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Recap: Orthogonal Matrix

* A matrix U is orthogonal if UUT = UTU = |
— Forany columnu: u'u=1
— For any two columns u, u’: u'u’ =0
— U is a rotation matrix, and UTis the inverse rotation
— If x¥’ = U"x, then x = UX’
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Recap: Orthogonal Matrix
* Any subset of columns of U defines a subspace

1 T
X = UI:K’x

Transform into new coordinates
Treat U, as new axes

pFOjULK (x) = UI:KUZKX

Project x onto U, in original space
“Low Rank” Subspace
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Recap: Singular Value Decomposition

X = [xl,...,xN] e Re”"

X = UZV
T '\ Orthogonal

Orthogonal  Diagonal

N

R
EH'xi —U, U, xX, H

i=1
|II

“Residua
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SVD

U,.  is the K-dim
subspace with
smallest residual



Recap: SVD & PCA

XX' =UAU" PCA
/

Orthogonal Diagonal

X = UZV SVD
T '\ Orthogonal

Orthogonal  Diagonal
xx7 = (UZVT)(UZVT)T ~USVTVEUT =USUT
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Matrix Norms

o= | 2X0 = [ D00
ij d

, = Ead = trace(\/XTX)
d

* Frobenius Norm |x

* Trace Norm |x

X=UxV'

Each o, is guaranteed to be non-negative o,
By convention: 0,20,2..20,20
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Properties of Matrix Norms

x|, = trace(\/(UZVT ) Usv’ ) - trace(\/VZ U'usv’ )

= trace(\/ vasv?! ) = trace( vrv? ) = trace(VZVT)

= trace(ZVTV) = trace(Z) = Ead
d

T
X=U2V
Each o, is guaranteed to be non-negative o
By convention: 0,20,2..20,20 s o,
trace(ABC) = trace(BCA) = trace(CAB) _ oy |
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Properties of Matrix Norms

|x ;m = trace(XTX) = trace((UZVT)T UZVT)
= trace(VZZVT) = trace(ZzVTV)
= trace(Zz) = 203
d
X=UzV'
Each o, is guaranteed to be non-negative o
By convention: 0,20,2..20,20 s o,
trace(ABC) = trace(BCA) = trace(CAB) _ oy |
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Other Useful Properties

e Cauchy Schwarz:

2
F

(A,B) =trace(A”B)’ <(A,A)(B, B) = trace(A” A)trace(B" B) = | A[ || B
*  AM-GM Inequality:

Jll8] = IAF |8 =(JAF +[BF) e for any norm
 Orthogonal Transformation Invariance of Norms:

A, =]Al, LA =]Al. If U is a full-rank orthogonal matrix
 Trace Norm of Diagonals

||A||* = E|Aﬁ| If A'is a square diagonal matrix
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Recap: SVD & PCA

e SVD: X=UxV"
e PCA: XX’ =Uz*U*?

e The first K columns of U are the best rank-K
subspace that minimizes the Frobenius norm
residual:

HX B Ul:KUfKX

2

Fro
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Latent Factor Models
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Netflix Problem

N Movies N

_ Vv

T

“Latent Factors”

Y

M Users

\

* Y, =rating user i gives to movie | Y, = UV

* Solve using SVD!

Lecture 13: Latent Factor Models & Non-Negative Matrix Factorization

12



The Color Purple

Geared
toward <

L S

&

Sense and
Sensibility

O

Example

Serious

| Amadeus |

Braveheart

£

b 4

| Lethal Weapon|

IlOcear{sﬂ . m :

5 4

females

G5 o

The Princess
Diaries

The Lion King

Escapist

Miniproject 2: create your own.

Geared

Independence| | @

Day

males

Dumb and
Dumber

Gus

http://www2.research.att.com/~volinsky/papers/ieeecomputer.pdf
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Actual Netflix Problem

N Movies

Y T

™~ “Latent Factors”

M Users

(missing values)

 Many missing values!
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Collaborative Filtering

* M Users, N Items
* Small subset of user/item pairs have ratings
* Most are missing

* Applicable to any user/item rating problem

— Amazon, Pandora, etc.

* Goal: Predict the missing values.
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Latent Factor Formulation

* Only labels, no features S ={v;1
— Labels are “structured”

* Learn a latent representation over users U
and movies V such that:
2 T 2
Fr0)+2(yij_ui vj)
i

2
+
Fro

. A
—||U
ar%r,lvnnz(”

14
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Connection to Trace Norm

* Suppose we consider all U,V that achieve perfect
reconstruction: Y=UV'

* Find U,V with lowest complexity:
2
‘V Fro)
 Complexity equivalent to trace norm:

VI, )

+
Fro

argmln (HU
y=uv"

+
Fro

[¥]. - min—(JuT]

y=uv' )
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Proof (One Direction)

we wil prove: ], =min=(Jal,, +I8[,,) v =uzv"
SVD
Choose: A=U\/§, B=VJX
Then:  min(laf}, 5L, ) <3 {|lov=], +[vv=]
%(trace U\/_ +trace((V\/_) (V\/E)))
%(trace \/_U U\/_ + trace \/_V V\/_))

(trace(x/ix/_ |+ trace(VEVE ))

(trace(Z) + trace(Z)) = trace(Z) =||Y|,
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User/Movie Symmetry

2
+
Fro

argmin&(“U
vy 2

v

2 T 2
Fro +E(yij_ui Vj)
i

* |f we knew V, then linear regression to learn U
— Treat V as features

* |f we knew U, then linear regression to learn V

— Treat U as features
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Optimization

otV

ar%%lin%(HU im)+za)ij(ylj —ul.ij)2 w, €{0,1}
, -

* Only train over observed y;

* Two ways to Optimize
— Gradient Descent
— Alternating optimization
* Closed Form (for each sub-problem)

— Homework question
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Gradient Calculation

argmin — (”U +
uy

F) Ea) ( U—uv)

Fro

d, = Ay, —Ea)l] ](yl]—u V. )

Closed Form Solution (assummg V fixed):

o g o
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Coordinate Gradient Descent

* |nitialize U & V randomly
* Loop

— Choose one u;, v, randomly

— Take gradient step:

u, =u;,—1nd,

d, = Au, — Ewijvj (yl.j — ul.ij)
j
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Stochastic Gradient Descent

* |nitialize U & V randomly

* Loop
— Choose one data point (i,j) randomly

— Compute gradient for all U & V of:
argmini(”U
u,v

+||V
2N

N = #observed entries

zzvm)"'%(yzj_”f"j)z

2
Fro

— Take a gradient step forall U & V
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Alternating Optimization

* |nitialize U & V randomly
* Loop

— Choose next u; or v,
— Solve optimally:

-1
U, = ()LIK + Ea)ljvjvf) (Ea)ijyijvj)
j j
* (assuming all other variables fixed)
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Tradeoffs

* Alternating optimization much faster in terms of
Hiterations

— But requires inverting a matrix:

-1
(zwzjyij"j)
J

T
U, = ()LIK +Ewijvjvj
j

* Gradient descent faster for high-dim problems
— Also allows for streaming data

U, =u, — naui
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Miniproject 2: create your own.

http://www2.research.att.com/~volinsky/papers/ieeecomputer.pdf



Recap: Collaborative Filtering

* Goal: predict every user/item rating
* Challenge: only a small subset observed

* Assumption: there exists a low-rank subspace
that captures all the variability in describing
different users and items
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Multitask Learning

m m N
* M Tasks: 5 ={(xi,yi )}._1
A 1 r 32 '
argwrlmnER(W) + 5;2()@ — mei)
Regularizer

* Example: personalized recommender system

— One task per user:

o
ah &k &b
L
ah Gk ah
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How to Regularize?

2 m my1 Y
argvtglin%R(W)+%;2(yi—w£xi) 5" = {('xi’yi )}l .
* Standard L2 Norm:

arg;nin%”W”z + Ez(yi — wixi)z = 2

Bl 3o -t |

* Decomposes to independent tasks
— For each task, learn D parameters
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How to Regularize?

N
argv?i“%R(W”%;z(%—wixi)z §" = {0},

* Trace Norm:

arggﬁn%”W‘L + Ez(yi -W, X, )2

 Induces W to have low rank across all task
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Recall: Trace Norm & Latent Factor Models

* Suppose we consider all U,V that achieve perfect
reconstruction: W=UV'

* Find U,V with lowest complexity:
VI:.)

e Claim: complexity equivalent to trace norm:

VI, )

2
+|
Fro

argminl(HU

w=uvT 2

2
+
Fro

W] = min~(ju

w=uv’ D
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How to Regularize?

N
argvglin%R(WH%;Z(yi—w;xi)z §" = {(X,-,y,- )}. 1

* Latent Factor Approach

V)5 2 Do)

+
Fro

argmm (”U
uyv

* Learns a feature projection x’ = Vx

* Learns a K dimensional model per task
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Tradeoff

* D*N parameters:

argVIVninE %”wm ||2 + %E(yi — wnTlxl. )2}

m ]

e D*K+ N*K parameters:

V)5 2 Sl wva)

— Statistically more efficient
— Great if low-rank assumption is a good one

.|_
Fro

argmm (”U
uyv
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Multitask Learning

M Tasks: S§" = {(xl.,y;”)}?v

)3 2 Do V)

m i

argmin — (”U
uyv

+Hv

Fro

Example: personalized recommender system

— One task per user:

— If x is topic feature representation
* Vis subspace of correlated topics

* Projects multiple topics together
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Reduction to Collaborative Filtering

argnvnn (”U e + Fm) zz(yl - U Vx) NG ={(xi’y;n)}if\=’l
* Suppose each x. is single indicator x, = e, 0

=] 1
e Then: in =V A 0

* Exactly Collaborative Filtering!

VI ) +5 2 S0 -

_|_
Fro

argmin — (“U
uyv
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Latent Factor Multitask Learning vs
Collaborative Filtering

VI ) +5 2 206 -

* Projects x into low-dimensional subspace Vx

_|_
Fro

argmin — (”U
uy

* Learns low-dimensional model per task

V)5 2307 i)

* Creates low dimensional feature for each movie

_|_
Fro

argmin — (”U
uy

* Learns low-dimensional model per user
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General Bilinear Models

Fm) E(yi _ZiTUTV)Ci)2 S = {('xi’zi,yi)}

i

argmin — (”U
uyv

+ ||V

Fro

Users described by features z
ltems described by features x

Learn a projection of z and x into common
low-dimensional space

— Linear model in low dimensional space
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Why are Bilinear Models Useful?

aI‘gI}/llIl (||U 4| Fm) EE( —U v) \L;:: QI/IXXKK

1 5 U: MxK

ar%rj/nn (||U oo T |V 12%) + Egz(y, - u,flei) V: DxK

ogmin (0T, IV, ey So-dvrva) U
S= {(xi’zi,yi)}
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Story So Far: Latent Factor Models

2 1

3 DUV ) s = ()

l

2
Fro

argmin + (“U
vy 2

+|V

* Simplest Case: reduces to SVD of matrix Y
— No missing values
— (z,x) indicator features

* General Case: projects high-dimensional
feature representation into low-dimensional
linear model
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Non-Negative Matrix Factorization
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Limitations of PCA & SVD

All features
non-negative

PCA/SVD
Solution

Better Solution?
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CS 155 Eigenface Basis

0.93 1.58

Y -
,
\- o

030 -0.47 70.73 -0.40 -0.75 1.07 0.18 -0.98

http://hebb.mit.edu/people/seung/papers/nmfconverge.pdf
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Non-Negative Matrix Factorization
N K N
_ v

Y I

™~ “Latent Factors”

* Assume Y is non-negative
* Find non-negative U & V
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CS 155 Non-Negative Face Basis

021 0.11 008 0.70 0.55 0.06 043 1.28
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Aside: Non-Orthogonal Projections

* If columns of A are not orthogonal, ATA#
— How to reverse transformation x’=ATx?
— Solution: Pseudoinverse!

T
A=U2V Intuition: use the rank-K orthogonal
SVD basis that spans A.
T T AT T T
AT =VZU ATA x=UZ"V'VZU x

Pseudoinverse T
- Ul:KUI:Kx

- . {1/0 it o>0
: -0 o = .
0 - 0 o 0  otherwise
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Objective Fun

ction

argmmzé(yl],u V)

U=0,V=0

* Squared Loss:
— Penalizes squared distance

* Generalized Relative Entropy
— Aka, unnormalized KL divergence
— Penalizes ratio

* Train using gradient descent

http://hebb.mit.edu/people/seung/papers/nmfconverge.pdf
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SVD/PCA vs NNMF

 SVD/PCA: * NNMF:
— Finds the best — Finds best set of non-
orthogonal basis faces negative basis faces
* Basis faces can be neg. — Non-negative coeffs
— Coeffs can be negative « Often non-overlapping
— Often trickier to visualize — Easier to visualize
— Better reconstructions — Requires more basis
with fewer basis faces faces for good
* Basis faces capture the reconstructions

most variations
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Non-Negative Latent Factor Models

2
+
Fro

v

. A >
argmin [ ) Zf (7 UVE) 5= {20}

e Simplest Case: reduces to NNMF of matrix Y
— No missing values
— (z,x) indicator features

* General Case: projects high-dimensional non-
negative features into low-dimensional non-
negative linear model
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Tensor Latent Factor Models

Lecture 13: Latent Factor Models & Non-Negative Matrix Factorization
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Tensor Factorization

K

4

(Missing Values)
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Tri-Linear Model

2 2
+ +
Fro Fro

v

W

argmin([u M DYIERCERERI)

+ Prediction via 3-way dot product: (a.b.c)= Y abc

— Related to Hadamard Product ¢

 Example: online advertising Solve using
. Gradient Descent
— User profile z
— Item description x

— Query g
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Next Week

* Embeddings

* Recent Applications of Latent Factor Models
— Example of non-negative latent factor model
— Example of tensor latent factor model

e Kaggle Mini-project closes Next Tuesday
— Report due next Thursday



