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Announcements	
  

•  Kaggle	
  Miniproject	
  is	
  closed	
  
– Report	
  due	
  Thursday	
  

•  Public	
  Leaderboard	
  
– How	
  well	
  you	
  think	
  you	
  did	
  

•  Private	
  Leaderboard	
  now	
  viewable	
  
– How	
  well	
  you	
  actually	
  did	
  

Lecture	
  14:	
  Embeddings	
   2	
  



Lecture	
  14:	
  Embeddings	
   3	
  



Last	
  Week	
  

•  Dimensionality	
  ReducIon	
  
•  Clustering	
  

•  Latent	
  Factor	
  Models	
  
– Learn	
  low-­‐dimensional	
  representaIon	
  of	
  data	
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This	
  Lecture	
  

•  Embeddings	
  
– AlternaIve	
  form	
  of	
  dimensionality	
  reducIon	
  

•  Locally	
  Linear	
  Embeddings	
  

•  Markov	
  Embeddings	
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Embedding	
  

•  Learn	
  a	
  representaIon	
  U	
  
–  Each	
  column	
  u	
  corresponds	
  to	
  data	
  point	
  

•  SemanIcs	
  encoded	
  via	
  d(u,u’)	
  
–  Distance	
  between	
  points	
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Nonlinear Dimensionality
Reduction by

Locally Linear Embedding
Sam T. Roweis1 and Lawrence K. Saul2

Many areas of science depend on exploratory data analysis and visualization.
The need to analyze large amounts of multivariate data raises the fundamental
problem of dimensionality reduction: how to discover compact representations
of high-dimensional data. Here, we introduce locally linear embedding (LLE), an
unsupervised learning algorithm that computes low-dimensional, neighbor-
hood-preserving embeddings of high-dimensional inputs. Unlike clustering
methods for local dimensionality reduction, LLE maps its inputs into a single
global coordinate system of lower dimensionality, and its optimizations do not
involve local minima. By exploiting the local symmetries of linear reconstruc-
tions, LLE is able to learn the global structure of nonlinear manifolds, such as
those generated by images of faces or documents of text.

How do we judge similarity? Our mental
representations of the world are formed by
processing large numbers of sensory in-
puts—including, for example, the pixel in-
tensities of images, the power spectra of
sounds, and the joint angles of articulated
bodies. While complex stimuli of this form can
be represented by points in a high-dimensional
vector space, they typically have a much more
compact description. Coherent structure in the
world leads to strong correlations between in-
puts (such as between neighboring pixels in
images), generating observations that lie on or
close to a smooth low-dimensional manifold.
To compare and classify such observations—in
effect, to reason about the world—depends
crucially on modeling the nonlinear geometry
of these low-dimensional manifolds.

Scientists interested in exploratory analysis
or visualization of multivariate data (1) face a
similar problem in dimensionality reduction.
The problem, as illustrated in Fig. 1, involves
mapping high-dimensional inputs into a low-
dimensional “description” space with as many

coordinates as observed modes of variability.
Previous approaches to this problem, based on
multidimensional scaling (MDS) (2), have
computed embeddings that attempt to preserve
pairwise distances [or generalized disparities
(3)] between data points; these distances are
measured along straight lines or, in more so-
phisticated usages of MDS such as Isomap (4),

along shortest paths confined to the manifold of
observed inputs. Here, we take a different ap-
proach, called locally linear embedding (LLE),
that eliminates the need to estimate pairwise
distances between widely separated data points.
Unlike previous methods, LLE recovers global
nonlinear structure from locally linear fits.

The LLE algorithm, summarized in Fig.
2, is based on simple geometric intuitions.
Suppose the data consist of N real-valued
vectors !Xi, each of dimensionality D, sam-
pled from some underlying manifold. Pro-
vided there is sufficient data (such that the
manifold is well-sampled), we expect each
data point and its neighbors to lie on or
close to a locally linear patch of the mani-
fold. We characterize the local geometry of
these patches by linear coefficients that
reconstruct each data point from its neigh-
bors. Reconstruction errors are measured
by the cost function

ε"W # ! !
i

" !Xi$%jWij
!Xj" 2

(1)

which adds up the squared distances between
all the data points and their reconstructions. The
weights Wij summarize the contribution of the
jth data point to the ith reconstruction. To com-
pute the weights Wij, we minimize the cost

1Gatsby Computational Neuroscience Unit, Universi-
ty College London, 17 Queen Square, London WC1N
3AR, UK. 2AT&T Lab—Research, 180 Park Avenue,
Florham Park, NJ 07932, USA.

E-mail: roweis@gatsby.ucl.ac.uk (S.T.R.); lsaul@research.
att.com (L.K.S.)

Fig. 1. The problem of nonlinear dimensionality reduction, as illustrated (10) for three-dimensional
data (B) sampled from a two-dimensional manifold (A). An unsupervised learning algorithm must
discover the global internal coordinates of the manifold without signals that explicitly indicate how
the data should be embedded in two dimensions. The color coding illustrates the neighborhood-
preserving mapping discovered by LLE; black outlines in (B) and (C) show the neighborhood of a
single point. Unlike LLE, projections of the data by principal component analysis (PCA) (28) or
classical MDS (2) map faraway data points to nearby points in the plane, failing to identify the
underlying structure of the manifold. Note that mixture models for local dimensionality reduction
(29), which cluster the data and perform PCA within each cluster, do not address the problem
considered here: namely, how to map high-dimensional data into a single global coordinate system
of lower dimensionality.
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Locally	
  Linear	
  Embedding	
  

•  Given:	
  
	
  

•  Learn	
  U	
  such	
  that	
  local	
  linearity	
  is	
  preserved	
  
– Lower	
  dimensional	
  than	
  x	
  
– “Manifold	
  Learning”	
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N
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Nonlinear Dimensionality
Reduction by

Locally Linear Embedding
Sam T. Roweis1 and Lawrence K. Saul2

Many areas of science depend on exploratory data analysis and visualization.
The need to analyze large amounts of multivariate data raises the fundamental
problem of dimensionality reduction: how to discover compact representations
of high-dimensional data. Here, we introduce locally linear embedding (LLE), an
unsupervised learning algorithm that computes low-dimensional, neighbor-
hood-preserving embeddings of high-dimensional inputs. Unlike clustering
methods for local dimensionality reduction, LLE maps its inputs into a single
global coordinate system of lower dimensionality, and its optimizations do not
involve local minima. By exploiting the local symmetries of linear reconstruc-
tions, LLE is able to learn the global structure of nonlinear manifolds, such as
those generated by images of faces or documents of text.

How do we judge similarity? Our mental
representations of the world are formed by
processing large numbers of sensory in-
puts—including, for example, the pixel in-
tensities of images, the power spectra of
sounds, and the joint angles of articulated
bodies. While complex stimuli of this form can
be represented by points in a high-dimensional
vector space, they typically have a much more
compact description. Coherent structure in the
world leads to strong correlations between in-
puts (such as between neighboring pixels in
images), generating observations that lie on or
close to a smooth low-dimensional manifold.
To compare and classify such observations—in
effect, to reason about the world—depends
crucially on modeling the nonlinear geometry
of these low-dimensional manifolds.

Scientists interested in exploratory analysis
or visualization of multivariate data (1) face a
similar problem in dimensionality reduction.
The problem, as illustrated in Fig. 1, involves
mapping high-dimensional inputs into a low-
dimensional “description” space with as many

coordinates as observed modes of variability.
Previous approaches to this problem, based on
multidimensional scaling (MDS) (2), have
computed embeddings that attempt to preserve
pairwise distances [or generalized disparities
(3)] between data points; these distances are
measured along straight lines or, in more so-
phisticated usages of MDS such as Isomap (4),

along shortest paths confined to the manifold of
observed inputs. Here, we take a different ap-
proach, called locally linear embedding (LLE),
that eliminates the need to estimate pairwise
distances between widely separated data points.
Unlike previous methods, LLE recovers global
nonlinear structure from locally linear fits.

The LLE algorithm, summarized in Fig.
2, is based on simple geometric intuitions.
Suppose the data consist of N real-valued
vectors !Xi, each of dimensionality D, sam-
pled from some underlying manifold. Pro-
vided there is sufficient data (such that the
manifold is well-sampled), we expect each
data point and its neighbors to lie on or
close to a locally linear patch of the mani-
fold. We characterize the local geometry of
these patches by linear coefficients that
reconstruct each data point from its neigh-
bors. Reconstruction errors are measured
by the cost function

ε"W # ! !
i

" !Xi$%jWij
!Xj" 2

(1)

which adds up the squared distances between
all the data points and their reconstructions. The
weights Wij summarize the contribution of the
jth data point to the ith reconstruction. To com-
pute the weights Wij, we minimize the cost

1Gatsby Computational Neuroscience Unit, Universi-
ty College London, 17 Queen Square, London WC1N
3AR, UK. 2AT&T Lab—Research, 180 Park Avenue,
Florham Park, NJ 07932, USA.

E-mail: roweis@gatsby.ucl.ac.uk (S.T.R.); lsaul@research.
att.com (L.K.S.)

Fig. 1. The problem of nonlinear dimensionality reduction, as illustrated (10) for three-dimensional
data (B) sampled from a two-dimensional manifold (A). An unsupervised learning algorithm must
discover the global internal coordinates of the manifold without signals that explicitly indicate how
the data should be embedded in two dimensions. The color coding illustrates the neighborhood-
preserving mapping discovered by LLE; black outlines in (B) and (C) show the neighborhood of a
single point. Unlike LLE, projections of the data by principal component analysis (PCA) (28) or
classical MDS (2) map faraway data points to nearby points in the plane, failing to identify the
underlying structure of the manifold. Note that mixture models for local dimensionality reduction
(29), which cluster the data and perform PCA within each cluster, do not address the problem
considered here: namely, how to map high-dimensional data into a single global coordinate system
of lower dimensionality.
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Unsupervised	
  Learning	
  

Any	
  neighborhood	
  
looks	
  like	
  a	
  linear	
  plane	
  

x’s	
   u’s	
  



Locally	
  Linear	
  Embedding	
  

•  Create	
  B(i)	
  
–  B	
  nearest	
  neighbors	
  of	
  xi	
  
–  Assump.on:	
  B(i)	
  is	
  approximately	
  linear	
  
–  xi	
  can	
  be	
  wriVen	
  as	
  a	
  convex	
  combinaIon	
  of	
  xj	
  in	
  B(i)	
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S = xi{ }i=1
N

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

xi ≈ Wijx j
j∈B(i)
∑

Wij
j∈B(i)
∑ =1

xi	
  

B(i)	
  



Locally	
  Linear	
  Embedding	
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argmin
W

xi − Wijx j
j∈B(i)
∑

2

i
∑ = argmin

W
Wi,*

TCiWi,*
i
∑ Wij

j∈B(i)
∑ =1
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xi − Wijx j
j∈B(i)
∑

2

= Wij (xi − x j )
j∈B(i)
∑

2

                          = Wij (xi − x j )
j∈B(i)
∑

$

%
&&

'

(
))

T

Wij (xi − x j )
j∈B(i)
∑

$

%
&&

'

(
))

                          = WijWikCjk
i

k∈B(i)
∑

j∈B(i)
∑

                          =Wi,*
TCiWi,* Cjk

i = (xi − x j )
T (xi − xk )

Locally'Linear'Embedding'

•  Create'B(i)'
–  B'nearest'neighbors'of'xi'
–  Assump&on:*B(i)'is'approximately'linear'
–  xi'can'be'wri<en'as'a'convex'combina>on'of'xj'in'B(i)'

'
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S = xi{ }i=1
N

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

xi ≈ Wijx j
j∈B(i)
∑

Wij
j∈B(i)
∑ =1

xi'

B(i)'

Given	
  Neighbors	
  B(i),	
  solve	
  local	
  linear	
  approximaIon	
  W:	
  



Locally	
  Linear	
  Embedding	
  

•  Every	
  xi	
  is	
  approximated	
  as	
  
a	
  convex	
  combinaIon	
  of	
  
neighbors	
  
–  How	
  to	
  solve?	
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Wij
j∈B(i)
∑ =1

Cjk
i = (xi − x j )

T (xi − x j )

argmin
W

xi − Wijx j
j∈B(i)
∑

2

i
∑ = argmin

W
Wi,*

TCiWi,*
i
∑

Locally'Linear'Embedding'

•  Create'B(i)'
–  B'nearest'neighbors'of'xi'
–  Assump&on:*B(i)'is'approximately'linear'
–  xi'can'be'wri<en'as'a'convex'combina>on'of'xj'in'B(i)'

'
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S = xi{ }i=1
N
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0.6

0.7

0.8
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1

xi ≈ Wijx j
j∈B(i)
∑

Wij
j∈B(i)
∑ =1

xi'

B(i)'

Given	
  Neighbors	
  B(i),	
  solve	
  local	
  linear	
  approximaIon	
  W:	
  



Lagrange	
  MulIpliers	
  

argmin
w

L(w) ≡ wTCw

s.t. w =1

∃λ ≥ 0 : ∂wL(y,w)∈ λ∇w w( )∧ w =1( )

∇wj
w

−1 if wj < 0

+1 if wj > 0

−1,+1[ ] if wj = 0

#

$
%%

&
%
%

Solu.ons	
  tend	
  to	
  	
  
be	
  at	
  corners!	
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Solving	
  Locally	
  Linear	
  ApproximaIon	
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L(W,λ) = Wi,*
TCiWi,* −λi

!
1TWi,* −1( )( )

i
∑ Wij =

!
1T

j
∑ Wi,*

∂Wi,*
L(W,λ) = 2CiWi,* −λi

!
1

Wi,* =
λi
2
Ci( )

−1 !
1∝ Ci( )

−1 !
1

Wij ∝ Ci( ) jk
−1

k∈B(i)
∑ Wij =

Ci( ) jk
−1

k∈B(i)
∑

Ci( )lm
−1

m∈B(i)
∑

l∈B(i)
∑

Lagrangian:	
  



Locally	
  Linear	
  ApproximaIon	
  

•  Invariant	
  to:	
  

– RotaIon	
  

– Scaling	
  

– TranslaIon	
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xi ≈ Wijx j
j∈B(i)
∑

Wij
j∈B(i)
∑ =1Axi ≈ AWijx j

j∈B(i)
∑

5xi ≈ 5Wijx j
j∈B(i)
∑

xi + x ' ≈ Wij x j + x '( )
j∈B(i)
∑



Story	
  So	
  Far:	
  Locally	
  Linear	
  Embeddings	
  

•  Locally	
  Linear	
  Approxima.on	
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Given	
  Neighbors	
  B(i),	
  solve	
  local	
  linear	
  approximaIon	
  W:	
  

SoluIon	
  via	
  Lagrange	
  MulIpliers:	
  



Recall:	
  Locally	
  Linear	
  Embedding	
  

•  Given:	
  
	
  

•  Learn	
  U	
  such	
  that	
  local	
  linearity	
  is	
  preserved	
  
– Lower	
  dimensional	
  than	
  x	
  
– “Manifold	
  Learning”	
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Nonlinear Dimensionality
Reduction by

Locally Linear Embedding
Sam T. Roweis1 and Lawrence K. Saul2

Many areas of science depend on exploratory data analysis and visualization.
The need to analyze large amounts of multivariate data raises the fundamental
problem of dimensionality reduction: how to discover compact representations
of high-dimensional data. Here, we introduce locally linear embedding (LLE), an
unsupervised learning algorithm that computes low-dimensional, neighbor-
hood-preserving embeddings of high-dimensional inputs. Unlike clustering
methods for local dimensionality reduction, LLE maps its inputs into a single
global coordinate system of lower dimensionality, and its optimizations do not
involve local minima. By exploiting the local symmetries of linear reconstruc-
tions, LLE is able to learn the global structure of nonlinear manifolds, such as
those generated by images of faces or documents of text.

How do we judge similarity? Our mental
representations of the world are formed by
processing large numbers of sensory in-
puts—including, for example, the pixel in-
tensities of images, the power spectra of
sounds, and the joint angles of articulated
bodies. While complex stimuli of this form can
be represented by points in a high-dimensional
vector space, they typically have a much more
compact description. Coherent structure in the
world leads to strong correlations between in-
puts (such as between neighboring pixels in
images), generating observations that lie on or
close to a smooth low-dimensional manifold.
To compare and classify such observations—in
effect, to reason about the world—depends
crucially on modeling the nonlinear geometry
of these low-dimensional manifolds.

Scientists interested in exploratory analysis
or visualization of multivariate data (1) face a
similar problem in dimensionality reduction.
The problem, as illustrated in Fig. 1, involves
mapping high-dimensional inputs into a low-
dimensional “description” space with as many

coordinates as observed modes of variability.
Previous approaches to this problem, based on
multidimensional scaling (MDS) (2), have
computed embeddings that attempt to preserve
pairwise distances [or generalized disparities
(3)] between data points; these distances are
measured along straight lines or, in more so-
phisticated usages of MDS such as Isomap (4),

along shortest paths confined to the manifold of
observed inputs. Here, we take a different ap-
proach, called locally linear embedding (LLE),
that eliminates the need to estimate pairwise
distances between widely separated data points.
Unlike previous methods, LLE recovers global
nonlinear structure from locally linear fits.

The LLE algorithm, summarized in Fig.
2, is based on simple geometric intuitions.
Suppose the data consist of N real-valued
vectors !Xi, each of dimensionality D, sam-
pled from some underlying manifold. Pro-
vided there is sufficient data (such that the
manifold is well-sampled), we expect each
data point and its neighbors to lie on or
close to a locally linear patch of the mani-
fold. We characterize the local geometry of
these patches by linear coefficients that
reconstruct each data point from its neigh-
bors. Reconstruction errors are measured
by the cost function

ε"W # ! !
i

" !Xi$%jWij
!Xj" 2

(1)

which adds up the squared distances between
all the data points and their reconstructions. The
weights Wij summarize the contribution of the
jth data point to the ith reconstruction. To com-
pute the weights Wij, we minimize the cost

1Gatsby Computational Neuroscience Unit, Universi-
ty College London, 17 Queen Square, London WC1N
3AR, UK. 2AT&T Lab—Research, 180 Park Avenue,
Florham Park, NJ 07932, USA.

E-mail: roweis@gatsby.ucl.ac.uk (S.T.R.); lsaul@research.
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Fig. 1. The problem of nonlinear dimensionality reduction, as illustrated (10) for three-dimensional
data (B) sampled from a two-dimensional manifold (A). An unsupervised learning algorithm must
discover the global internal coordinates of the manifold without signals that explicitly indicate how
the data should be embedded in two dimensions. The color coding illustrates the neighborhood-
preserving mapping discovered by LLE; black outlines in (B) and (C) show the neighborhood of a
single point. Unlike LLE, projections of the data by principal component analysis (PCA) (28) or
classical MDS (2) map faraway data points to nearby points in the plane, failing to identify the
underlying structure of the manifold. Note that mixture models for local dimensionality reduction
(29), which cluster the data and perform PCA within each cluster, do not address the problem
considered here: namely, how to map high-dimensional data into a single global coordinate system
of lower dimensionality.

R E P O R T S

www.sciencemag.org SCIENCE VOL 290 22 DECEMBER 2000 2323

 o
n 

Fe
br

ua
ry

 2
3,

 2
01

5
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d 

fro
m

 
 o

n 
Fe

br
ua

ry
 2

3,
 2

01
5

w
w

w
.s

ci
en

ce
m

ag
.o

rg
D

ow
nl

oa
de

d 
fro

m
 

 o
n 

Fe
br

ua
ry

 2
3,

 2
01

5
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d 

fro
m

 
 o

n 
Fe

br
ua

ry
 2

3,
 2

01
5

w
w

w
.s

ci
en

ce
m

ag
.o

rg
D

ow
nl

oa
de

d 
fro

m
 

x’s	
   u’s	
  



Dimensionality	
  ReducIon	
  

•  Find	
  low	
  dimensional	
  U	
  
– Preserves	
  approximate	
  local	
  linearity	
  

Lecture	
  14:	
  Embeddings	
   16	
  

argmin
U

ui − Wijuj
j∈B(i)
∑

2

i
∑

35. R. N. Shepard, Psychon. Bull. Rev. 1, 2 (1994).
36. J. B. Tenenbaum, Adv. Neural Info. Proc. Syst. 10, 682
(1998).

37. T. Martinetz, K. Schulten, Neural Netw. 7, 507 (1994).
38. V. Kumar, A. Grama, A. Gupta, G. Karypis, Introduc-
tion to Parallel Computing: Design and Analysis of
Algorithms (Benjamin/Cummings, Redwood City, CA,
1994), pp. 257–297.

39. D. Beymer, T. Poggio, Science 272, 1905 (1996).
40. Available at www.research.att.com/!yann/ocr/mnist.
41. P. Y. Simard, Y. LeCun, J. Denker, Adv. Neural Info.
Proc. Syst. 5, 50 (1993).

42. In order to evaluate the fits of PCA, MDS, and Isomap
on comparable grounds, we use the residual variance

1 – R2(D̂M , DY). DY is the matrix of Euclidean distanc-
es in the low-dimensional embedding recovered by
each algorithm. D̂M is each algorithm’s best estimate
of the intrinsic manifold distances: for Isomap, this is
the graph distance matrix DG; for PCA and MDS, it is
the Euclidean input-space distance matrix DX (except
with the handwritten “2”s, where MDS uses the
tangent distance). R is the standard linear correlation
coefficient, taken over all entries of D̂M and DY.

43. In each sequence shown, the three intermediate im-
ages are those closest to the points 1/4, 1/2, and 3/4
of the way between the given endpoints. We can also
synthesize an explicit mapping from input space X to
the low-dimensional embedding Y, or vice versa, us-

ing the coordinates of corresponding points {xi , yi} in
both spaces provided by Isomap together with stan-
dard supervised learning techniques (39).

44. Supported by the Mitsubishi Electric Research Labo-
ratories, the Schlumberger Foundation, the NSF
(DBS-9021648), and the DARPA Human ID program.
We thank Y. LeCun for making available the MNIST
database and S. Roweis and L. Saul for sharing related
unpublished work. For many helpful discussions, we
thank G. Carlsson, H. Farid, W. Freeman, T. Griffiths,
R. Lehrer, S. Mahajan, D. Reich, W. Richards, J. M.
Tenenbaum, Y. Weiss, and especially M. Bernstein.

10 August 2000; accepted 21 November 2000

Nonlinear Dimensionality
Reduction by

Locally Linear Embedding
Sam T. Roweis1 and Lawrence K. Saul2

Many areas of science depend on exploratory data analysis and visualization.
The need to analyze large amounts of multivariate data raises the fundamental
problem of dimensionality reduction: how to discover compact representations
of high-dimensional data. Here, we introduce locally linear embedding (LLE), an
unsupervised learning algorithm that computes low-dimensional, neighbor-
hood-preserving embeddings of high-dimensional inputs. Unlike clustering
methods for local dimensionality reduction, LLE maps its inputs into a single
global coordinate system of lower dimensionality, and its optimizations do not
involve local minima. By exploiting the local symmetries of linear reconstruc-
tions, LLE is able to learn the global structure of nonlinear manifolds, such as
those generated by images of faces or documents of text.

How do we judge similarity? Our mental
representations of the world are formed by
processing large numbers of sensory in-
puts—including, for example, the pixel in-
tensities of images, the power spectra of
sounds, and the joint angles of articulated
bodies. While complex stimuli of this form can
be represented by points in a high-dimensional
vector space, they typically have a much more
compact description. Coherent structure in the
world leads to strong correlations between in-
puts (such as between neighboring pixels in
images), generating observations that lie on or
close to a smooth low-dimensional manifold.
To compare and classify such observations—in
effect, to reason about the world—depends
crucially on modeling the nonlinear geometry
of these low-dimensional manifolds.

Scientists interested in exploratory analysis
or visualization of multivariate data (1) face a
similar problem in dimensionality reduction.
The problem, as illustrated in Fig. 1, involves
mapping high-dimensional inputs into a low-
dimensional “description” space with as many

coordinates as observed modes of variability.
Previous approaches to this problem, based on
multidimensional scaling (MDS) (2), have
computed embeddings that attempt to preserve
pairwise distances [or generalized disparities
(3)] between data points; these distances are
measured along straight lines or, in more so-
phisticated usages of MDS such as Isomap (4),

along shortest paths confined to the manifold of
observed inputs. Here, we take a different ap-
proach, called locally linear embedding (LLE),
that eliminates the need to estimate pairwise
distances between widely separated data points.
Unlike previous methods, LLE recovers global
nonlinear structure from locally linear fits.

The LLE algorithm, summarized in Fig.
2, is based on simple geometric intuitions.
Suppose the data consist of N real-valued
vectors !Xi, each of dimensionality D, sam-
pled from some underlying manifold. Pro-
vided there is sufficient data (such that the
manifold is well-sampled), we expect each
data point and its neighbors to lie on or
close to a locally linear patch of the mani-
fold. We characterize the local geometry of
these patches by linear coefficients that
reconstruct each data point from its neigh-
bors. Reconstruction errors are measured
by the cost function

ε"W # ! !
i

" !Xi$%jWij
!Xj" 2

(1)

which adds up the squared distances between
all the data points and their reconstructions. The
weights Wij summarize the contribution of the
jth data point to the ith reconstruction. To com-
pute the weights Wij, we minimize the cost
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Fig. 1. The problem of nonlinear dimensionality reduction, as illustrated (10) for three-dimensional
data (B) sampled from a two-dimensional manifold (A). An unsupervised learning algorithm must
discover the global internal coordinates of the manifold without signals that explicitly indicate how
the data should be embedded in two dimensions. The color coding illustrates the neighborhood-
preserving mapping discovered by LLE; black outlines in (B) and (C) show the neighborhood of a
single point. Unlike LLE, projections of the data by principal component analysis (PCA) (28) or
classical MDS (2) map faraway data points to nearby points in the plane, failing to identify the
underlying structure of the manifold. Note that mixture models for local dimensionality reduction
(29), which cluster the data and perform PCA within each cluster, do not address the problem
considered here: namely, how to map high-dimensional data into a single global coordinate system
of lower dimensionality.
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argmin
U

ui − Wijuj
j∈B(i)
∑
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i
∑ UUT = IK

ui
i
∑ =

!
0

argmin
U

Mij ui
Tuj( )

ij
∑ ≡ trace UMUT( )

Mij =1 i= j[ ] −Wij −Wji + WkiWkj
k
∑

M = (IN −W )
T (IN −W )
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vector qi  R f, and each user u is associ-
ated with a vector pu  R f. For a given item 
i, the elements of qi measure the extent to 
which the item possesses those factors, 
positive or negative. For a given user u, 
the elements of pu measure the extent of 
interest the user has in items that are high 
on the corresponding factors, again, posi-
tive or negative. The resulting dot product,  
qi

T pu, captures the interaction between user 
u and item i—the user’s overall interest in 
the item’s characteristics. This approximates 
user u’s rating of item i, which is denoted by 
rui, leading to the estimate 

 
r̂ui  

= qi
T pu. (1) 

The major challenge is computing the map-
ping of each item and user to factor vectors 
qi, pu  R f. After the recommender system 
completes this mapping, it can easily esti-
mate the rating a user will give to any item 
by using Equation 1. 

Such a model is closely related to singular value decom-
position (SVD), a well-established technique for identifying 
latent semantic factors in information retrieval. Applying 
SVD in the collaborative filtering domain requires factoring 
the user-item rating matrix. This often raises difficulties 
due to the high portion of missing values caused by sparse-
ness in the user-item ratings matrix. Conventional SVD is 
undefined when knowledge about the matrix is incom-
plete. Moreover, carelessly addressing only the relatively 
few known entries is highly prone to overfitting. 

Earlier systems relied on imputation to fill in missing 
ratings and make the rating matrix dense.2 However, im-
putation can be very expensive as it significantly increases 
the amount of data. In addition, inaccurate imputation 
might distort the data considerably. Hence, more recent 
works3-6 suggested modeling directly the observed rat-
ings only, while avoiding overfitting through a regularized 
model. To learn the factor vectors (pu and qi), the system 
minimizes the regularized squared error on the set of 
known ratings: 

min
* *,q p ( , )u i

(rui  qi
Tpu)

2 + (|| qi ||
2 + || pu ||

2)  (2) 

Here,  is the set of the (u,i) pairs for which rui is known 
(the training set). 

The system learns the model by fitting the previously 
observed ratings. However, the goal is to generalize those 
previous ratings in a way that predicts future, unknown 
ratings. Thus, the system should avoid overfitting the 
observed data by regularizing the learned parameters, 
whose magnitudes are penalized. The constant  controls 

recommendation. These methods have become popular in 
recent years by combining good scalability with predictive 
accuracy. In addition, they offer much flexibility for model-
ing various real-life situations. 

Recommender systems rely on different types of 
input data, which are often placed in a matrix with one 
dimension representing users and the other dimension 
representing items of interest. The most convenient data 
is high-quality explicit feedback, which includes explicit 
input by users regarding their interest in products. For 
example, Netflix collects star ratings for movies, and TiVo 
users indicate their preferences for TV shows by pressing 
thumbs-up and thumbs-down buttons. We refer to explicit 
user feedback as ratings. Usually, explicit feedback com-
prises a sparse matrix, since any single user is likely to 
have rated only a small percentage of possible items. 

One strength of matrix factorization is that it allows 
incorporation of additional information. When explicit 
feedback is not available, recommender systems can infer 
user preferences using implicit feedback, which indirectly 
reflects opinion by observing user behavior including pur-
chase history, browsing history, search patterns, or even 
mouse movements. Implicit feedback usually denotes the 
presence or absence of an event, so it is typically repre-
sented by a densely filled matrix. 

A BASIC MATRIX FACTORIZATION MODEL 
Matrix factorization models map both users and items 

to a joint latent factor space of dimensionality f, such that 
user-item interactions are modeled as inner products in 
that space. Accordingly, each item i is associated with a 
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Figure 2. A simplified illustration of the latent factor approach, which 
characterizes both users and movies using two axes—male versus female 
and serious versus escapist. 

This reduces the complexity of a gradient step to O(|Ci|).
The key problem lies in identifying a suitable candidate set
Ci for each si. Clearly, each Ci should include at least most
of the likely successors of si, which lead us to the following
landmark heuristic.

We randomly pick a certain number (typically 50) of songs
and call them landmarks, and assign each song to the near-
est landmark. We also need to specify a threshold r 2 [0, 1].
Then for each si, its direct successors observed in the train-
ing set are first added to the subset Cr

i , because these songs
are always needed to compute the local log-likelihood. We
keep adding songs from nearby landmarks to the subset, un-
til ratio r of the total songs has been included. This defines
the final subset Cr

i . By adopting this heuristic, the gradients
of the local log-likelihood become

@l(sa,sb)
@U(sp)

=1[a=p]2

2

4��!
�2(sa,sb)+

P
sl2Cr

p
e��2(sa,sl)

2�!
�2(sa,sl)

Zr(sa)

3

5

@l(sa,sb)
@V (sq)

=1[b=q]2
�!
�2(sa, sb)� 2

e��2(sa,sq)
2�!
�2(sa, sq)

Zr(sa)
,

where Zr(sa) is the partition function restricted to Cr
a , namelyP

sl2Cr
a
e��2(sa,sl)

2
. Empirically, we update the landmarks

every 10 iterations1, and fix them after 100 iterations to
ensure convergence.

5.3 Implementation
We implemented our methods in C. The code is available

online at http://lme.joachims.org.

6. EXPERIMENTS
In the following experiments we will analyze the LME in

comparison to n-gram baselines, explore the e↵ect of the
popularity term and regularization, and assess the compu-
tational e�ciency of the method.

To collect a dataset of playlists for our empirical eval-
uation, we crawled Yes.com during the period from Dec.
2010 to May 2011. Yes.com is a website that provides radio
playlists of hundreds of stations in the United States. By
using the web based API2, one can retrieve the playlists of
the last 7 days for any station specified by its genre. With-
out taking any preference, we collect as much data as we can
by specifying all the possible genres. We then generated two
datasets, which we refer to as yes small and yes big . In the
small dataset, we removed the songs with less than 20, in the
large dataset we only removed songs with less than 5 appear-
ances. The smaller one is composed of 3, 168 unique songs.
It is then divided into into a training set with 134, 431 tran-
sitions and a test set with 1, 191, 279 transitions. The larger
one contains 9, 775 songs, a training set with 172, 510 transi-
tions and a test set with 1, 602, 079 transitions. The datasets
are available for download at http://lme.joachims.org.

Unless noted otherwise, experiments use the following
setup. Any model (either the LME or the baseline model)
is first trained on the training set and then tested on
the test set. We evaluate test performance using the
average log-likelihood as our metric. It is defined as
log(Pr(Dtest))/Ntest, where Ntest is the number of transi-
tions in test set. One should note that the division of train-

1A iteration means a full pass on the training dataset.
2
http://api.yes.com
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Figure 3: Visual representation of an embedding
in two dimensions with songs from selected artists
highlighted

ing and test set is done so that each song appears at least
once in the training set. This was done to exclude the case
of encountering a new song when doing testing, which any
method would need to treat as a special case and impute
some probability estimate.

6.1 What do embeddings look like?
We start with giving a qualitative impression of the em-

beddings that our method produces. Figure 3 shows the two-
dimensional single-point embedding of the yes small dataset.
Songs from a few well-known artists are highlighted to pro-
vide reference points in the embedding space.
First, it is interesting to note that songs by the same artist

cluster tightly, even though our model has no direct knowl-
edge of which artist performed a song. Second, logical con-
nections among di↵erent genres are well-represented in the
space. For example, consider the positions of songs from
Michael Jackson, T.I., and Lady Gaga. Pop songs from
Michael Jackson could easily transition to the more elec-
tronic and dance pop style of Lady Gaga. Lady Gaga’s
songs, in turn, could make good transitions to some of the
more dance-oriented songs (mainly collaborations with other
artists) of the rap artist T.I., which could easily form a gate-
way to other hip hop artists.
While the visualization provides interesting qualitative in-

sights, we now provide a quantitative evaluation of model
quality based on predictive power.

6.2 How does the LME compare to n-gram
models?

We first compare our models against baseline methods
from Natural Language Processing. We consider the follow-
ing models.
Uniform Model. The choices of any song are equally

likely, with the same probability of 1/|S|.

Latent	
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  Model	
  
Similarity	
  measured	
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Embedding	
  
Similarity	
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  visualize	
  many	
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Latent	
  Markov	
  Embeddings	
  

•  Locally	
  Linear	
  Embedding	
  is	
  convenIonal	
  
unsupervised	
  learning	
  
–  Given	
  raw	
  features	
  xi	
  
–  I.e.,	
  find	
  low-­‐dimensional	
  U	
  that	
  preserves	
  approximate	
  
local	
  linearity	
  

•  Latent	
  Markov	
  Embedding	
  is	
  a	
  feature	
  
learning	
  problem	
  
–  E.g.,	
  learn	
  low-­‐dimensional	
  U	
  that	
  captures	
  user-­‐generated	
  
feedback	
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Playlist	
  Embedding	
  

•  Users	
  generate	
  song	
  playlists	
  
– Treat	
  as	
  training	
  data	
  

•  Can	
  we	
  learn	
  a	
  probabilis.c	
  model	
  of	
  
playlists?	
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ProbabilisIc	
  Markov	
  Modeling	
  

•  Training	
  set:	
  

•  Goal:	
  Learn	
  a	
  probabilisIc	
  Markov	
  model	
  of	
  playlists:	
  

•  What	
  is	
  the	
  form	
  of	
  P?	
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pi = pi
1,..., pi

NiD = pi{ }i=1
N

P(pi
j | pi
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   Playlists	
   Playlist	
  DefiniIon	
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P(s|s’)	
   s1	
   s2	
   s3	
   s4	
   s5	
   s6	
   s7	
   sstart	
  
s1	
   0.01	
   0.03	
   0.01	
   0.11	
   0.04	
   0.04	
   0.01	
   0.05	
  

s2	
   0.03	
   0.01	
   0.04	
   0.03	
   0.02	
   0.01	
   0.02	
   0.02	
  

s3	
   0.01	
   0.01	
   0.01	
   0.07	
   0.02	
   0.02	
   0.05	
   0.09	
  

s4	
   0.02	
   0.11	
   0.07	
   0.01	
   0.07	
   0.04	
   0.01	
   0.01	
  

s5	
   0.04	
   0.01	
   0.02	
   0.17	
   0.01	
   0.01	
   0.10	
   0.02	
  

s6	
   0.01	
   0.02	
   0.03	
   0.01	
   0.01	
   0.01	
   0.01	
   0.08	
  

s7	
   0.07	
   0.02	
   0.01	
   0.01	
   0.03	
   0.09	
   0.03	
   0.01	
  …
	
  

…	
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P(s|s’)	
   s1	
   s2	
   s3	
   s4	
   s5	
   s6	
   s7	
   sstart	
  
s1	
   0.01	
   0.03	
   0.01	
   0.11	
   0.04	
   0.04	
   0.01	
   0.05	
  

s2	
   0.03	
   0.01	
   0.04	
   0.03	
   0.02	
   0.01	
   0.02	
   0.02	
  

s3	
   0.01	
   0.01	
   0.01	
   0.07	
   0.02	
   0.02	
   0.05	
   0.09	
  

s4	
   0.02	
   0.11	
   0.07	
   0.01	
   0.07	
   0.04	
   0.01	
   0.01	
  

s5	
   0.04	
   0.01	
   0.02	
   0.17	
   0.01	
   0.01	
   0.10	
   0.02	
  

s6	
   0.01	
   0.02	
   0.03	
   0.01	
   0.01	
   0.01	
   0.01	
   0.08	
  

s7	
   0.07	
   0.02	
   0.01	
   0.01	
   0.03	
   0.09	
   0.03	
   0.01	
  …
	
  

…	
  

#Parameters	
  =	
  O(|S|2)	
  !!!	
  



Second	
  Try:	
  Hidden	
  Markov	
  Models	
  

•  #Parameters	
  =	
  O(K2)	
  

•  #Parameters	
  =	
  O(|S|K)	
  

•  Total	
  =	
  O(K2)	
  +	
  O(|S|K)	
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P pi, z( ) = P(End | zNi ) P(z j | z j−1)
j=1

Ni

∏ P(pi
j | z j )

j=1

N j

∏

P(z j | z j−1)

P(pi
j | z j )



Problem	
  with	
  Hidden	
  Markov	
  Models	
  

•  Need	
  to	
  reliably	
  esImate	
  P(s|z)	
  

	
  
•  Lots	
  of	
  “missing	
  values”	
  in	
  this	
  training	
  set	
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P pi, z( ) = P(End | zNi ) P(z j | z j−1)
j=1

Ni

∏ P(pi
j | z j )

j=1

N j

∏

pi = pi
1,..., pi

NiD = pi{ }i=1
NS = s1,...s|S|{ }



Latent	
  Markov	
  Embedding	
  

•  “Log-­‐Radial”	
  funcIon	
  
–  (my	
  own	
  terminology)	
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P(s | s ')∝ exp − us − vs '
2{ }

P(s | s ') =
exp − us − vs '

2{ }
exp − us" − vs '

2{ }
s"
∑

hVp://www.cs.cornell.edu/People/tj/publicaIons/chen_etal_12a.pdf	
  

us:	
  entry	
  point	
  of	
  song	
  s	
  
vs:	
  exit	
  point	
  of	
  song	
  s	
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vs’	
  

Each	
  ring	
  defines	
  an	
  equivalence	
  class	
  of	
  transiIon	
  probabiliIes	
  	
  

us	
  
us”	
  

P(s | s ')
P(s" | s ')

=
exp − us − vs '

2{ }
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2{ }
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Learning	
  Problem	
  

•  Learning	
  Goal:	
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argmax
U,V

P(pi )
i
∏ = P(pi

j | pi
j−1)

j
∏

i
∏

P(s | s ') =
exp − us − vs '

2{ }
exp − us" − vs '

2{ }
s"
∑

=
exp − us − vs '

2{ }
Z(s ')



Minimize	
  Neg	
  Log	
  Likelihood	
  

•  Solve	
  using	
  gradient	
  descent	
  
– Homework	
  ques.on:	
  derive	
  the	
  gradient	
  formula	
  
– Random	
  iniIalizaIon	
  

•  NormalizaIon	
  constant	
  hard	
  to	
  compute:	
  
– ApproximaIon	
  heurisIcs	
  

•  See	
  paper	
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argmax
U,V

P(pi
j | pi

j−1)
j
∏

i
∏ = argmin

U,V
− logP(pi

j | pi
j−1)

j
∑

i
∑
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Simpler	
  Version	
  

•  Dual	
  point	
  model:	
  

•  Single	
  point	
  model:	
  
– TransiIons	
  are	
  symmetric	
  

•  (almost)	
  

– Exact	
  same	
  form	
  of	
  training	
  problem	
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VisualizaIon	
  in	
  2D	
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This reduces the complexity of a gradient step to O(|Ci|).
The key problem lies in identifying a suitable candidate set
Ci for each si. Clearly, each Ci should include at least most
of the likely successors of si, which lead us to the following
landmark heuristic.

We randomly pick a certain number (typically 50) of songs
and call them landmarks, and assign each song to the near-
est landmark. We also need to specify a threshold r 2 [0, 1].
Then for each si, its direct successors observed in the train-
ing set are first added to the subset Cr

i , because these songs
are always needed to compute the local log-likelihood. We
keep adding songs from nearby landmarks to the subset, un-
til ratio r of the total songs has been included. This defines
the final subset Cr

i . By adopting this heuristic, the gradients
of the local log-likelihood become

@l(sa,sb)
@U(sp)

=1[a=p]2

2

4��!
�2(sa,sb)+

P
sl2Cr

p
e��2(sa,sl)

2�!
�2(sa,sl)

Zr(sa)

3

5

@l(sa,sb)
@V (sq)

=1[b=q]2
�!
�2(sa, sb)� 2

e��2(sa,sq)
2�!
�2(sa, sq)

Zr(sa)
,

where Zr(sa) is the partition function restricted to Cr
a , namelyP

sl2Cr
a
e��2(sa,sl)

2
. Empirically, we update the landmarks

every 10 iterations1, and fix them after 100 iterations to
ensure convergence.

5.3 Implementation
We implemented our methods in C. The code is available

online at http://lme.joachims.org.

6. EXPERIMENTS
In the following experiments we will analyze the LME in

comparison to n-gram baselines, explore the e↵ect of the
popularity term and regularization, and assess the compu-
tational e�ciency of the method.

To collect a dataset of playlists for our empirical eval-
uation, we crawled Yes.com during the period from Dec.
2010 to May 2011. Yes.com is a website that provides radio
playlists of hundreds of stations in the United States. By
using the web based API2, one can retrieve the playlists of
the last 7 days for any station specified by its genre. With-
out taking any preference, we collect as much data as we can
by specifying all the possible genres. We then generated two
datasets, which we refer to as yes small and yes big . In the
small dataset, we removed the songs with less than 20, in the
large dataset we only removed songs with less than 5 appear-
ances. The smaller one is composed of 3, 168 unique songs.
It is then divided into into a training set with 134, 431 tran-
sitions and a test set with 1, 191, 279 transitions. The larger
one contains 9, 775 songs, a training set with 172, 510 transi-
tions and a test set with 1, 602, 079 transitions. The datasets
are available for download at http://lme.joachims.org.

Unless noted otherwise, experiments use the following
setup. Any model (either the LME or the baseline model)
is first trained on the training set and then tested on
the test set. We evaluate test performance using the
average log-likelihood as our metric. It is defined as
log(Pr(Dtest))/Ntest, where Ntest is the number of transi-
tions in test set. One should note that the division of train-

1A iteration means a full pass on the training dataset.
2
http://api.yes.com
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Figure 3: Visual representation of an embedding
in two dimensions with songs from selected artists
highlighted

ing and test set is done so that each song appears at least
once in the training set. This was done to exclude the case
of encountering a new song when doing testing, which any
method would need to treat as a special case and impute
some probability estimate.

6.1 What do embeddings look like?
We start with giving a qualitative impression of the em-

beddings that our method produces. Figure 3 shows the two-
dimensional single-point embedding of the yes small dataset.
Songs from a few well-known artists are highlighted to pro-
vide reference points in the embedding space.
First, it is interesting to note that songs by the same artist

cluster tightly, even though our model has no direct knowl-
edge of which artist performed a song. Second, logical con-
nections among di↵erent genres are well-represented in the
space. For example, consider the positions of songs from
Michael Jackson, T.I., and Lady Gaga. Pop songs from
Michael Jackson could easily transition to the more elec-
tronic and dance pop style of Lady Gaga. Lady Gaga’s
songs, in turn, could make good transitions to some of the
more dance-oriented songs (mainly collaborations with other
artists) of the rap artist T.I., which could easily form a gate-
way to other hip hop artists.
While the visualization provides interesting qualitative in-

sights, we now provide a quantitative evaluation of model
quality based on predictive power.

6.2 How does the LME compare to n-gram
models?

We first compare our models against baseline methods
from Natural Language Processing. We consider the follow-
ing models.
Uniform Model. The choices of any song are equally

likely, with the same probability of 1/|S|.
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Simpler	
  version:	
  	
  
Single	
  Point	
  Model	
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  point	
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  is	
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  visualize	
  



Sampling	
  New	
  Playlists	
  

•  Given	
  parIal	
  playlist:	
  

•  Generate	
  next	
  song	
  for	
  playlist	
  pj+1	
  
– Sample	
  according	
  to:	
  

Lecture	
  14:	
  Embeddings	
   39	
  

p = p1,...p j
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What	
  About	
  New	
  Songs?	
  

•  Suppose	
  we’ve	
  trained	
  U:	
  

•  What	
  if	
  we	
  add	
  a	
  new	
  song	
  s’?	
  
– No	
  playlists	
  created	
  by	
  users	
  yet…	
  
– Only	
  opIons:	
  us’	
  =	
  0	
  or	
  us’	
  =	
  random	
  

•  Both	
  are	
  terrible!	
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Song	
  &	
  Tag	
  Embedding	
  

•  Songs	
  are	
  usually	
  added	
  with	
  tags	
  
– E.g.,	
  indie	
  rock,	
  country	
  
– Treat	
  as	
  features	
  or	
  aVributes	
  of	
  songs	
  

•  How	
  to	
  leverage	
  tags	
  to	
  generate	
  a	
  reasonable	
  
embedding	
  of	
  new	
  songs?	
  
– Learn	
  an	
  embedding	
  of	
  tags	
  as	
  well!	
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argmax
U,A

P(D |U)P(U | A,T )

pi = pi
1,..., pi

NiD = pi{ }i=1
NS = s1,...s|S|{ }

Songs	
   Playlists	
   Playlist	
  DefiniIon	
  

T = T1,...T|S|{ }
Tags	
  for	
  Each	
  Song	
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Learning	
  Objec.ve:	
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  as	
  before:	
  

Song	
  embedding	
  ≈	
  average	
  of	
  tag	
  embeddings:	
  

Solve	
  using	
  gradient	
  descent:	
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Figure 1: 2D embedding for yes small. The top 50 genre
tags are labeled; lighter points represent songs.
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Figure 2: Log-likelihood on the test set for the LME and
the baselines on yes small (left) and yes big (right).

observation is that the embedding of songs does not uni-
formly cover the space, but forms clusters as expected.
The location of the tags provides interesting insight into
the semantics of these clusters. Note that semantically syn-
onymous tags are typically close in embedding space (e.g.
“christian rock” and “christian”, “metal rock” and “heavy
metal”). Furthermore, location in embedding space gen-
erally interpolates smoothly between related genres (e.g.
“rock” and “metal”). Note that some tags lie outside the
support of the song distribution. The reason for this is
twofold. First, we will see below that a higher-dimensional
embedding is necessary to accurately represent the data.
Second, many tags are rarely used in isolation, so that some
tags may often simply modify the average prior for songs.

To evaluate our method and the embeddings it produces
more objectively and in higher dimensions, we now turn to
quantitative experiments.

4.2 How does the LME compare to n-gram models?

Our first quantitive experiment explores how the general-
ization accuracy of the LME compares to that of traditional
n-gram models from natural language processing (NLP).
The simplest NLP model is the Unigram Model, where
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Figure 3: Log-likelihood on testing transitions with re-
spect to their frequencies in the training set for yes small.

the next song is sampled independently of the previous
songs. The probability p(si) of each song si is estimated
from the training set as p(si) =

niP
j nj

, where ni is the
number of appearances of si.

The Bigram Model conditions the probability of the
next song on the previous song similar to our LME model.
However, the transition probabilities p(sj |si) of each song
pair are estimated separately, not in a generalizing model
as in the LME. To address the the issue of data sparsity
when estimating p(sj |si), we use Witten-Bell smoothing
(see [5]) as commonly done in language modeling.

As a reference, we also report the results for the Uni-
form Model, where each song has equal probability 1/|S|.

Figure 2 compares the log-likelihood on the test set of
the basic LME model to that of the baselines. The x-axis
shows the dimensionality d of the embedding space. For
the sake of simplicity and brevity, we only report the re-
sults for the model from Section 3.1 trained without reg-
ularization (i.e. � = 0). Over the full range of d the
LME outperforms the baselines by at least two orders of
magnitude in terms of likelihood. While the likelihoods on
the big dataset are lower as expected (i.e. there are more
songs to choose from), the relative gain of the LME over
the baselines is even larger for yes big.

The tag-based model from Section 3.2 performs com-
parably to the results in Figure 2. For datasets with less
training data per song, however, we find that the tag-based
model is preferable. We explore the most extreme case,
namely songs without any training data, in Section 4.4.

Among the conventional sequence models, the bigram
model performs best on yes small. However, it fails to beat
the unigram model on yes big (which contains roughly 3
times the number of songs), since it cannot reliably es-
timate the huge number of parameters it entails. Note
that the number of parameters in the bigram model scales
quadratically with the number of songs, while it scales only
linearly in the LME model. The following section analyzes
in more detail where the conventional bigram model fails,
while the LME shows no signs of overfitting.

4.3 Where does the LME win over the n-gram model?

We now analyze why the LME beats the conventional bi-
gram model. In particular, we explore to what extent

hVp://www.cs.cornell.edu/People/tj/publicaIons/moore_etal_12a.pdf	
  



Revisited:	
  What	
  About	
  New	
  Songs?	
  

•  No	
  user	
  has	
  yet	
  s’	
  added	
  to	
  playlist	
  
– So	
  no	
  evidence	
  from	
  playlist	
  training	
  data:	
  

•  Assume	
  new	
  song	
  has	
  been	
  tagged	
  Ts’	
  
– The	
  us’	
  =	
  average	
  of	
  At	
  for	
  tags	
  t	
  in	
  Ts’	
  
–  ImplicaIon	
  from	
  objecIve:	
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D = pi{ }i=1
N

argmax
U,A

P(D |U)P(U | A,T )

s’	
  does	
  not	
  appear	
  in	
  



Recap:	
  Embeddings	
  

•  Learn	
  a	
  low-­‐dimensional	
  representaIon	
  of	
  
items	
  U	
  

•  Capture	
  semanIcs	
  using	
  distance	
  between	
  
items	
  u,	
  u’	
  

•  Can	
  be	
  easier	
  to	
  visualize	
  than	
  latent	
  factor	
  
models	
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Next	
  Lecture	
  

•  Recent	
  ApplicaIons	
  of	
  Latent	
  Factor	
  Models	
  

•  Low-­‐rank	
  SpaIal	
  Model	
  for	
  Basketball	
  Play	
  
PredicIon	
  

•  Low-­‐rank	
  Tensor	
  Model	
  for	
  CollaboraIve	
  
Clustering	
  

•  Miniproject	
  1	
  report	
  due	
  Thursday.	
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