
Machine	
 Learning	
 &	
 Data	
 Mining	

CS/CNS/EE	
 155	

Lecture	
 14:	

Embeddings	

1	
 Lecture	
 14:	
 Embeddings	

Announcements	

•  Kaggle	
 Miniproject	
 is	
 closed	

– Report	
 due	
 Thursday	

•  Public	
 Leaderboard	

– How	
 well	
 you	
 think	
 you	
 did	

•  Private	
 Leaderboard	
 now	
 viewable	

– How	
 well	
 you	
 actually	
 did	

Lecture	
 14:	
 Embeddings	
 2	

Lecture	
 14:	
 Embeddings	
 3	

Last	
 Week	

•  Dimensionality	
 ReducIon	

•  Clustering	

•  Latent	
 Factor	
 Models	

– Learn	
 low-­‐dimensional	
 representaIon	
 of	
 data	

Lecture	
 14:	
 Embeddings	
 4	

This	
 Lecture	

•  Embeddings	

– AlternaIve	
 form	
 of	
 dimensionality	
 reducIon	

•  Locally	
 Linear	
 Embeddings	

•  Markov	
 Embeddings	

Lecture	
 14:	
 Embeddings	
 5	

Embedding	

•  Learn	
 a	
 representaIon	
 U	

–  Each	
 column	
 u	
 corresponds	
 to	
 data	
 point	

•  SemanIcs	
 encoded	
 via	
 d(u,u’)	

–  Distance	
 between	
 points	

Lecture	
 14:	
 Embeddings	
 6	

35. R. N. Shepard, Psychon. Bull. Rev. 1, 2 (1994).
36. J. B. Tenenbaum, Adv. Neural Info. Proc. Syst. 10, 682
(1998).

37. T. Martinetz, K. Schulten, Neural Netw. 7, 507 (1994).
38. V. Kumar, A. Grama, A. Gupta, G. Karypis, Introduc-
tion to Parallel Computing: Design and Analysis of
Algorithms (Benjamin/Cummings, Redwood City, CA,
1994), pp. 257–297.

39. D. Beymer, T. Poggio, Science 272, 1905 (1996).
40. Available at www.research.att.com/!yann/ocr/mnist.
41. P. Y. Simard, Y. LeCun, J. Denker, Adv. Neural Info.
Proc. Syst. 5, 50 (1993).

42. In order to evaluate the fits of PCA, MDS, and Isomap
on comparable grounds, we use the residual variance

1 – R2(D̂M , DY). DY is the matrix of Euclidean distanc-
es in the low-dimensional embedding recovered by
each algorithm. D̂M is each algorithm’s best estimate
of the intrinsic manifold distances: for Isomap, this is
the graph distance matrix DG; for PCA and MDS, it is
the Euclidean input-space distance matrix DX (except
with the handwritten “2”s, where MDS uses the
tangent distance). R is the standard linear correlation
coefficient, taken over all entries of D̂M and DY.

43. In each sequence shown, the three intermediate im-
ages are those closest to the points 1/4, 1/2, and 3/4
of the way between the given endpoints. We can also
synthesize an explicit mapping from input space X to
the low-dimensional embedding Y, or vice versa, us-

ing the coordinates of corresponding points {xi , yi} in
both spaces provided by Isomap together with stan-
dard supervised learning techniques (39).

44. Supported by the Mitsubishi Electric Research Labo-
ratories, the Schlumberger Foundation, the NSF
(DBS-9021648), and the DARPA Human ID program.
We thank Y. LeCun for making available the MNIST
database and S. Roweis and L. Saul for sharing related
unpublished work. For many helpful discussions, we
thank G. Carlsson, H. Farid, W. Freeman, T. Griffiths,
R. Lehrer, S. Mahajan, D. Reich, W. Richards, J. M.
Tenenbaum, Y. Weiss, and especially M. Bernstein.

10 August 2000; accepted 21 November 2000

Nonlinear Dimensionality
Reduction by

Locally Linear Embedding
Sam T. Roweis1 and Lawrence K. Saul2

Many areas of science depend on exploratory data analysis and visualization.
The need to analyze large amounts of multivariate data raises the fundamental
problem of dimensionality reduction: how to discover compact representations
of high-dimensional data. Here, we introduce locally linear embedding (LLE), an
unsupervised learning algorithm that computes low-dimensional, neighbor-
hood-preserving embeddings of high-dimensional inputs. Unlike clustering
methods for local dimensionality reduction, LLE maps its inputs into a single
global coordinate system of lower dimensionality, and its optimizations do not
involve local minima. By exploiting the local symmetries of linear reconstruc-
tions, LLE is able to learn the global structure of nonlinear manifolds, such as
those generated by images of faces or documents of text.

How do we judge similarity? Our mental
representations of the world are formed by
processing large numbers of sensory in-
puts—including, for example, the pixel in-
tensities of images, the power spectra of
sounds, and the joint angles of articulated
bodies. While complex stimuli of this form can
be represented by points in a high-dimensional
vector space, they typically have a much more
compact description. Coherent structure in the
world leads to strong correlations between in-
puts (such as between neighboring pixels in
images), generating observations that lie on or
close to a smooth low-dimensional manifold.
To compare and classify such observations—in
effect, to reason about the world—depends
crucially on modeling the nonlinear geometry
of these low-dimensional manifolds.

Scientists interested in exploratory analysis
or visualization of multivariate data (1) face a
similar problem in dimensionality reduction.
The problem, as illustrated in Fig. 1, involves
mapping high-dimensional inputs into a low-
dimensional “description” space with as many

coordinates as observed modes of variability.
Previous approaches to this problem, based on
multidimensional scaling (MDS) (2), have
computed embeddings that attempt to preserve
pairwise distances [or generalized disparities
(3)] between data points; these distances are
measured along straight lines or, in more so-
phisticated usages of MDS such as Isomap (4),

along shortest paths confined to the manifold of
observed inputs. Here, we take a different ap-
proach, called locally linear embedding (LLE),
that eliminates the need to estimate pairwise
distances between widely separated data points.
Unlike previous methods, LLE recovers global
nonlinear structure from locally linear fits.

The LLE algorithm, summarized in Fig.
2, is based on simple geometric intuitions.
Suppose the data consist of N real-valued
vectors !Xi, each of dimensionality D, sam-
pled from some underlying manifold. Pro-
vided there is sufficient data (such that the
manifold is well-sampled), we expect each
data point and its neighbors to lie on or
close to a locally linear patch of the mani-
fold. We characterize the local geometry of
these patches by linear coefficients that
reconstruct each data point from its neigh-
bors. Reconstruction errors are measured
by the cost function

ε"W # ! !
i

" !Xi$%jWij
!Xj" 2

(1)

which adds up the squared distances between
all the data points and their reconstructions. The
weights Wij summarize the contribution of the
jth data point to the ith reconstruction. To com-
pute the weights Wij, we minimize the cost

1Gatsby Computational Neuroscience Unit, Universi-
ty College London, 17 Queen Square, London WC1N
3AR, UK. 2AT&T Lab—Research, 180 Park Avenue,
Florham Park, NJ 07932, USA.

E-mail: roweis@gatsby.ucl.ac.uk (S.T.R.); lsaul@research.
att.com (L.K.S.)

Fig. 1. The problem of nonlinear dimensionality reduction, as illustrated (10) for three-dimensional
data (B) sampled from a two-dimensional manifold (A). An unsupervised learning algorithm must
discover the global internal coordinates of the manifold without signals that explicitly indicate how
the data should be embedded in two dimensions. The color coding illustrates the neighborhood-
preserving mapping discovered by LLE; black outlines in (B) and (C) show the neighborhood of a
single point. Unlike LLE, projections of the data by principal component analysis (PCA) (28) or
classical MDS (2) map faraway data points to nearby points in the plane, failing to identify the
underlying structure of the manifold. Note that mixture models for local dimensionality reduction
(29), which cluster the data and perform PCA within each cluster, do not address the problem
considered here: namely, how to map high-dimensional data into a single global coordinate system
of lower dimensionality.

R E P O R T S

www.sciencemag.org SCIENCE VOL 290 22 DECEMBER 2000 2323

 o
n

Fe
br

ua
ry

 2
3,

 2
01

5
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d

fro
m

 o

n
Fe

br
ua

ry
 2

3,
 2

01
5

w
w

w
.s

ci
en

ce
m

ag
.o

rg
D

ow
nl

oa
de

d
fro

m

 o
n

Fe
br

ua
ry

 2
3,

 2
01

5
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d

fro
m

 o

n
Fe

br
ua

ry
 2

3,
 2

01
5

w
w

w
.s

ci
en

ce
m

ag
.o

rg
D

ow
nl

oa
de

d
fro

m

hVp://www.sciencemag.org/content/290/5500/2323.full.pdf	

Locally	
 Linear	
 Embedding	

•  Given:	

	

•  Learn	
 U	
 such	
 that	
 local	
 linearity	
 is	
 preserved	

– Lower	
 dimensional	
 than	
 x	

– “Manifold	
 Learning”	

Lecture	
 14:	
 Embeddings	
 7	

hVps://www.cs.nyu.edu/~roweis/lle/	

S = xi{ }i=1
N

35. R. N. Shepard, Psychon. Bull. Rev. 1, 2 (1994).
36. J. B. Tenenbaum, Adv. Neural Info. Proc. Syst. 10, 682
(1998).

37. T. Martinetz, K. Schulten, Neural Netw. 7, 507 (1994).
38. V. Kumar, A. Grama, A. Gupta, G. Karypis, Introduc-
tion to Parallel Computing: Design and Analysis of
Algorithms (Benjamin/Cummings, Redwood City, CA,
1994), pp. 257–297.

39. D. Beymer, T. Poggio, Science 272, 1905 (1996).
40. Available at www.research.att.com/!yann/ocr/mnist.
41. P. Y. Simard, Y. LeCun, J. Denker, Adv. Neural Info.
Proc. Syst. 5, 50 (1993).

42. In order to evaluate the fits of PCA, MDS, and Isomap
on comparable grounds, we use the residual variance

1 – R2(D̂M , DY). DY is the matrix of Euclidean distanc-
es in the low-dimensional embedding recovered by
each algorithm. D̂M is each algorithm’s best estimate
of the intrinsic manifold distances: for Isomap, this is
the graph distance matrix DG; for PCA and MDS, it is
the Euclidean input-space distance matrix DX (except
with the handwritten “2”s, where MDS uses the
tangent distance). R is the standard linear correlation
coefficient, taken over all entries of D̂M and DY.

43. In each sequence shown, the three intermediate im-
ages are those closest to the points 1/4, 1/2, and 3/4
of the way between the given endpoints. We can also
synthesize an explicit mapping from input space X to
the low-dimensional embedding Y, or vice versa, us-

ing the coordinates of corresponding points {xi , yi} in
both spaces provided by Isomap together with stan-
dard supervised learning techniques (39).

44. Supported by the Mitsubishi Electric Research Labo-
ratories, the Schlumberger Foundation, the NSF
(DBS-9021648), and the DARPA Human ID program.
We thank Y. LeCun for making available the MNIST
database and S. Roweis and L. Saul for sharing related
unpublished work. For many helpful discussions, we
thank G. Carlsson, H. Farid, W. Freeman, T. Griffiths,
R. Lehrer, S. Mahajan, D. Reich, W. Richards, J. M.
Tenenbaum, Y. Weiss, and especially M. Bernstein.

10 August 2000; accepted 21 November 2000

Nonlinear Dimensionality
Reduction by

Locally Linear Embedding
Sam T. Roweis1 and Lawrence K. Saul2

Many areas of science depend on exploratory data analysis and visualization.
The need to analyze large amounts of multivariate data raises the fundamental
problem of dimensionality reduction: how to discover compact representations
of high-dimensional data. Here, we introduce locally linear embedding (LLE), an
unsupervised learning algorithm that computes low-dimensional, neighbor-
hood-preserving embeddings of high-dimensional inputs. Unlike clustering
methods for local dimensionality reduction, LLE maps its inputs into a single
global coordinate system of lower dimensionality, and its optimizations do not
involve local minima. By exploiting the local symmetries of linear reconstruc-
tions, LLE is able to learn the global structure of nonlinear manifolds, such as
those generated by images of faces or documents of text.

How do we judge similarity? Our mental
representations of the world are formed by
processing large numbers of sensory in-
puts—including, for example, the pixel in-
tensities of images, the power spectra of
sounds, and the joint angles of articulated
bodies. While complex stimuli of this form can
be represented by points in a high-dimensional
vector space, they typically have a much more
compact description. Coherent structure in the
world leads to strong correlations between in-
puts (such as between neighboring pixels in
images), generating observations that lie on or
close to a smooth low-dimensional manifold.
To compare and classify such observations—in
effect, to reason about the world—depends
crucially on modeling the nonlinear geometry
of these low-dimensional manifolds.

Scientists interested in exploratory analysis
or visualization of multivariate data (1) face a
similar problem in dimensionality reduction.
The problem, as illustrated in Fig. 1, involves
mapping high-dimensional inputs into a low-
dimensional “description” space with as many

coordinates as observed modes of variability.
Previous approaches to this problem, based on
multidimensional scaling (MDS) (2), have
computed embeddings that attempt to preserve
pairwise distances [or generalized disparities
(3)] between data points; these distances are
measured along straight lines or, in more so-
phisticated usages of MDS such as Isomap (4),

along shortest paths confined to the manifold of
observed inputs. Here, we take a different ap-
proach, called locally linear embedding (LLE),
that eliminates the need to estimate pairwise
distances between widely separated data points.
Unlike previous methods, LLE recovers global
nonlinear structure from locally linear fits.

The LLE algorithm, summarized in Fig.
2, is based on simple geometric intuitions.
Suppose the data consist of N real-valued
vectors !Xi, each of dimensionality D, sam-
pled from some underlying manifold. Pro-
vided there is sufficient data (such that the
manifold is well-sampled), we expect each
data point and its neighbors to lie on or
close to a locally linear patch of the mani-
fold. We characterize the local geometry of
these patches by linear coefficients that
reconstruct each data point from its neigh-
bors. Reconstruction errors are measured
by the cost function

ε"W # ! !
i

" !Xi$%jWij
!Xj" 2

(1)

which adds up the squared distances between
all the data points and their reconstructions. The
weights Wij summarize the contribution of the
jth data point to the ith reconstruction. To com-
pute the weights Wij, we minimize the cost

1Gatsby Computational Neuroscience Unit, Universi-
ty College London, 17 Queen Square, London WC1N
3AR, UK. 2AT&T Lab—Research, 180 Park Avenue,
Florham Park, NJ 07932, USA.

E-mail: roweis@gatsby.ucl.ac.uk (S.T.R.); lsaul@research.
att.com (L.K.S.)

Fig. 1. The problem of nonlinear dimensionality reduction, as illustrated (10) for three-dimensional
data (B) sampled from a two-dimensional manifold (A). An unsupervised learning algorithm must
discover the global internal coordinates of the manifold without signals that explicitly indicate how
the data should be embedded in two dimensions. The color coding illustrates the neighborhood-
preserving mapping discovered by LLE; black outlines in (B) and (C) show the neighborhood of a
single point. Unlike LLE, projections of the data by principal component analysis (PCA) (28) or
classical MDS (2) map faraway data points to nearby points in the plane, failing to identify the
underlying structure of the manifold. Note that mixture models for local dimensionality reduction
(29), which cluster the data and perform PCA within each cluster, do not address the problem
considered here: namely, how to map high-dimensional data into a single global coordinate system
of lower dimensionality.

R E P O R T S

www.sciencemag.org SCIENCE VOL 290 22 DECEMBER 2000 2323

 o
n

Fe
br

ua
ry

 2
3,

 2
01

5
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d

fro
m

 o

n
Fe

br
ua

ry
 2

3,
 2

01
5

w
w

w
.s

ci
en

ce
m

ag
.o

rg
D

ow
nl

oa
de

d
fro

m

 o
n

Fe
br

ua
ry

 2
3,

 2
01

5
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d

fro
m

 o

n
Fe

br
ua

ry
 2

3,
 2

01
5

w
w

w
.s

ci
en

ce
m

ag
.o

rg
D

ow
nl

oa
de

d
fro

m

Unsupervised	
 Learning	

Any	
 neighborhood	

looks	
 like	
 a	
 linear	
 plane	

x’s	
 u’s	

Locally	
 Linear	
 Embedding	

•  Create	
 B(i)	

–  B	
 nearest	
 neighbors	
 of	
 xi	

–  Assump.on:	
 B(i)	
 is	
 approximately	
 linear	

–  xi	
 can	
 be	
 wriVen	
 as	
 a	
 convex	
 combinaIon	
 of	
 xj	
 in	
 B(i)	

	

Lecture	
 14:	
 Embeddings	
 8	

hVps://www.cs.nyu.edu/~roweis/lle/	

S = xi{ }i=1
N

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

xi ≈ Wijx j
j∈B(i)
∑

Wij
j∈B(i)
∑ =1

xi	

B(i)	

Locally	
 Linear	
 Embedding	

Lecture	
 14:	
 Embeddings	
 9	

argmin
W

xi − Wijx j
j∈B(i)
∑

2

i
∑ = argmin

W
Wi,*

TCiWi,*
i
∑ Wij

j∈B(i)
∑ =1

hVps://www.cs.nyu.edu/~roweis/lle/	

xi − Wijx j
j∈B(i)
∑

2

= Wij (xi − x j)
j∈B(i)
∑

2

 = Wij (xi − x j)
j∈B(i)
∑

$

%
&&

'

(
))

T

Wij (xi − x j)
j∈B(i)
∑

$

%
&&

'

(
))

 = WijWikCjk
i

k∈B(i)
∑

j∈B(i)
∑

 =Wi,*
TCiWi,* Cjk

i = (xi − x j)
T (xi − xk)

Locally'Linear'Embedding'

•  Create'B(i)'
–  B'nearest'neighbors'of'xi'
–  Assump&on:*B(i)'is'approximately'linear'
–  xi'can'be'wri<en'as'a'convex'combina>on'of'xj'in'B(i)'

'

Lecture'14:'Embeddings' 8'

h<ps://www.cs.nyu.edu/~roweis/lle/'

S = xi{ }i=1
N

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

xi ≈ Wijx j
j∈B(i)
∑

Wij
j∈B(i)
∑ =1

xi'

B(i)'

Given	
 Neighbors	
 B(i),	
 solve	
 local	
 linear	
 approximaIon	
 W:	

Locally	
 Linear	
 Embedding	

•  Every	
 xi	
 is	
 approximated	
 as	

a	
 convex	
 combinaIon	
 of	

neighbors	

–  How	
 to	
 solve?	

Lecture	
 14:	
 Embeddings	
 10	

Wij
j∈B(i)
∑ =1

Cjk
i = (xi − x j)

T (xi − x j)

argmin
W

xi − Wijx j
j∈B(i)
∑

2

i
∑ = argmin

W
Wi,*

TCiWi,*
i
∑

Locally'Linear'Embedding'

•  Create'B(i)'
–  B'nearest'neighbors'of'xi'
–  Assump&on:*B(i)'is'approximately'linear'
–  xi'can'be'wri<en'as'a'convex'combina>on'of'xj'in'B(i)'

'

Lecture'14:'Embeddings' 8'

h<ps://www.cs.nyu.edu/~roweis/lle/'

S = xi{ }i=1
N

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

xi ≈ Wijx j
j∈B(i)
∑

Wij
j∈B(i)
∑ =1

xi'

B(i)'

Given	
 Neighbors	
 B(i),	
 solve	
 local	
 linear	
 approximaIon	
 W:	

Lagrange	
 MulIpliers	

argmin
w

L(w) ≡ wTCw

s.t. w =1

∃λ ≥ 0 : ∂wL(y,w)∈ λ∇w w()∧ w =1()

∇wj
w

−1 if wj < 0

+1 if wj > 0

−1,+1[] if wj = 0

#

$
%%

&
%
%

Solu.ons	
 tend	
 to	
 	

be	
 at	
 corners!	

11	
 hVp://en.wikipedia.org/wiki/Lagrange_mulIplier	

Solving	
 Locally	
 Linear	
 ApproximaIon	

Lecture	
 14:	
 Embeddings	
 12	

L(W,λ) = Wi,*
TCiWi,* −λi

!
1TWi,* −1()()

i
∑ Wij =

!
1T

j
∑ Wi,*

∂Wi,*
L(W,λ) = 2CiWi,* −λi

!
1

Wi,* =
λi
2
Ci()

−1 !
1∝ Ci()

−1 !
1

Wij ∝ Ci() jk
−1

k∈B(i)
∑ Wij =

Ci() jk
−1

k∈B(i)
∑

Ci()lm
−1

m∈B(i)
∑

l∈B(i)
∑

Lagrangian:	

Locally	
 Linear	
 ApproximaIon	

•  Invariant	
 to:	

– RotaIon	

– Scaling	

– TranslaIon	

Lecture	
 14:	
 Embeddings	
 13	

xi ≈ Wijx j
j∈B(i)
∑

Wij
j∈B(i)
∑ =1Axi ≈ AWijx j

j∈B(i)
∑

5xi ≈ 5Wijx j
j∈B(i)
∑

xi + x ' ≈ Wij x j + x '()
j∈B(i)
∑

Story	
 So	
 Far:	
 Locally	
 Linear	
 Embeddings	

•  Locally	
 Linear	
 Approxima.on	
 	
 	

Lecture	
 14:	
 Embeddings	
 14	

Wij =

Ci() jk
−1

k∈B(i)
∑

Ci()lm
−1

m∈B(i)
∑

l∈B(i)
∑

Cjk
i = (xi − x j)

T (xi − xk)

argmin
W

xi − Wijx j
j∈B(i)
∑

2

i
∑ = argmin

W
Wi,*

TCiWi,*
i
∑ Wij

j∈B(i)
∑ =1Locally'Linear'Embedding'

•  Create'B(i)'
–  B'nearest'neighbors'of'xi'
–  Assump&on:*B(i)'is'approximately'linear'
–  xi'can'be'wri<en'as'a'convex'combina>on'of'xj'in'B(i)'

'

Lecture'14:'Embeddings' 8'

h<ps://www.cs.nyu.edu/~roweis/lle/'

S = xi{ }i=1
N

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

xi ≈ Wijx j
j∈B(i)
∑

Wij
j∈B(i)
∑ =1

xi'

B(i)'

hVps://www.cs.nyu.edu/~roweis/lle/	

Given	
 Neighbors	
 B(i),	
 solve	
 local	
 linear	
 approximaIon	
 W:	

SoluIon	
 via	
 Lagrange	
 MulIpliers:	

Recall:	
 Locally	
 Linear	
 Embedding	

•  Given:	

	

•  Learn	
 U	
 such	
 that	
 local	
 linearity	
 is	
 preserved	

– Lower	
 dimensional	
 than	
 x	

– “Manifold	
 Learning”	

Lecture	
 14:	
 Embeddings	
 15	

hVps://www.cs.nyu.edu/~roweis/lle/	

S = xi{ }i=1
N

35. R. N. Shepard, Psychon. Bull. Rev. 1, 2 (1994).
36. J. B. Tenenbaum, Adv. Neural Info. Proc. Syst. 10, 682
(1998).

37. T. Martinetz, K. Schulten, Neural Netw. 7, 507 (1994).
38. V. Kumar, A. Grama, A. Gupta, G. Karypis, Introduc-
tion to Parallel Computing: Design and Analysis of
Algorithms (Benjamin/Cummings, Redwood City, CA,
1994), pp. 257–297.

39. D. Beymer, T. Poggio, Science 272, 1905 (1996).
40. Available at www.research.att.com/!yann/ocr/mnist.
41. P. Y. Simard, Y. LeCun, J. Denker, Adv. Neural Info.
Proc. Syst. 5, 50 (1993).

42. In order to evaluate the fits of PCA, MDS, and Isomap
on comparable grounds, we use the residual variance

1 – R2(D̂M , DY). DY is the matrix of Euclidean distanc-
es in the low-dimensional embedding recovered by
each algorithm. D̂M is each algorithm’s best estimate
of the intrinsic manifold distances: for Isomap, this is
the graph distance matrix DG; for PCA and MDS, it is
the Euclidean input-space distance matrix DX (except
with the handwritten “2”s, where MDS uses the
tangent distance). R is the standard linear correlation
coefficient, taken over all entries of D̂M and DY.

43. In each sequence shown, the three intermediate im-
ages are those closest to the points 1/4, 1/2, and 3/4
of the way between the given endpoints. We can also
synthesize an explicit mapping from input space X to
the low-dimensional embedding Y, or vice versa, us-

ing the coordinates of corresponding points {xi , yi} in
both spaces provided by Isomap together with stan-
dard supervised learning techniques (39).

44. Supported by the Mitsubishi Electric Research Labo-
ratories, the Schlumberger Foundation, the NSF
(DBS-9021648), and the DARPA Human ID program.
We thank Y. LeCun for making available the MNIST
database and S. Roweis and L. Saul for sharing related
unpublished work. For many helpful discussions, we
thank G. Carlsson, H. Farid, W. Freeman, T. Griffiths,
R. Lehrer, S. Mahajan, D. Reich, W. Richards, J. M.
Tenenbaum, Y. Weiss, and especially M. Bernstein.

10 August 2000; accepted 21 November 2000

Nonlinear Dimensionality
Reduction by

Locally Linear Embedding
Sam T. Roweis1 and Lawrence K. Saul2

Many areas of science depend on exploratory data analysis and visualization.
The need to analyze large amounts of multivariate data raises the fundamental
problem of dimensionality reduction: how to discover compact representations
of high-dimensional data. Here, we introduce locally linear embedding (LLE), an
unsupervised learning algorithm that computes low-dimensional, neighbor-
hood-preserving embeddings of high-dimensional inputs. Unlike clustering
methods for local dimensionality reduction, LLE maps its inputs into a single
global coordinate system of lower dimensionality, and its optimizations do not
involve local minima. By exploiting the local symmetries of linear reconstruc-
tions, LLE is able to learn the global structure of nonlinear manifolds, such as
those generated by images of faces or documents of text.

How do we judge similarity? Our mental
representations of the world are formed by
processing large numbers of sensory in-
puts—including, for example, the pixel in-
tensities of images, the power spectra of
sounds, and the joint angles of articulated
bodies. While complex stimuli of this form can
be represented by points in a high-dimensional
vector space, they typically have a much more
compact description. Coherent structure in the
world leads to strong correlations between in-
puts (such as between neighboring pixels in
images), generating observations that lie on or
close to a smooth low-dimensional manifold.
To compare and classify such observations—in
effect, to reason about the world—depends
crucially on modeling the nonlinear geometry
of these low-dimensional manifolds.

Scientists interested in exploratory analysis
or visualization of multivariate data (1) face a
similar problem in dimensionality reduction.
The problem, as illustrated in Fig. 1, involves
mapping high-dimensional inputs into a low-
dimensional “description” space with as many

coordinates as observed modes of variability.
Previous approaches to this problem, based on
multidimensional scaling (MDS) (2), have
computed embeddings that attempt to preserve
pairwise distances [or generalized disparities
(3)] between data points; these distances are
measured along straight lines or, in more so-
phisticated usages of MDS such as Isomap (4),

along shortest paths confined to the manifold of
observed inputs. Here, we take a different ap-
proach, called locally linear embedding (LLE),
that eliminates the need to estimate pairwise
distances between widely separated data points.
Unlike previous methods, LLE recovers global
nonlinear structure from locally linear fits.

The LLE algorithm, summarized in Fig.
2, is based on simple geometric intuitions.
Suppose the data consist of N real-valued
vectors !Xi, each of dimensionality D, sam-
pled from some underlying manifold. Pro-
vided there is sufficient data (such that the
manifold is well-sampled), we expect each
data point and its neighbors to lie on or
close to a locally linear patch of the mani-
fold. We characterize the local geometry of
these patches by linear coefficients that
reconstruct each data point from its neigh-
bors. Reconstruction errors are measured
by the cost function

ε"W # ! !
i

" !Xi$%jWij
!Xj" 2

(1)

which adds up the squared distances between
all the data points and their reconstructions. The
weights Wij summarize the contribution of the
jth data point to the ith reconstruction. To com-
pute the weights Wij, we minimize the cost

1Gatsby Computational Neuroscience Unit, Universi-
ty College London, 17 Queen Square, London WC1N
3AR, UK. 2AT&T Lab—Research, 180 Park Avenue,
Florham Park, NJ 07932, USA.

E-mail: roweis@gatsby.ucl.ac.uk (S.T.R.); lsaul@research.
att.com (L.K.S.)

Fig. 1. The problem of nonlinear dimensionality reduction, as illustrated (10) for three-dimensional
data (B) sampled from a two-dimensional manifold (A). An unsupervised learning algorithm must
discover the global internal coordinates of the manifold without signals that explicitly indicate how
the data should be embedded in two dimensions. The color coding illustrates the neighborhood-
preserving mapping discovered by LLE; black outlines in (B) and (C) show the neighborhood of a
single point. Unlike LLE, projections of the data by principal component analysis (PCA) (28) or
classical MDS (2) map faraway data points to nearby points in the plane, failing to identify the
underlying structure of the manifold. Note that mixture models for local dimensionality reduction
(29), which cluster the data and perform PCA within each cluster, do not address the problem
considered here: namely, how to map high-dimensional data into a single global coordinate system
of lower dimensionality.

R E P O R T S

www.sciencemag.org SCIENCE VOL 290 22 DECEMBER 2000 2323

 o
n

Fe
br

ua
ry

 2
3,

 2
01

5
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d

fro
m

 o

n
Fe

br
ua

ry
 2

3,
 2

01
5

w
w

w
.s

ci
en

ce
m

ag
.o

rg
D

ow
nl

oa
de

d
fro

m

 o
n

Fe
br

ua
ry

 2
3,

 2
01

5
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d

fro
m

 o

n
Fe

br
ua

ry
 2

3,
 2

01
5

w
w

w
.s

ci
en

ce
m

ag
.o

rg
D

ow
nl

oa
de

d
fro

m

x’s	
 u’s	

Dimensionality	
 ReducIon	

•  Find	
 low	
 dimensional	
 U	

– Preserves	
 approximate	
 local	
 linearity	

Lecture	
 14:	
 Embeddings	
 16	

argmin
U

ui − Wijuj
j∈B(i)
∑

2

i
∑

35. R. N. Shepard, Psychon. Bull. Rev. 1, 2 (1994).
36. J. B. Tenenbaum, Adv. Neural Info. Proc. Syst. 10, 682
(1998).

37. T. Martinetz, K. Schulten, Neural Netw. 7, 507 (1994).
38. V. Kumar, A. Grama, A. Gupta, G. Karypis, Introduc-
tion to Parallel Computing: Design and Analysis of
Algorithms (Benjamin/Cummings, Redwood City, CA,
1994), pp. 257–297.

39. D. Beymer, T. Poggio, Science 272, 1905 (1996).
40. Available at www.research.att.com/!yann/ocr/mnist.
41. P. Y. Simard, Y. LeCun, J. Denker, Adv. Neural Info.
Proc. Syst. 5, 50 (1993).

42. In order to evaluate the fits of PCA, MDS, and Isomap
on comparable grounds, we use the residual variance

1 – R2(D̂M , DY). DY is the matrix of Euclidean distanc-
es in the low-dimensional embedding recovered by
each algorithm. D̂M is each algorithm’s best estimate
of the intrinsic manifold distances: for Isomap, this is
the graph distance matrix DG; for PCA and MDS, it is
the Euclidean input-space distance matrix DX (except
with the handwritten “2”s, where MDS uses the
tangent distance). R is the standard linear correlation
coefficient, taken over all entries of D̂M and DY.

43. In each sequence shown, the three intermediate im-
ages are those closest to the points 1/4, 1/2, and 3/4
of the way between the given endpoints. We can also
synthesize an explicit mapping from input space X to
the low-dimensional embedding Y, or vice versa, us-

ing the coordinates of corresponding points {xi , yi} in
both spaces provided by Isomap together with stan-
dard supervised learning techniques (39).

44. Supported by the Mitsubishi Electric Research Labo-
ratories, the Schlumberger Foundation, the NSF
(DBS-9021648), and the DARPA Human ID program.
We thank Y. LeCun for making available the MNIST
database and S. Roweis and L. Saul for sharing related
unpublished work. For many helpful discussions, we
thank G. Carlsson, H. Farid, W. Freeman, T. Griffiths,
R. Lehrer, S. Mahajan, D. Reich, W. Richards, J. M.
Tenenbaum, Y. Weiss, and especially M. Bernstein.

10 August 2000; accepted 21 November 2000

Nonlinear Dimensionality
Reduction by

Locally Linear Embedding
Sam T. Roweis1 and Lawrence K. Saul2

Many areas of science depend on exploratory data analysis and visualization.
The need to analyze large amounts of multivariate data raises the fundamental
problem of dimensionality reduction: how to discover compact representations
of high-dimensional data. Here, we introduce locally linear embedding (LLE), an
unsupervised learning algorithm that computes low-dimensional, neighbor-
hood-preserving embeddings of high-dimensional inputs. Unlike clustering
methods for local dimensionality reduction, LLE maps its inputs into a single
global coordinate system of lower dimensionality, and its optimizations do not
involve local minima. By exploiting the local symmetries of linear reconstruc-
tions, LLE is able to learn the global structure of nonlinear manifolds, such as
those generated by images of faces or documents of text.

How do we judge similarity? Our mental
representations of the world are formed by
processing large numbers of sensory in-
puts—including, for example, the pixel in-
tensities of images, the power spectra of
sounds, and the joint angles of articulated
bodies. While complex stimuli of this form can
be represented by points in a high-dimensional
vector space, they typically have a much more
compact description. Coherent structure in the
world leads to strong correlations between in-
puts (such as between neighboring pixels in
images), generating observations that lie on or
close to a smooth low-dimensional manifold.
To compare and classify such observations—in
effect, to reason about the world—depends
crucially on modeling the nonlinear geometry
of these low-dimensional manifolds.

Scientists interested in exploratory analysis
or visualization of multivariate data (1) face a
similar problem in dimensionality reduction.
The problem, as illustrated in Fig. 1, involves
mapping high-dimensional inputs into a low-
dimensional “description” space with as many

coordinates as observed modes of variability.
Previous approaches to this problem, based on
multidimensional scaling (MDS) (2), have
computed embeddings that attempt to preserve
pairwise distances [or generalized disparities
(3)] between data points; these distances are
measured along straight lines or, in more so-
phisticated usages of MDS such as Isomap (4),

along shortest paths confined to the manifold of
observed inputs. Here, we take a different ap-
proach, called locally linear embedding (LLE),
that eliminates the need to estimate pairwise
distances between widely separated data points.
Unlike previous methods, LLE recovers global
nonlinear structure from locally linear fits.

The LLE algorithm, summarized in Fig.
2, is based on simple geometric intuitions.
Suppose the data consist of N real-valued
vectors !Xi, each of dimensionality D, sam-
pled from some underlying manifold. Pro-
vided there is sufficient data (such that the
manifold is well-sampled), we expect each
data point and its neighbors to lie on or
close to a locally linear patch of the mani-
fold. We characterize the local geometry of
these patches by linear coefficients that
reconstruct each data point from its neigh-
bors. Reconstruction errors are measured
by the cost function

ε"W # ! !
i

" !Xi$%jWij
!Xj" 2

(1)

which adds up the squared distances between
all the data points and their reconstructions. The
weights Wij summarize the contribution of the
jth data point to the ith reconstruction. To com-
pute the weights Wij, we minimize the cost

1Gatsby Computational Neuroscience Unit, Universi-
ty College London, 17 Queen Square, London WC1N
3AR, UK. 2AT&T Lab—Research, 180 Park Avenue,
Florham Park, NJ 07932, USA.

E-mail: roweis@gatsby.ucl.ac.uk (S.T.R.); lsaul@research.
att.com (L.K.S.)

Fig. 1. The problem of nonlinear dimensionality reduction, as illustrated (10) for three-dimensional
data (B) sampled from a two-dimensional manifold (A). An unsupervised learning algorithm must
discover the global internal coordinates of the manifold without signals that explicitly indicate how
the data should be embedded in two dimensions. The color coding illustrates the neighborhood-
preserving mapping discovered by LLE; black outlines in (B) and (C) show the neighborhood of a
single point. Unlike LLE, projections of the data by principal component analysis (PCA) (28) or
classical MDS (2) map faraway data points to nearby points in the plane, failing to identify the
underlying structure of the manifold. Note that mixture models for local dimensionality reduction
(29), which cluster the data and perform PCA within each cluster, do not address the problem
considered here: namely, how to map high-dimensional data into a single global coordinate system
of lower dimensionality.

R E P O R T S

www.sciencemag.org SCIENCE VOL 290 22 DECEMBER 2000 2323

 o
n

Fe
br

ua
ry

 2
3,

 2
01

5
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d

fro
m

 o

n
Fe

br
ua

ry
 2

3,
 2

01
5

w
w

w
.s

ci
en

ce
m

ag
.o

rg
D

ow
nl

oa
de

d
fro

m

 o
n

Fe
br

ua
ry

 2
3,

 2
01

5
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d

fro
m

 o

n
Fe

br
ua

ry
 2

3,
 2

01
5

w
w

w
.s

ci
en

ce
m

ag
.o

rg
D

ow
nl

oa
de

d
fro

m

hVps://www.cs.nyu.edu/~roweis/lle/	

Given	
 local	
 approximaIon	
 W,	
 learn	
 lower	
 dimensional	
 representaIon:	

x’s	
 u’s	

Neighborhood	
 	

represented	
 by	
 Wi,*	

•  Rewrite	
 as:	

Lecture	
 14:	
 Embeddings	
 17	

argmin
U

ui − Wijuj
j∈B(i)
∑

2

i
∑ UUT = IK

ui
i
∑ =

!
0

argmin
U

Mij ui
Tuj()

ij
∑ ≡ trace UMUT()

Mij =1 i= j[] −Wij −Wji + WkiWkj
k
∑

M = (IN −W)
T (IN −W)

Symmetric	
 posiIve	
 semidefinite	

hVps://www.cs.nyu.edu/~roweis/lle/	

Given	
 local	
 approximaIon	
 W,	
 learn	
 lower	
 dimensional	
 representaIon:	

•  Suppose	
 K=1	

•  By	
 min-­‐max	
 theorem	

– u	
 =	
 principal	
 eigenvector	
 of	
 M+	

Lecture	
 14:	
 Embeddings	
 18	

UUT = IK
ui

i
∑ =

!
0

uuT =1

argmin
U

Mij ui
Tuj()

ij
∑ ≡ trace UMUT()

argmin
u

Mij ui
Tuj()

ij
∑ ≡ trace uMuT()

= argmax
u

trace uM +uT()

hVp://en.wikipedia.org/wiki/Min-­‐max_theorem	

pseudoinverse	

Given	
 local	
 approximaIon	
 W,	
 learn	
 lower	
 dimensional	
 representaIon:	

Recap:	
 Principal	
 Component	
 Analysis	

•  Each	
 column	
 of	
 V	
 is	
 an	
 Eigenvector	

•  Each	
 λ	
 is	
 an	
 Eigenvalue	
 (λ1	
 ≥	
 λ2	
 ≥	
 …)	

Lecture	
 14:	
 Embeddings	
 19	

M =VΛVT
Λ =

λ1
λ2

0
0

"

#

$
$
$
$
$

%

&

'
'
'
'
'

M + =VΛ+VT
Λ+ =

1/ λ1
1 / λ2

0
0

"

#

$
$
$
$
$

%

&

'
'
'
'
'

MM + =VΛΛ+VT =V1:2V1:2
T =

1
1
0

0

"

#

$
$
$
$

%

&

'
'
'
'

•  K=1:	

–  u	
 =	
 principal	
 eigenvector	
 of	
 M+	

–  u	
 =	
 smallest	
 non-­‐trivial	
 eigenvector	
 of	
 M	

•  Corresponds	
 to	
 smallest	
 non-­‐zero	
 eigenvalue	

•  General	
 K	

–  U	
 =	
 top	
 K	
 principal	
 eigenvectors	
 of	
 M+	

–  U	
 =	
 boVom	
 K	
 non-­‐trivial	
 eigenvectors	
 of	
 M	

•  Corresponds	
 to	
 boVom	
 K	
 non-­‐zero	
 eigenvalues	

Lecture	
 14:	
 Embeddings	
 20	

UUT = IK

ui
i
∑ =

!
0

argmin
U

Mij ui
Tuj()

ij
∑ ≡ trace UMUT()

hVp://en.wikipedia.org/wiki/Min-­‐max_theorem	

hVps://www.cs.nyu.edu/~roweis/lle/	

Given	
 local	
 approximaIon	
 W,	
 learn	
 lower	
 dimensional	
 representaIon:	

Recap:	
 Locally	
 Linear	
 Embedding	

•  Generate	
 nearest	
 neighbors	
 of	
 each	
 xi,	
 B(i)	

•  Compute	
 Local	
 Linear	
 ApproximaIon:	

	

•  Compute	
 low	
 dimensional	
 embedding	

Lecture	
 14:	
 Embeddings	
 21	

argmin
W

xi − Wijx j
j∈B(i)
∑

2

i
∑ Wij

j∈B(i)
∑ =1

argmin
U

ui − Wijuj
j∈B(i)
∑

2

i
∑

UUT = IK
ui

i
∑ =

!
0

Results	
 for	
 Different	
 Neighborhoods	

Lecture	
 14:	
 Embeddings	
 22	

hVps://www.cs.nyu.edu/~roweis/lle/gallery.html	

B=3	

B=6	
 B=9	
 B=12	

True	
 DistribuIon	
 2000	
 Samples	

Embeddings	
 vs	
 Latent	
 Factor	
 Models	

•  Both	
 define	
 low-­‐dimensional	
 representaIon	

•  Embeddings	
 preserve	
 distance:	

	

•  Latent	
 Factor	
 preserve	
 inner	
 product:	

•  RelaIonship:	

Lecture	
 14:	
 Embeddings	
 23	

ui −uj
2
≈ xi − x j

2

ui
Tuj ≈ xi

T x j

ui −uj
2
= ui

2
+ uj

2
− 2ui

Tuj

VisualizaIon	
 SemanIcs	

Lecture	
 14:	
 Embeddings	
 24	

COVER FE ATURE

COMPUTER 44

vector qi R f, and each user u is associ-
ated with a vector pu R f. For a given item
i, the elements of qi measure the extent to
which the item possesses those factors,
positive or negative. For a given user u,
the elements of pu measure the extent of
interest the user has in items that are high
on the corresponding factors, again, posi-
tive or negative. The resulting dot product,
qi

T pu, captures the interaction between user
u and item i—the user’s overall interest in
the item’s characteristics. This approximates
user u’s rating of item i, which is denoted by
rui, leading to the estimate

r̂ui

= qi
T pu. (1)

The major challenge is computing the map-
ping of each item and user to factor vectors
qi, pu R f. After the recommender system
completes this mapping, it can easily esti-
mate the rating a user will give to any item
by using Equation 1.

Such a model is closely related to singular value decom-
position (SVD), a well-established technique for identifying
latent semantic factors in information retrieval. Applying
SVD in the collaborative filtering domain requires factoring
the user-item rating matrix. This often raises difficulties
due to the high portion of missing values caused by sparse-
ness in the user-item ratings matrix. Conventional SVD is
undefined when knowledge about the matrix is incom-
plete. Moreover, carelessly addressing only the relatively
few known entries is highly prone to overfitting.

Earlier systems relied on imputation to fill in missing
ratings and make the rating matrix dense.2 However, im-
putation can be very expensive as it significantly increases
the amount of data. In addition, inaccurate imputation
might distort the data considerably. Hence, more recent
works3-6 suggested modeling directly the observed rat-
ings only, while avoiding overfitting through a regularized
model. To learn the factor vectors (pu and qi), the system
minimizes the regularized squared error on the set of
known ratings:

min
* *,q p (,)u i

(rui qi
Tpu)

2 + (|| qi ||
2 + || pu ||

2) (2)

Here, is the set of the (u,i) pairs for which rui is known
(the training set).

The system learns the model by fitting the previously
observed ratings. However, the goal is to generalize those
previous ratings in a way that predicts future, unknown
ratings. Thus, the system should avoid overfitting the
observed data by regularizing the learned parameters,
whose magnitudes are penalized. The constant controls

recommendation. These methods have become popular in
recent years by combining good scalability with predictive
accuracy. In addition, they offer much flexibility for model-
ing various real-life situations.

Recommender systems rely on different types of
input data, which are often placed in a matrix with one
dimension representing users and the other dimension
representing items of interest. The most convenient data
is high-quality explicit feedback, which includes explicit
input by users regarding their interest in products. For
example, Netflix collects star ratings for movies, and TiVo
users indicate their preferences for TV shows by pressing
thumbs-up and thumbs-down buttons. We refer to explicit
user feedback as ratings. Usually, explicit feedback com-
prises a sparse matrix, since any single user is likely to
have rated only a small percentage of possible items.

One strength of matrix factorization is that it allows
incorporation of additional information. When explicit
feedback is not available, recommender systems can infer
user preferences using implicit feedback, which indirectly
reflects opinion by observing user behavior including pur-
chase history, browsing history, search patterns, or even
mouse movements. Implicit feedback usually denotes the
presence or absence of an event, so it is typically repre-
sented by a densely filled matrix.

A BASIC MATRIX FACTORIZATION MODEL
Matrix factorization models map both users and items

to a joint latent factor space of dimensionality f, such that
user-item interactions are modeled as inner products in
that space. Accordingly, each item i is associated with a

Geared
toward
males

Serious

Escapist

The Princess
Diaries

Braveheart

Lethal Weapon

Independence
Day

Ocean’s 11
Sense and
Sensibility

Gus

Dave

Geared
toward

females

Amadeus

The Lion King Dumb and
Dumber

The Color Purple

Figure 2. A simplified illustration of the latent factor approach, which
characterizes both users and movies using two axes—male versus female
and serious versus escapist.

This reduces the complexity of a gradient step to O(|Ci|).
The key problem lies in identifying a suitable candidate set
Ci for each si. Clearly, each Ci should include at least most
of the likely successors of si, which lead us to the following
landmark heuristic.

We randomly pick a certain number (typically 50) of songs
and call them landmarks, and assign each song to the near-
est landmark. We also need to specify a threshold r 2 [0, 1].
Then for each si, its direct successors observed in the train-
ing set are first added to the subset Cr

i , because these songs
are always needed to compute the local log-likelihood. We
keep adding songs from nearby landmarks to the subset, un-
til ratio r of the total songs has been included. This defines
the final subset Cr

i . By adopting this heuristic, the gradients
of the local log-likelihood become

@l(sa,sb)
@U(sp)

=1[a=p]2

2

4��!
�2(sa,sb)+

P
sl2Cr

p
e��2(sa,sl)

2�!
�2(sa,sl)

Zr(sa)

3

5

@l(sa,sb)
@V (sq)

=1[b=q]2
�!
�2(sa, sb)� 2

e��2(sa,sq)
2�!
�2(sa, sq)

Zr(sa)
,

where Zr(sa) is the partition function restricted to Cr
a , namelyP

sl2Cr
a
e��2(sa,sl)

2
. Empirically, we update the landmarks

every 10 iterations1, and fix them after 100 iterations to
ensure convergence.

5.3 Implementation
We implemented our methods in C. The code is available

online at http://lme.joachims.org.

6. EXPERIMENTS
In the following experiments we will analyze the LME in

comparison to n-gram baselines, explore the e↵ect of the
popularity term and regularization, and assess the compu-
tational e�ciency of the method.

To collect a dataset of playlists for our empirical eval-
uation, we crawled Yes.com during the period from Dec.
2010 to May 2011. Yes.com is a website that provides radio
playlists of hundreds of stations in the United States. By
using the web based API2, one can retrieve the playlists of
the last 7 days for any station specified by its genre. With-
out taking any preference, we collect as much data as we can
by specifying all the possible genres. We then generated two
datasets, which we refer to as yes small and yes big . In the
small dataset, we removed the songs with less than 20, in the
large dataset we only removed songs with less than 5 appear-
ances. The smaller one is composed of 3, 168 unique songs.
It is then divided into into a training set with 134, 431 tran-
sitions and a test set with 1, 191, 279 transitions. The larger
one contains 9, 775 songs, a training set with 172, 510 transi-
tions and a test set with 1, 602, 079 transitions. The datasets
are available for download at http://lme.joachims.org.

Unless noted otherwise, experiments use the following
setup. Any model (either the LME or the baseline model)
is first trained on the training set and then tested on
the test set. We evaluate test performance using the
average log-likelihood as our metric. It is defined as
log(Pr(Dtest))/Ntest, where Ntest is the number of transi-
tions in test set. One should note that the division of train-

1A iteration means a full pass on the training dataset.
2
http://api.yes.com

-4 -3 -2 -1 0 1 2 3 4 5

-2.2

-1.2

-0.2

0.8

1.8

2.8

3.8

4.8

5.8

Garth Brooks

Bob Marley

The Rolling Stones

Michael Jackson

Lady Gaga

Metallica

T.I.

All

Figure 3: Visual representation of an embedding
in two dimensions with songs from selected artists
highlighted

ing and test set is done so that each song appears at least
once in the training set. This was done to exclude the case
of encountering a new song when doing testing, which any
method would need to treat as a special case and impute
some probability estimate.

6.1 What do embeddings look like?
We start with giving a qualitative impression of the em-

beddings that our method produces. Figure 3 shows the two-
dimensional single-point embedding of the yes small dataset.
Songs from a few well-known artists are highlighted to pro-
vide reference points in the embedding space.
First, it is interesting to note that songs by the same artist

cluster tightly, even though our model has no direct knowl-
edge of which artist performed a song. Second, logical con-
nections among di↵erent genres are well-represented in the
space. For example, consider the positions of songs from
Michael Jackson, T.I., and Lady Gaga. Pop songs from
Michael Jackson could easily transition to the more elec-
tronic and dance pop style of Lady Gaga. Lady Gaga’s
songs, in turn, could make good transitions to some of the
more dance-oriented songs (mainly collaborations with other
artists) of the rap artist T.I., which could easily form a gate-
way to other hip hop artists.
While the visualization provides interesting qualitative in-

sights, we now provide a quantitative evaluation of model
quality based on predictive power.

6.2 How does the LME compare to n-gram
models?

We first compare our models against baseline methods
from Natural Language Processing. We consider the follow-
ing models.
Uniform Model. The choices of any song are equally

likely, with the same probability of 1/|S|.

Latent	
 Factor	
 Model	

Similarity	
 measured	
 via	
 dot	
 product	

RotaIonal	
 semanIcs	

Can	
 interpret	
 axes	

Can	
 only	
 visualize	
 2	
 axes	
 at	
 a	
 Ime	

Embedding	

Similarity	
 measured	
 via	
 distance	

Clustering/locality	
 semanIcs	

Cannot	
 interpret	
 axes	

Can	
 visualize	
 many	
 clusters	
 simultaneously	

Latent	
 Markov	
 Embeddings	

Lecture	
 14:	
 Embeddings	
 25	

Latent	
 Markov	
 Embeddings	

•  Locally	
 Linear	
 Embedding	
 is	
 convenIonal	

unsupervised	
 learning	

–  Given	
 raw	
 features	
 xi	

–  I.e.,	
 find	
 low-­‐dimensional	
 U	
 that	
 preserves	
 approximate	

local	
 linearity	

•  Latent	
 Markov	
 Embedding	
 is	
 a	
 feature	

learning	
 problem	

–  E.g.,	
 learn	
 low-­‐dimensional	
 U	
 that	
 captures	
 user-­‐generated	

feedback	

Lecture	
 14:	
 Embeddings	
 26	

Playlist	
 Embedding	

•  Users	
 generate	
 song	
 playlists	

– Treat	
 as	
 training	
 data	

•  Can	
 we	
 learn	
 a	
 probabilis.c	
 model	
 of	

playlists?	

Lecture	
 14:	
 Embeddings	
 27	

ProbabilisIc	
 Markov	
 Modeling	

•  Training	
 set:	

•  Goal:	
 Learn	
 a	
 probabilisIc	
 Markov	
 model	
 of	
 playlists:	

•  What	
 is	
 the	
 form	
 of	
 P?	

Lecture	
 14:	
 Embeddings	
 28	

hVp://www.cs.cornell.edu/People/tj/publicaIons/chen_etal_12a.pdf	

pi = pi
1,..., pi

NiD = pi{ }i=1
N

P(pi
j | pi

j−1)

S = s1,...s|S|{ }
Songs	
 Playlists	
 Playlist	
 DefiniIon	

First	
 Try:	
 Probability	
 Tables	

Lecture	
 14:	
 Embeddings	
 29	

P(s|s’)	
 s1	
 s2	
 s3	
 s4	
 s5	
 s6	
 s7	
 sstart	

s1	
 0.01	
 0.03	
 0.01	
 0.11	
 0.04	
 0.04	
 0.01	
 0.05	

s2	
 0.03	
 0.01	
 0.04	
 0.03	
 0.02	
 0.01	
 0.02	
 0.02	

s3	
 0.01	
 0.01	
 0.01	
 0.07	
 0.02	
 0.02	
 0.05	
 0.09	

s4	
 0.02	
 0.11	
 0.07	
 0.01	
 0.07	
 0.04	
 0.01	
 0.01	

s5	
 0.04	
 0.01	
 0.02	
 0.17	
 0.01	
 0.01	
 0.10	
 0.02	

s6	
 0.01	
 0.02	
 0.03	
 0.01	
 0.01	
 0.01	
 0.01	
 0.08	

s7	
 0.07	
 0.02	
 0.01	
 0.01	
 0.03	
 0.09	
 0.03	
 0.01	
 …
	

…	

First	
 Try:	
 Probability	
 Tables	

Lecture	
 14:	
 Embeddings	
 30	

P(s|s’)	
 s1	
 s2	
 s3	
 s4	
 s5	
 s6	
 s7	
 sstart	

s1	
 0.01	
 0.03	
 0.01	
 0.11	
 0.04	
 0.04	
 0.01	
 0.05	

s2	
 0.03	
 0.01	
 0.04	
 0.03	
 0.02	
 0.01	
 0.02	
 0.02	

s3	
 0.01	
 0.01	
 0.01	
 0.07	
 0.02	
 0.02	
 0.05	
 0.09	

s4	
 0.02	
 0.11	
 0.07	
 0.01	
 0.07	
 0.04	
 0.01	
 0.01	

s5	
 0.04	
 0.01	
 0.02	
 0.17	
 0.01	
 0.01	
 0.10	
 0.02	

s6	
 0.01	
 0.02	
 0.03	
 0.01	
 0.01	
 0.01	
 0.01	
 0.08	

s7	
 0.07	
 0.02	
 0.01	
 0.01	
 0.03	
 0.09	
 0.03	
 0.01	
 …
	

…	

#Parameters	
 =	
 O(|S|2)	
 !!!	

Second	
 Try:	
 Hidden	
 Markov	
 Models	

•  #Parameters	
 =	
 O(K2)	

•  #Parameters	
 =	
 O(|S|K)	

•  Total	
 =	
 O(K2)	
 +	
 O(|S|K)	

Lecture	
 14:	
 Embeddings	
 31	

P pi, z() = P(End | zNi) P(z j | z j−1)
j=1

Ni

∏ P(pi
j | z j)

j=1

N j

∏

P(z j | z j−1)

P(pi
j | z j)

Problem	
 with	
 Hidden	
 Markov	
 Models	

•  Need	
 to	
 reliably	
 esImate	
 P(s|z)	

	

•  Lots	
 of	
 “missing	
 values”	
 in	
 this	
 training	
 set	

Lecture	
 14:	
 Embeddings	
 32	

P pi, z() = P(End | zNi) P(z j | z j−1)
j=1

Ni

∏ P(pi
j | z j)

j=1

N j

∏

pi = pi
1,..., pi

NiD = pi{ }i=1
NS = s1,...s|S|{ }

Latent	
 Markov	
 Embedding	

•  “Log-­‐Radial”	
 funcIon	

–  (my	
 own	
 terminology)	

Lecture	
 14:	
 Embeddings	
 33	

P(s | s ')∝ exp − us − vs '
2{ }

P(s | s ') =
exp − us − vs '

2{ }
exp − us" − vs '

2{ }
s"
∑

hVp://www.cs.cornell.edu/People/tj/publicaIons/chen_etal_12a.pdf	

us:	
 entry	
 point	
 of	
 song	
 s	

vs:	
 exit	
 point	
 of	
 song	
 s	

Log-­‐Radial	
 FuncIons	

Lecture	
 14:	
 Embeddings	
 34	

vs’	

Each	
 ring	
 defines	
 an	
 equivalence	
 class	
 of	
 transiIon	
 probabiliIes	
 	

us	

us”	

P(s | s ')
P(s" | s ')

=
exp − us − vs '

2{ }
exp − us" − vs '

2{ }

2K	
 parameters	
 per	
 song	

2|S|K	
 parameters	
 total	

Learning	
 Problem	

•  Learning	
 Goal:	

Lecture	
 14:	
 Embeddings	
 35	

hVp://www.cs.cornell.edu/People/tj/publicaIons/chen_etal_12a.pdf	

pi = pi
1,..., pi

NiD = pi{ }i=1
NS = s1,...s|S|{ }

Songs	
 Playlists	
 Playlist	
 DefiniIon	

argmax
U,V

P(pi)
i
∏ = P(pi

j | pi
j−1)

j
∏

i
∏

P(s | s ') =
exp − us − vs '

2{ }
exp − us" − vs '

2{ }
s"
∑

=
exp − us − vs '

2{ }
Z(s ')

Minimize	
 Neg	
 Log	
 Likelihood	

•  Solve	
 using	
 gradient	
 descent	

– Homework	
 ques.on:	
 derive	
 the	
 gradient	
 formula	

– Random	
 iniIalizaIon	

•  NormalizaIon	
 constant	
 hard	
 to	
 compute:	

– ApproximaIon	
 heurisIcs	

•  See	
 paper	

Lecture	
 14:	
 Embeddings	
 36	

argmax
U,V

P(pi
j | pi

j−1)
j
∏

i
∏ = argmin

U,V
− logP(pi

j | pi
j−1)

j
∑

i
∑

hVp://www.cs.cornell.edu/People/tj/publicaIons/chen_etal_12a.pdf	

P(s | s ') =
exp − us − vs '

2{ }
Z(s ')

Simpler	
 Version	

•  Dual	
 point	
 model:	

•  Single	
 point	
 model:	

– TransiIons	
 are	
 symmetric	

•  (almost)	

– Exact	
 same	
 form	
 of	
 training	
 problem	

Lecture	
 14:	
 Embeddings	
 37	

P(s | s ') =
exp − us −us '

2{ }
Z(s ')

P(s | s ') =
exp − us − vs '

2{ }
Z(s ')

VisualizaIon	
 in	
 2D	

Lecture	
 14:	
 Embeddings	
 38	

This reduces the complexity of a gradient step to O(|Ci|).
The key problem lies in identifying a suitable candidate set
Ci for each si. Clearly, each Ci should include at least most
of the likely successors of si, which lead us to the following
landmark heuristic.

We randomly pick a certain number (typically 50) of songs
and call them landmarks, and assign each song to the near-
est landmark. We also need to specify a threshold r 2 [0, 1].
Then for each si, its direct successors observed in the train-
ing set are first added to the subset Cr

i , because these songs
are always needed to compute the local log-likelihood. We
keep adding songs from nearby landmarks to the subset, un-
til ratio r of the total songs has been included. This defines
the final subset Cr

i . By adopting this heuristic, the gradients
of the local log-likelihood become

@l(sa,sb)
@U(sp)

=1[a=p]2

2

4��!
�2(sa,sb)+

P
sl2Cr

p
e��2(sa,sl)

2�!
�2(sa,sl)

Zr(sa)

3

5

@l(sa,sb)
@V (sq)

=1[b=q]2
�!
�2(sa, sb)� 2

e��2(sa,sq)
2�!
�2(sa, sq)

Zr(sa)
,

where Zr(sa) is the partition function restricted to Cr
a , namelyP

sl2Cr
a
e��2(sa,sl)

2
. Empirically, we update the landmarks

every 10 iterations1, and fix them after 100 iterations to
ensure convergence.

5.3 Implementation
We implemented our methods in C. The code is available

online at http://lme.joachims.org.

6. EXPERIMENTS
In the following experiments we will analyze the LME in

comparison to n-gram baselines, explore the e↵ect of the
popularity term and regularization, and assess the compu-
tational e�ciency of the method.

To collect a dataset of playlists for our empirical eval-
uation, we crawled Yes.com during the period from Dec.
2010 to May 2011. Yes.com is a website that provides radio
playlists of hundreds of stations in the United States. By
using the web based API2, one can retrieve the playlists of
the last 7 days for any station specified by its genre. With-
out taking any preference, we collect as much data as we can
by specifying all the possible genres. We then generated two
datasets, which we refer to as yes small and yes big . In the
small dataset, we removed the songs with less than 20, in the
large dataset we only removed songs with less than 5 appear-
ances. The smaller one is composed of 3, 168 unique songs.
It is then divided into into a training set with 134, 431 tran-
sitions and a test set with 1, 191, 279 transitions. The larger
one contains 9, 775 songs, a training set with 172, 510 transi-
tions and a test set with 1, 602, 079 transitions. The datasets
are available for download at http://lme.joachims.org.

Unless noted otherwise, experiments use the following
setup. Any model (either the LME or the baseline model)
is first trained on the training set and then tested on
the test set. We evaluate test performance using the
average log-likelihood as our metric. It is defined as
log(Pr(Dtest))/Ntest, where Ntest is the number of transi-
tions in test set. One should note that the division of train-

1A iteration means a full pass on the training dataset.
2
http://api.yes.com

-4 -3 -2 -1 0 1 2 3 4 5

-2.2

-1.2

-0.2

0.8

1.8

2.8

3.8

4.8

5.8

Garth Brooks

Bob Marley

The Rolling Stones

Michael Jackson

Lady Gaga

Metallica

T.I.

All

Figure 3: Visual representation of an embedding
in two dimensions with songs from selected artists
highlighted

ing and test set is done so that each song appears at least
once in the training set. This was done to exclude the case
of encountering a new song when doing testing, which any
method would need to treat as a special case and impute
some probability estimate.

6.1 What do embeddings look like?
We start with giving a qualitative impression of the em-

beddings that our method produces. Figure 3 shows the two-
dimensional single-point embedding of the yes small dataset.
Songs from a few well-known artists are highlighted to pro-
vide reference points in the embedding space.
First, it is interesting to note that songs by the same artist

cluster tightly, even though our model has no direct knowl-
edge of which artist performed a song. Second, logical con-
nections among di↵erent genres are well-represented in the
space. For example, consider the positions of songs from
Michael Jackson, T.I., and Lady Gaga. Pop songs from
Michael Jackson could easily transition to the more elec-
tronic and dance pop style of Lady Gaga. Lady Gaga’s
songs, in turn, could make good transitions to some of the
more dance-oriented songs (mainly collaborations with other
artists) of the rap artist T.I., which could easily form a gate-
way to other hip hop artists.
While the visualization provides interesting qualitative in-

sights, we now provide a quantitative evaluation of model
quality based on predictive power.

6.2 How does the LME compare to n-gram
models?

We first compare our models against baseline methods
from Natural Language Processing. We consider the follow-
ing models.
Uniform Model. The choices of any song are equally

likely, with the same probability of 1/|S|.

hVp://www.cs.cornell.edu/People/tj/publicaIons/chen_etal_12a.pdf	

P(s | s ') =
exp − us −us '

2{ }
Z(s ')

Simpler	
 version:	
 	

Single	
 Point	
 Model	

Single	
 point	
 model	
 is	
 	

easier	
 to	
 visualize	

Sampling	
 New	
 Playlists	

•  Given	
 parIal	
 playlist:	

•  Generate	
 next	
 song	
 for	
 playlist	
 pj+1	

– Sample	
 according	
 to:	

Lecture	
 14:	
 Embeddings	
 39	

p = p1,...p j

hVp://www.cs.cornell.edu/People/tj/publicaIons/chen_etal_12a.pdf	

P(s | p j) =
exp − us − vp j

2{ }
Z(p j) P(s | p j) =

exp − us −upj
2{ }

Z(p j)

Dual	
 Point	
 Model	
 Single	
 Point	
 Model	

Demo	

Lecture	
 14:	
 Embeddings	
 40	

hVp://jimi.ithaca.edu/~dturnbull/research/lme/lmeDemo.html	

What	
 About	
 New	
 Songs?	

•  Suppose	
 we’ve	
 trained	
 U:	

•  What	
 if	
 we	
 add	
 a	
 new	
 song	
 s’?	

– No	
 playlists	
 created	
 by	
 users	
 yet…	

– Only	
 opIons:	
 us’	
 =	
 0	
 or	
 us’	
 =	
 random	

•  Both	
 are	
 terrible!	

Lecture	
 14:	
 Embeddings	
 41	

P(s | s ') =
exp − us −us '

2{ }
Z(s ')

Song	
 &	
 Tag	
 Embedding	

•  Songs	
 are	
 usually	
 added	
 with	
 tags	

– E.g.,	
 indie	
 rock,	
 country	

– Treat	
 as	
 features	
 or	
 aVributes	
 of	
 songs	

•  How	
 to	
 leverage	
 tags	
 to	
 generate	
 a	
 reasonable	

embedding	
 of	
 new	
 songs?	

– Learn	
 an	
 embedding	
 of	
 tags	
 as	
 well!	

Lecture	
 14:	
 Embeddings	
 42	

hVp://www.cs.cornell.edu/People/tj/publicaIons/moore_etal_12a.pdf	

Lecture	
 14:	
 Embeddings	
 43	

argmax
U,A

P(D |U)P(U | A,T)

pi = pi
1,..., pi

NiD = pi{ }i=1
NS = s1,...s|S|{ }

Songs	
 Playlists	
 Playlist	
 DefiniIon	

T = T1,...T|S|{ }
Tags	
 for	
 Each	
 Song	

hVp://www.cs.cornell.edu/People/tj/publicaIons/moore_etal_12a.pdf	

P(D |U) = P(pi |U)
i
∏ = P(pi

j | pi
j−1,U)

j
∏

i
∏

P(U | A,T) = P(us | A,TS)
s
∏ ∝ exp −λ us −

1
Ts

At
t∈Ts

∑
2&

'
(

)(

*
+
(

,(s
∏

Learning	
 Objec.ve:	

Same	
 term	
 as	
 before:	

Song	
 embedding	
 ≈	
 average	
 of	
 tag	
 embeddings:	

Solve	
 using	
 gradient	
 descent:	

VisualizaIon	
 in	
 2D	

Lecture	
 14:	
 Embeddings	
 44	

-6 -4 -2 0 2 4 6

-4

-2

0

2

4

6

8

rock

pop

alternative

classic rock

alternative rock

hard rock

dance

pop rock

singer-songwriter

country

oldies

easy listening

soft rock

metal

indie

chillout

ballad

soundtrack
soul

rnb
acoustic

heavy metal

top 40

rock n roll

live

hip-hop

modern country

grunge

progressive rock

christianhip hop

indie rock

rap

blues

punk

electronic
r&b

alternative metal

christian rock

rock and roll

blues rock

emo

funk
jazz

pop-rock

melancholic

post-grunge

folk

ballads

90s rock

Figure 1: 2D embedding for yes small. The top 50 genre
tags are labeled; lighter points represent songs.

-9

-8

-7

-6

-5

 2 5 10 25 50 100

Av
g.

 lo
g

lik
el

ih
oo

d

d
 2 5 10 25 50 100

d

LME
Uniform

Unigram
Bigram

Figure 2: Log-likelihood on the test set for the LME and
the baselines on yes small (left) and yes big (right).

observation is that the embedding of songs does not uni-
formly cover the space, but forms clusters as expected.
The location of the tags provides interesting insight into
the semantics of these clusters. Note that semantically syn-
onymous tags are typically close in embedding space (e.g.
“christian rock” and “christian”, “metal rock” and “heavy
metal”). Furthermore, location in embedding space gen-
erally interpolates smoothly between related genres (e.g.
“rock” and “metal”). Note that some tags lie outside the
support of the song distribution. The reason for this is
twofold. First, we will see below that a higher-dimensional
embedding is necessary to accurately represent the data.
Second, many tags are rarely used in isolation, so that some
tags may often simply modify the average prior for songs.

To evaluate our method and the embeddings it produces
more objectively and in higher dimensions, we now turn to
quantitative experiments.

4.2 How does the LME compare to n-gram models?

Our first quantitive experiment explores how the general-
ization accuracy of the LME compares to that of traditional
n-gram models from natural language processing (NLP).
The simplest NLP model is the Unigram Model, where

-9

-8

-7

-6

-5

-4

-3

 0 2 4 6 8 10
 0

 0.2

 0.4

 0.6

 0.8

 1

Av
g.

 lo
g

lik
el

ih
oo

d

Fr
ac

tio
n

of
 tr

an
si

tio
ns

Freq. of transitions in training set

LME log-likelihood
Bigram log-likelihood

Fraction of transitions

Figure 3: Log-likelihood on testing transitions with re-
spect to their frequencies in the training set for yes small.

the next song is sampled independently of the previous
songs. The probability p(si) of each song si is estimated
from the training set as p(si) =

niP
j nj

, where ni is the
number of appearances of si.

The Bigram Model conditions the probability of the
next song on the previous song similar to our LME model.
However, the transition probabilities p(sj |si) of each song
pair are estimated separately, not in a generalizing model
as in the LME. To address the the issue of data sparsity
when estimating p(sj |si), we use Witten-Bell smoothing
(see [5]) as commonly done in language modeling.

As a reference, we also report the results for the Uni-
form Model, where each song has equal probability 1/|S|.

Figure 2 compares the log-likelihood on the test set of
the basic LME model to that of the baselines. The x-axis
shows the dimensionality d of the embedding space. For
the sake of simplicity and brevity, we only report the re-
sults for the model from Section 3.1 trained without reg-
ularization (i.e. � = 0). Over the full range of d the
LME outperforms the baselines by at least two orders of
magnitude in terms of likelihood. While the likelihoods on
the big dataset are lower as expected (i.e. there are more
songs to choose from), the relative gain of the LME over
the baselines is even larger for yes big.

The tag-based model from Section 3.2 performs com-
parably to the results in Figure 2. For datasets with less
training data per song, however, we find that the tag-based
model is preferable. We explore the most extreme case,
namely songs without any training data, in Section 4.4.

Among the conventional sequence models, the bigram
model performs best on yes small. However, it fails to beat
the unigram model on yes big (which contains roughly 3
times the number of songs), since it cannot reliably es-
timate the huge number of parameters it entails. Note
that the number of parameters in the bigram model scales
quadratically with the number of songs, while it scales only
linearly in the LME model. The following section analyzes
in more detail where the conventional bigram model fails,
while the LME shows no signs of overfitting.

4.3 Where does the LME win over the n-gram model?

We now analyze why the LME beats the conventional bi-
gram model. In particular, we explore to what extent

hVp://www.cs.cornell.edu/People/tj/publicaIons/moore_etal_12a.pdf	

Revisited:	
 What	
 About	
 New	
 Songs?	

•  No	
 user	
 has	
 yet	
 s’	
 added	
 to	
 playlist	

– So	
 no	
 evidence	
 from	
 playlist	
 training	
 data:	

•  Assume	
 new	
 song	
 has	
 been	
 tagged	
 Ts’	

– The	
 us’	
 =	
 average	
 of	
 At	
 for	
 tags	
 t	
 in	
 Ts’	

–  ImplicaIon	
 from	
 objecIve:	

Lecture	
 14:	
 Embeddings	
 45	

D = pi{ }i=1
N

argmax
U,A

P(D |U)P(U | A,T)

s’	
 does	
 not	
 appear	
 in	

Recap:	
 Embeddings	

•  Learn	
 a	
 low-­‐dimensional	
 representaIon	
 of	

items	
 U	

•  Capture	
 semanIcs	
 using	
 distance	
 between	

items	
 u,	
 u’	

•  Can	
 be	
 easier	
 to	
 visualize	
 than	
 latent	
 factor	

models	

Lecture	
 14:	
 Embeddings	
 46	

Next	
 Lecture	

•  Recent	
 ApplicaIons	
 of	
 Latent	
 Factor	
 Models	

•  Low-­‐rank	
 SpaIal	
 Model	
 for	
 Basketball	
 Play	

PredicIon	

•  Low-­‐rank	
 Tensor	
 Model	
 for	
 CollaboraIve	

Clustering	

•  Miniproject	
 1	
 report	
 due	
 Thursday.	

Lecture	
 14:	
 Embeddings	
 47	

