to each user. Since our
focus is on learning from clustering feedback, we only retain items
that the users found interesting (and thus clustered).10 On average,
there are 18.7 clustered items and 4.5 clusters created per user.

Upon completion, we asked each user to self-report how well
they understood the instructions and how useful they thought their
generated clusterings would be for planning a hypothetical trip to
9Although we recommended results at random for data collection
purposes, it is straightforward to modify our user study to evalu-
ate adaptive recommendations algorithms (which were beyond the
scope of this work) that reason about the entire interactive session
and learn on-the-fly from user feedback.

10It would be interesting to develop models that jointly model both
interest and similarity preferences. Note that modeling user interest
is a conventional collaborative filtering problem.

• Maximize Number of Clusters. For each test user, the goal
is to iteratively recommend (unclustered) items in order to
maximize the number of clusters created by that user (ac-
cording to that user’s collected training labels). Intuitively,
this task measures a model’s ability to recommend interesting
items that the current user has not yet seen, and is related to
the static prediction task HOLD ONE CLUSTER. .

Procedurally, for a given model and user m, the following happens:

• The model is initialized with an empty clustering.
• The model iteratively selects the unclustered item i with the

lowest predicted affinity to any existing cluster, i.e., the item
i with the lowest F (m, i, c̄

mi

) (4) (which can also be inter-
preted as predicting the item i with the highest likelihood that
predict(i|m,Y

m

) = ? (5)). Ties are broken arbitrarily.
• The selected item is clustered according to the user’s training

labels (either added to an existing cluster or made into a new
cluster).

Using the models selected in Section 4.1, we tested on users in
the held-out test set using the same setup as in Section 4.1.1. We
compared our LCC model against the following approaches:

• Transformed Feature 1. This model had the highest HOLD
ONE CLUSTER performance.

• Transformed Feature 2. This model had the second highest
HOLD ONE CLUSTER performance.

• Random. Randomly recommend an unclustered result.

Figure 3 shows the results. We observe that our LCC model
is able to adaptively help the user create more clusters than the
baselines. We further observe that the Transformed Feature 2 model
actually does not outperform random guessing. Like in the HOLD
ONE CLUSTER static prediction task, these results suggest that
our LCC approach of directly learning a latent item representation
can be an effective yet simple approach to making personalized
recommendations to help the user discover novel (i.e., previously
unseen) clusters.

5. USER STUDY DETAILS
We collected 250 attractions in Paris from the TripAdvisor web-

site.7 We then constructed two datasets based on these attractions
using human intelligence workers on Amazon Mechanical Turk.8

The first dataset is the clustering data Y (1) used for training and
evaluating our model. The second dataset is used to generate the
second feature representation described in Section 4.1.2.

5.1 Cluster Feedback
To collect clustered feedback Y

m

(2) from any given user, we
ask that user to use a clustering interface that we developed. Figure
4(a) shows the first screen shown to the user. The user is asked to
imagine that he or she is learning about and organizing attractions in
Paris for a hypothetical trip there, and to use our clustering interface
accordingly. The user study proceeds in four rounds, with each
round comprising the following two parts:

• Part 1. Shown in Figure 4(a), the first part asks the user to
select which of twelve randomly recommended attractions
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Upon completion, we asked each user to self-report how well
they understood the instructions and how useful they thought their
generated clusterings would be for planning a hypothetical trip to
9Although we recommended results at random for data collection
purposes, it is straightforward to modify our user study to evalu-
ate adaptive recommendations algorithms (which were beyond the
scope of this work) that reason about the entire interactive session
and learn on-the-fly from user feedback.

10It would be interesting to develop models that jointly model both
interest and similarity preferences. Note that modeling user interest
is a conventional collaborative filtering problem.
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ranked higher by TripAdvisor) have higher probability of
being recommended.

• Part 2. Shown in Figure 4(b), the second part asks the user to
organize the selected items from Part 1 into clusters. Clusters
created in previous rounds are carried over.

In total, 48 attractions are recommended to each user. Since our
focus is on learning from clustering feedback, we only retain items
that the users found interesting (and thus clustered).10 On average,
there are 18.7 clustered items and 4.5 clusters created per user.

Upon completion, we asked each user to self-report how well
they understood the instructions and how useful they thought their
generated clusterings would be for planning a hypothetical trip to
9Although we recommended results at random for data collection
purposes, it is straightforward to modify our user study to evalu-
ate adaptive recommendations algorithms (which were beyond the
scope of this work) that reason about the entire interactive session
and learn on-the-fly from user feedback.
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Features	
  for	
  ASrac7ons	
  Figure 5: Showing the questionnaire given to users after they
completed the clustering task.

Figure 6: Showing the tagging task for generating the second
feature representation described in Section 4.1.2.

Paris. Figure 5 shows our closing questionnaire. Since our goal is
to collect high-quality usage data from engaged users, we discarded
any results if the user reported that the instructions were unclear or
that the clusterings were useless. Overall, we retained approximately
80% of the user-generated clusterings for a total of 218.

5.2 Feature Tagging
We developed a tagging task to construct the second feature rep-

resentation described in Section 4.1.2. Figure 6 shows our tagging
interface. For each of the 250 attractions, we asked five human
annotators to select which of 39 pre-specified tags (shown in Figure
6) should be associated with that attraction. Annotators were asked
to select all tags that apply. We considered allowing users to spec-
ify their own tags, but that setup would dramatically increase the
complexity of the data processing due to matching tags with similar
meanings or spelling deviations.

We used this tagging data to construct a 39-dimensional binary
feature representation of the 250 attractions (with each dimension
corresponding to a tag). For each attraction, any tag that was se-
lected by at least 3/5 annotators received a positive value in the
corresponding binary feature, or otherwise a zero value.

6. RELATED WORK
Our work is motivated by recent advancements in the HCI com-

munity studying how to incorporate machine learning with rich user

interactions. In particular, we focused on learning from clustering
interactions [9, 2, 5]. In contrast to previous work, we aim to de-
velop a systematic approach to model the variability of similarity
functions contained within a user population.

The modeling approach most similar to LCC is Bayesian “crowd-
clustering” [13]. One key difference is that [13] assumes there is a
global (or consensus) set of atomic clusters (which different users
may merge into varying higher-level clusters). As such, [13] focuses
on recovering these atomic clusters from many higher-level partial
clusterings. In contrast, we focus on more subjective user tasks,
which are unlikely to yield agreed-upon atomic clusterings (e.g.,
organizing attractions in Paris based on personal interests).

Another related modeling approach is Bayesian clustered tensor
factorization (BCTF) [27]. One key difference is that, for BCTF,
pairwise relationships are not modeled symmetrically, which results
in non-metric per-task transform matrices. In contrast, our collab-
orative clustering problem is naturally modeled using symmetric
pairwise interactions that can be personalized to individual users
using a metric transform.

The actual term “collaborative clustering” is not new, and has
been used to refer to other clustering problems. For instance [14]
studied the problem where the input data is distributed across many
machines, and the machines must “collaborate” to arrive at a con-
sensus clustering. Another example is [12], who studied how to
combine ensembles of clusterings to make more robust predictions.
In contrast, we use the term as an analogue to collaborative filter-
ing. Another related work is [19], which uses latent representations
to predict multiple non-redundant clusterings (for one task). In
contrast, we focus on learning latent representations to capture the
clustering variability of a user population.

6.1 Connection to Tensor Factorization
Our approach (6) can be viewed as a tensor factorization problem

with missing values [1]. We can represent our training data Y (1) as
a 3-tensor Y ,

Y
mij

=

⇢

y
mij

if (i, j) 2 ¯Y
m

? otherwise , (17)

where ? denotes a missing value (i.e., user m did not cluster item i
and/or item j).

Analogous to low-rank matrix (2-tensor) factorization approaches
for collaborative filtering, our problem can be viewed as finding a
low-rank 3-tensor factorization for collaborative clustering that has
minimal reconstruction error on Y . In particular, our model can be
viewed as a restricted form of the PARAFAC decomposition [1]:

Y
mij

⇡
D

X

d=1

�
d

u
md

x
id

x
jd

+ b,

where each x
i

and u
m

are unit vectors, and �
d

are positive weights.
Each x

i

corresponds to an item representation, and each u
m

corre-
sponds to the diagonal of a user transform U

m

. In our model, rather
than constraining x

i

and u
m

to be unit vectors and controlling for
magnitude via �, we instead control the magnitudes of x

i

and u
m

(or U
m

) via regularization penalties R
x

and R
u

.11 We also enforce
u
m

� 0 to enforce each user model to be a metric transform.

6.2 Connection to Metric Learning
The problem of estimating user transforms U

m

and V
m

is related
to (multi-task) metric learning problems under pairwise constraints

11The relationship between our latent factor model and the
PARAFAC decomposition is analogous to that of bi-Gaussian latent
factor models and the SVD in collaborative filtering [26, 22].

2	
  sets	
  of	
  features	
  
	
  
Wikipedia	
  g-­‐idf	
  
(~3.5K	
  features)	
  
	
  
Mechanical	
  Turk	
  
Tagging	
  (right)	
  
(~40	
  features)	
  
	
  
Used	
  for	
  baselines	
  

Lecture	
  15:	
  Recent	
  Applica7ons	
  of	
  Latent	
  Factor	
  Models	
   55	
  



Evalua7on	
  

•  For	
  each	
  test	
  user:	
  
– Hold	
  out	
  some	
  aSrac7ons	
  
– Predict	
  cluster	
  membership	
  (or	
  new	
  cluster)	
  

•  Feature-­‐based	
  baselines:	
  
– Diagonal	
  metric	
  (per	
  user)	
  
	
  	
  	
  	
  	
  	
  [Wagstaff	
  &	
  Cardie,	
  2000]	
  [Xing	
  et	
  al.,	
  2002]	
  [Schultz	
  &	
  Joachims,	
  2003]	
  
	
  	
  	
  	
  	
  	
  [Davis	
  et	
  al.,	
  2007]	
  [Parameswaran	
  &	
  Weinberger,	
  2010]	
  

– Latent	
  feature	
  transform	
  	
  	
  	
  	
  	
  (significantly	
  slower)	
  
	
  	
  	
  	
  	
  	
  [Blitzer	
  &	
  Weston,	
  2012]	
  

Lecture	
  15:	
  Recent	
  Applica7ons	
  of	
  Latent	
  Factor	
  Models	
   56	
  



Predic7on	
  Tasks	
  

•  Predict	
  cluster	
  membership	
  

– Exis7ng	
  cluster:	
  

– New	
  cluster:	
  	
  

Palaces' Gardens' City'Strolling' Architecture' Art'Museums' Outdoors'

“Art Enthusiast” “City Stroller” (a) “City Stroller”

Palaces' Gardens' City'Strolling' Architecture' Art'Museums' Outdoors'

“Art Enthusiast” “City Stroller” 
(b) “Art Enthusiast”

Figure 1: Showing clusterings from two hypothetical users.
The top user enjoys a good stroll, and groups the “River Seine”
with nice walking spots in the city. The bottom user is more
interested in art and architecture, and groups the “River Seine”
in a broader “Outdoors” category.

assumption is that, although different users have different similarity
preferences, most users share similarity preferences with other users.
To tackle this problem, we propose a latent factor model, which we
call “Latent Collaborative Clustering,” to automatically learn a low-
dimensional feature representation to reliably characterize the space
(or variability) of users’ similarity preferences. One interesting
aspect of our approach is that it inherits the benefits of both tensor
factorization as well as metric learning approaches (see Section 6).

We evaluate our approach using usage data collected from a clus-
tering interface we developed for the sensemaking task of exploring
and organizing attractions in Paris with the intention of planning a
trip there (see Section 5 for more details). We conduct our evalua-
tion based on several realistic use cases, and show that our approach
learns more effective user models than conventional clustering and
metric learning approaches. An implementation of our method as
well as our collected dataset is publicly available.2

2. COLLABORATIVE CLUSTERING
We now define the problem of collaborative clustering. Suppose

we have M users and N items. We assume each user has generated
a clustering on a subset of the N items.3 This type of preference
data can be naturally collected from rich interfaces that support
clustering (e.g., [9]). Figure 1 shows example clusterings that can
be collected from our user interface (see Section 5 and Figure 4 for
more details on our user interface and data collection process).

Our entire training data Y can be written as:

Y = {Y
m

}M
m=1 . (1)

We define each user’s feedback Y
m

as:

Y
m

=

n

Y 1
m

, . . . , Y Cm
m

o

, (2)

2See: http://projects.yisongyue.com/collab_cluster
3This is analogous to the assumption common in collaborative
filtering that each user has rated a subset of the items.

where each Y i

m

denotes a set of items that user m has indicated
as belonging to the same group or cluster, and C

m

indicates the
total number of groups for user m. We also use the notation ¯Y

m

=

{Y 1
m

[ . . .[Y Cm
m

} to denote all the items that user m has clustered.
Similar to previous work on clustering with side information (e.g.,

[29, 13]), we model clustering feedback in the form of pairwise
must-link and cannot-link labels: for each user m and every pair of
items i, j 2 ¯Y

m

clustered by user m, define y
mij

= 1 if user m
groups items i and j into the same cluster, and y

mij

= �1 if user
m clusters items i and j into different clusters.

For example, the user in Figure 1(a) placed “Luxembourg Gar-
dens” and “River Seine” into different clusters, so we would assign

y“CityStroller

00
,“LuxembourgGardens

00
,“RiverSeine

00
= �1.

On the other hand, the user in Figure 1(b) placed the two attractions
into the same cluster, so we would assign

y“ArtEnthusiast

00
,“LuxembourgGardens

00
,“RiverSeine

00
= +1.

Our goal is to learn a similarity model F (m, i, j) such that:

8m, 8i, j 2 ¯Y
m

: F (m, i, j) ⇡ y
mij

.

2.1 Predicting Cluster Memberships
Given a partial clustering of items Y

m

for user m, we are inter-
ested in having a model that can generalize to new items not yet
recommended (and thus not yet clustered) by user m. For simplic-
ity, we focus here on predicting the cluster membership of a single
unclustered item at a time.4

For any unclustered item i, we score its affinity to cluster c created
by user m as:

F (m, i, Y c

m

) = mean{F (m, i, j) : j 2 Y c

m

}, (3)

and define c̄
mi

as the most likely cluster:

c̄
mi

= argmax

c2{1,...,Cm}
F (m, i, Y c

m

). (4)

We define our cluster prediction function for item i given partial
clustering Y

m

as predicting the cluster with highest affinity:

predict(i|m,Y
m

) =

⇢

c̄
mi

if F (m, i, Y c̄mi
m

) > 0

? if F (m, i, Y c̄mi
m

)  0

, (5)

where ? denotes “new cluster” or “none of the above.”
The two cases in (5) represent two types of generalization tasks.

The first case corresponds to a conventional setting where all clusters
are assumed known during evaluation. In this case, we simply
predict the cluster with highest affinity to the unclustered item.

The second case (predicting whether an item belongs to a nonex-
istent cluster), which is arguably more interesting, is motivated by
the intuition that recommending non-redundant items (i.e., those not
belonging to any existing cluster) maximizes the novel information
presented to the user. One appealing property of the affinity for-
mulation F (m, i, j) is that it naturally accommodates this type of
generalization – we simply predict ? whenever item i has negative
affinity with all existing clusters.

A priori, it may seem difficult to learn to predict cluster mem-
berships for nonexistent clusters. We will present an approach that
explicitly models how clusters are different through the must-link
and cannot-link pairs across all users, thus allowing the resulting
model to generalize to nonexistent clusters (for any given user) in a
straightforward way.
4Predicting for multiple items simultaneously will lead to a more
structured prediction problem analogous to semi-supervised (or
transductive) clustering [4].
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Recap:	
  Latent	
  Collabora7ve	
  Clustering	
  

•  Mul7task	
  Metric	
  Learning	
  &	
  Feature	
  Learning	
  
–  Trained	
  on	
  par7al	
  clusterings	
  created	
  by	
  individual	
  users	
  

•  Individual	
  factors	
  x	
  hard	
  to	
  visualize	
  
– Maybe	
  easier	
  if	
  enforced	
  non-­‐nega7vity	
  

•  Maybe	
  beSer	
  served	
  as	
  an	
  embedding	
  model:	
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Recap:	
  Latent	
  Factor	
  Models	
  	
  

•  Great	
  way	
  to	
  compactly	
  represent	
  data	
  
–  Share	
  across	
  many	
  tasks	
  

•  Can	
  be	
  very	
  interpretable	
  
–  At	
  least	
  the	
  simpler	
  versions	
  
–  Tradeoff	
  between	
  interpretability	
  and	
  accuracy	
  

•  Par7cularly	
  useful	
  if	
  you	
  don’t	
  trust	
  (or	
  don’t	
  have)	
  
raw	
  features	
  

•  Next	
  Week:	
  Deep	
  Learning	
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