Caltech

Machine Learning & Data Mining CS/CNS/EE 155

Lecture 13:

Latent Factor Models & Non-Negative Matrix Factorization

Recap: Orthogonal Matrix

- A matrix U is orthogonal if $UU^T = U^TU = I$
 - For any column u: $u^Tu = 1$
 - For any two columns u, u': $u^Tu' = 0$
 - U is a rotation matrix, and U^T is the inverse rotation
 - If $x' = U^Tx$, then x = Ux'

Recap: Orthogonal Matrix

Any subset of columns of U defines a subspace

$$x' = U_{1:K}^T x$$

Transform into new coordinates Treat $U_{1:K}$ as new axes

$$proj_{U_{1:K}}(x) = U_{1:K}U_{1:K}^{T}x$$

Project x onto U_{1:K} in original space "Low Rank" Subspace

Recap: Singular Value Decomposition

$$X = [x_1, ..., x_N] \in \operatorname{Re}^{D \times N}$$

$$X = U \Sigma V^T$$
Orthogonal
Orthogonal
Diagonal

$$\sum_{i=1}^{N} \left\| x_i - U_{1:K} U_{1:K}^T x_i \right\|^2$$
"Residual"

U_{1:K} is the K-dim subspace with

smallest residual

SVD

Recap: SVD & PCA

$$XX^T = U\Lambda U^T$$
Orthogonal Diagonal

$$X = U \Sigma V^T$$
 SVD Orthogonal Diagonal

$$XX^{T} = (U\Sigma V^{T})(U\Sigma V^{T})^{T} = U\Sigma V^{T}V\Sigma U^{T} = U\Sigma^{2}U^{T}$$

Matrix Norms

• Frobenius Norm

$$||X||_{Fro} = \sqrt{\sum_{ij} X_{ij}^2} = \sqrt{\sum_{d} \sigma_d^2}$$

Trace Norm

$$||X||_* = \sum_d \sigma_d = \operatorname{trace}\left(\sqrt{X^T X}\right)$$

Each σ_d is guaranteed to be non-negative By convention: $\sigma_1 \ge \sigma_2 \ge ... \ge \sigma_D \ge 0$

$$X = U\Sigma V^T$$

$$\boldsymbol{\Sigma} = \left[\begin{array}{ccc} \boldsymbol{\sigma}_1 & & & \\ & \boldsymbol{\sigma}_2 & & \\ & & \ddots & \\ & & & \boldsymbol{\sigma}_D \end{array} \right]$$

Properties of Matrix Norms

$$||X||_{*} = \operatorname{trace}\left(\sqrt{\left(U\Sigma V^{T}\right)^{T}U\Sigma V^{T}}\right) = \operatorname{trace}\left(\sqrt{V\Sigma U^{T}U\Sigma V^{T}}\right)$$

$$= \operatorname{trace}\left(\sqrt{V\Sigma\Sigma V^{T}}\right) = \operatorname{trace}\left(\sqrt{V\Sigma^{2}V^{T}}\right) = \operatorname{trace}\left(V\Sigma V^{T}\right)$$

$$= \operatorname{trace}\left(\Sigma V^{T}V\right) = \operatorname{trace}\left(\Sigma\right) = \sum_{d} \sigma_{d}$$

$$X = U\Sigma V^T$$

Each σ_d is guaranteed to be non-negative By convention: $\sigma_1 \ge \sigma_2 \ge ... \ge \sigma_D \ge 0$

$$trace(ABC) = trace(BCA) = trace(CAB)$$

$$\Sigma = \left[\begin{array}{ccc} \sigma_1 & & & \\ & \sigma_2 & & \\ & & \ddots & \\ & & \sigma_D \end{array} \right]$$

Properties of Matrix Norms

$$||X||_{Fro}^{2} = \operatorname{trace}(X^{T}X) = \operatorname{trace}((U\Sigma V^{T})^{T}U\Sigma V^{T})$$

$$= \operatorname{trace}(V\Sigma^{2}V^{T}) = \operatorname{trace}(\Sigma^{2}V^{T}V)$$

$$= \operatorname{trace}(\Sigma^{2}) = \sum_{d} \sigma_{d}^{2}$$

$$X = U\Sigma V^T$$

Each σ_d is guaranteed to be non-negative By convention: $\sigma_1 \ge \sigma_2 \ge ... \ge \sigma_D \ge 0$

$$trace(ABC) = trace(BCA) = trace(CAB)$$

$$\Sigma = \begin{bmatrix} \sigma_1 & & & & \\ & \sigma_2 & & & \\ & & \ddots & & \\ & & & \sigma_D & \end{bmatrix}$$

Other Useful Properties

Cauchy Schwarz:

$$\langle A, B \rangle^2 = \operatorname{trace}(A^T B)^2 \le \langle A, A \rangle \langle B, B \rangle = \operatorname{trace}(A^T A) \operatorname{trace}(B^T B) = \|A\|_F^2 \|B\|_F^2$$

AM-GM Inequality:

$$||A|| ||B|| = \sqrt{||A||^2 ||B||^2} \le \frac{1}{2} (||A||^2 + ||B||^2)$$
 True for any norm

Orthogonal Transformation Invariance of Norms:

$$\|UA\|_F = \|A\|_F$$
 $\|UA\|_* = \|A\|_*$ If U is a full-rank orthogonal matrix

Trace Norm of Diagonals

$$||A||_* = \sum_i |A_{ii}|$$
 If A is a square diagonal matrix

Recap: SVD & PCA

• SVD:
$$X = U\Sigma V^T$$

• PCA:
$$XX^T = U\Sigma^2U^2$$

 The first K columns of U are the best rank-K subspace that minimizes the Frobenius norm residual:

$$\|X - U_{1:K}U_{1:K}^TX\|_{Fro}^2$$

Latent Factor Models

Netflix Problem

Y_{ii} = rating user i gives to movie j

$$y_{ij} \approx u_i^T v_j$$

Solve using SVD!

Example

$$y_{ij} \approx u_i^T v_j$$

Miniproject 2: create your own.

http://www2.research.att.com/~volinsky/papers/ieeecomputer.pdf

Actual Netflix Problem

Many missing values!

Collaborative Filtering

- M Users, N Items
- Small subset of user/item pairs have ratings
- Most are missing
- Applicable to any user/item rating problem
 - Amazon, Pandora, etc.
- Goal: Predict the missing values.

Latent Factor Formulation

Only labels, no features

$$S = \left\{ y_{ij} \right\}$$

Labels are "structured"

 Learn a latent representation over users U and movies V such that:

$$\underset{U,V}{\operatorname{argmin}} \frac{\lambda}{2} (\|U\|_{Fro}^{2} + \|V\|_{Fro}^{2}) + \sum_{ij} (y_{ij} - u_{i}^{T} v_{j})^{2}$$

Connection to Trace Norm

- Suppose we consider all U,V that achieve perfect reconstruction: Y=UV^T
- Find U,V with lowest complexity:

$$\underset{V=UV^{T}}{\operatorname{argmin}} \frac{1}{2} \left(\|U\|_{Fro}^{2} + \|V\|_{Fro}^{2} \right)$$

Complexity equivalent to trace norm:

$$||Y||_* = \min_{Y=UV^T} \frac{1}{2} (||U||_{Fro}^2 + ||V||_{Fro}^2)$$

Proof (One Direction)

We will prove:
$$||Y||_* \ge \min_{Y = AB^T} \frac{1}{2} (||A||_{Fro}^2 + ||B||_{Fro}^2)$$
 $Y = U \sum V^T$

Choose:
$$A = U\sqrt{\Sigma}$$
, $B = V\sqrt{\Sigma}$

Then:
$$\min_{Y=AB^{T}} \frac{1}{2} \left(\left\| A \right\|_{Fro}^{2} + \left\| B \right\|_{Fro}^{2} \right) \leq \frac{1}{2} \left(\left\| U \sqrt{\Sigma} \right\|_{Fro}^{2} + \left\| V \sqrt{\Sigma} \right\|_{Fro}^{2} \right)$$

$$= \frac{1}{2} \left(\operatorname{trace} \left(\left(U \sqrt{\Sigma} \right)^{T} \left(U \sqrt{\Sigma} \right) \right) + \operatorname{trace} \left(\left(V \sqrt{\Sigma} \right)^{T} \left(V \sqrt{\Sigma} \right) \right) \right)$$

$$= \frac{1}{2} \left(\operatorname{trace} \left(\sqrt{\Sigma} U^{T} U \sqrt{\Sigma} \right) + \operatorname{trace} \left(\sqrt{\Sigma} V^{T} V \sqrt{\Sigma} \right) \right)$$

$$= \frac{1}{2} \left(\operatorname{trace} \left(\sqrt{\Sigma} \sqrt{\Sigma} \right) + \operatorname{trace} \left(\sqrt{\Sigma} \sqrt{\Sigma} \right) \right)$$

$$= \frac{1}{2} \left(\operatorname{trace} \left(\Sigma \right) + \operatorname{trace} \left(\Sigma \right) \right) = \operatorname{trace} \left(\Sigma \right) = \| Y \|_{*}$$

User/Movie Symmetry

$$\underset{U,V}{\operatorname{argmin}} \frac{\lambda}{2} (\|U\|_{Fro}^{2} + \|V\|_{Fro}^{2}) + \sum_{ij} (y_{ij} - u_{i}^{T} v_{j})^{2}$$

- If we knew V, then linear regression to learn U
 - Treat V as features

- If we knew U, then linear regression to learn V
 - Treat U as features

Optimization

$$\underset{U,V}{\operatorname{argmin}} \frac{\lambda}{2} \left(\left\| U \right\|_{Fro}^{2} + \left\| V \right\|_{Fro}^{2} \right) + \sum_{ij} \omega_{ij} \left(y_{ij} - u_{i}^{T} v_{j} \right)^{2} \qquad \omega_{ij} \in \left\{ 0, 1 \right\}$$

- Only train over observed y_{ii}
- Two ways to Optimize
 - Gradient Descent
 - Alternating optimization
 - Closed Form (for each sub-problem)
 - Homework question

Gradient Calculation

$$\underset{U,V}{\operatorname{argmin}} \frac{\lambda}{2} \left(\|U\|_{Fro}^{2} + \|V\|_{Fro}^{2} \right) + \frac{1}{2} \sum_{ij} \omega_{ij} \left(y_{ij} - u_{i}^{T} v_{j} \right)^{2}$$

$$\partial_{u_i} = \lambda u_i - \sum_j \omega_{ij} v_j \left(y_{ij} - u_i^T v_j \right)^T$$

Closed Form Solution (assuming V fixed):

$$u_i = \left(\lambda I_K + \sum_j \omega_{ij} v_j v_j^T\right)^{-1} \left(\sum_j \omega_{ij} y_{ij} v_j\right)$$

Coordinate Gradient Descent

- Initialize U & V randomly
- Loop
 - Choose one u_i, v_j randomly
 - Take gradient step:

$$u_i = u_i - \eta \partial_{u_i}$$

$$\partial_{u_i} = \lambda u_i - \sum_j \omega_{ij} v_j \left(y_{ij} - u_i^T v_j \right)$$

Stochastic Gradient Descent

- Initialize U & V randomly
- Loop
 - Choose one data point (i,j) randomly
 - Compute gradient for all U & V of:

$$\underset{U,V}{\operatorname{argmin}} \frac{\lambda}{2N} (\|U\|_{Fro}^{2} + \|V\|_{Fro}^{2}) + \frac{1}{2} (y_{ij} - u_{i}^{T} v_{j})^{2}$$

N = #observed entries

Take a gradient step for all U & V

Alternating Optimization

- Initialize U & V randomly
- Loop
 - Choose next u_i or v_j
 - Solve optimally:

$$u_i = \left(\lambda I_K + \sum_j \omega_{ij} v_j v_j^T\right)^{-1} \left(\sum_j \omega_{ij} y_{ij} v_j\right)$$

• (assuming all other variables fixed)

Tradeoffs

- Alternating optimization much faster in terms of #iterations
 - But requires inverting a matrix:

$$u_i = \left(\lambda I_K + \sum_j \omega_{ij} v_j v_j^T\right)^{-1} \left(\sum_j \omega_{ij} y_{ij} v_j\right)$$

- Gradient descent faster for high-dim problems
 - Also allows for streaming data

$$u_i = u_i - \eta \partial_{u_i}$$

Miniproject 2: create your own.

http://www2.research.att.com/~volinsky/papers/ieeecomputer.pdf

Recap: Collaborative Filtering

Goal: predict every user/item rating

• Challenge: only a small subset observed

 Assumption: there exists a low-rank subspace that captures all the variability in describing different users and items

Multitask Learning

M Tasks:

$$S^{m} = \left\{ (x_{i}, y_{i}^{m}) \right\}_{i=1}^{N}$$

$$\underset{W}{\operatorname{argmin}} \frac{\lambda}{2} R(W) + \frac{1}{2} \sum_{m} \sum_{i} \left(y_{i} - w_{m}^{T} x_{i} \right)^{2}$$

- Example: personalized recommender system
 - One task per user:

Regularizer

How to Regularize?

$$\underset{W}{\operatorname{argmin}} \frac{\lambda}{2} R(W) + \frac{1}{2} \sum_{m} \sum_{i} (y_i - w_m^T x_i)^2 \qquad S^m = \{(x_i, y_i^m)\}_{i=1}^N$$

Standard L2 Norm:

$$\underset{W}{\operatorname{argmin}} \frac{\lambda}{2} \|W\|^{2} + \sum_{m} \sum_{i} (y_{i} - w_{m}^{T} x_{i})^{2} = \sum_{m} \left[\frac{\lambda}{2} \|w_{m}\|^{2} + \sum_{i} (y_{i} - w_{m}^{T} x_{i})^{2} \right]$$

- Decomposes to independent tasks
 - For each task, learn D parameters

How to Regularize?

$$\underset{W}{\operatorname{argmin}} \frac{\lambda}{2} R(W) + \frac{1}{2} \sum_{m} \sum_{i} (y_i - w_m^T x_i)^2 \qquad S^m = \{(x_i, y_i^m)\}_{i=1}^N$$

Trace Norm:

$$\underset{W}{\operatorname{argmin}} \frac{\lambda}{2} \|W\|_* + \sum_{m} \sum_{i} \left(y_i - w_m^T x_i \right)^2$$

Induces W to have low rank across all task

Recall: Trace Norm & Latent Factor Models

- Suppose we consider all U,V that achieve perfect reconstruction: W=UV^T
- Find U,V with lowest complexity:

$$\underset{W=UV^{T}}{\operatorname{argmin}} \frac{1}{2} \left(\left\| U \right\|_{Fro}^{2} + \left\| V \right\|_{Fro}^{2} \right)$$

Claim: complexity equivalent to trace norm:

$$||W||_* = \min_{W=UV^T} \frac{1}{2} (||U||_{Fro}^2 + ||V||_{Fro}^2)$$

How to Regularize?

$$\underset{W}{\operatorname{argmin}} \frac{\lambda}{2} R(W) + \frac{1}{2} \sum_{m} \sum_{i} (y_i - w_m^T x_i)^2 \qquad S^m = \{(x_i, y_i^m)\}_{i=1}^N$$

Latent Factor Approach

$$\underset{U,V}{\operatorname{argmin}} \frac{\lambda}{2} \left(\left\| U \right\|_{Fro}^{2} + \left\| V \right\|_{Fro}^{2} \right) + \frac{1}{2} \sum_{m} \sum_{i} \left(y_{i} - u_{m}^{T} V x_{i} \right)^{2}$$

- Learns a feature projection x' = Vx
- Learns a K dimensional model per task

Tradeoff

D*N parameters:

$$\underset{W}{\operatorname{argmin}} \sum_{m} \left[\frac{\lambda}{2} \| w_{m} \|^{2} + \frac{1}{2} \sum_{i} (y_{i} - w_{m}^{T} x_{i})^{2} \right]$$

D*K + N*K parameters:

$$\underset{U,V}{\operatorname{argmin}} \frac{\lambda}{2} \left(\left\| U \right\|_{Fro}^{2} + \left\| V \right\|_{Fro}^{2} \right) + \frac{1}{2} \sum_{m} \sum_{i} \left(y_{i} - u_{m}^{T} V x_{i} \right)^{2}$$

- Statistically more efficient
- Great if low-rank assumption is a good one

Multitask Learning

M Tasks:

$$S^{m} = \left\{ (x_{i}, y_{i}^{m}) \right\}_{i=1}^{N}$$

$$\underset{U,V}{\operatorname{argmin}} \frac{\lambda}{2} (\|U\|_{Fro}^{2} + \|V\|_{Fro}^{2}) + \frac{1}{2} \sum_{m} \sum_{i} (y_{i}^{m} - u_{m}^{T} V x_{i})^{2}$$

- Example: personalized recommender system
 - One task per user:
 - If x is topic feature representation
 - V is subspace of correlated topics
 - Projects multiple topics together

Reduction to Collaborative Filtering

$$\underset{U,V}{\operatorname{argmin}} \frac{\lambda}{2} \left(\left\| U \right\|_{Fro}^{2} + \left\| V \right\|_{Fro}^{2} \right) + \frac{1}{2} \sum_{m} \sum_{i} \left(y_{i}^{m} - u_{m}^{T} V x_{i} \right)^{2} \qquad S^{m} = \left\{ (x_{i}, y_{i}^{m}) \right\}_{i=1}^{N}$$

- Suppose each x_i is single indicator $x_i = e_i$
- Then: $Vx_i = v_i$
- Exactly Collaborative Filtering!

$$\underset{U,V}{\operatorname{argmin}} \frac{\lambda}{2} \left(\left\| U \right\|_{Fro}^{2} + \left\| V \right\|_{Fro}^{2} \right) + \frac{1}{2} \sum_{m} \sum_{i} \left(y_{i}^{m} - u_{m}^{T} v_{i} \right)^{2}$$

$$x_i = \begin{vmatrix} \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \end{vmatrix}$$

Latent Factor Multitask Learning vs Collaborative Filtering

$$\underset{U,V}{\operatorname{argmin}} \frac{\lambda}{2} \left(\left\| U \right\|_{Fro}^{2} + \left\| V \right\|_{Fro}^{2} \right) + \frac{1}{2} \sum_{m} \sum_{i} \left(y_{i}^{m} - u_{m}^{T} V x_{i} \right)^{2}$$

- Projects x into low-dimensional subspace Vx
- Learns low-dimensional model per task

$$\underset{U,V}{\operatorname{argmin}} \frac{\lambda}{2} \left(\left\| U \right\|_{Fro}^{2} + \left\| V \right\|_{Fro}^{2} \right) + \frac{1}{2} \sum_{m} \sum_{i} \left(y_{i}^{m} - u_{m}^{T} v_{i} \right)^{2}$$

- Creates low dimensional feature for each movie
- Learns low-dimensional model per user

General Bilinear Models

$$\underset{U,V}{\operatorname{argmin}} \frac{\lambda}{2} \left(\left\| U \right\|_{Fro}^{2} + \left\| V \right\|_{Fro}^{2} \right) + \sum_{i} \left(y_{i} - z_{i}^{T} U^{T} V x_{i} \right)^{2} \qquad S = \left\{ (x_{i}, z_{i}, y_{i}) \right\}$$

- Users described by features z
- Items described by features x
- Learn a projection of z and x into common low-dimensional space
 - Linear model in low dimensional space

Why are Bilinear Models Useful?

$$\underset{U,V}{\operatorname{argmin}} \frac{\lambda}{2} \left(\left\| U \right\|_{Fro}^{2} + \left\| V \right\|_{Fro}^{2} \right) + \frac{1}{2} \sum_{m} \sum_{i} \left(y_{i} - u_{m}^{T} v_{i} \right)^{2}$$
 U: MxK V: NxK

$$\underset{U,V}{\operatorname{argmin}} \frac{\lambda}{2} \left(\left\| U \right\|_{Fro}^{2} + \left\| V \right\|_{Fro}^{2} \right) + \frac{1}{2} \sum_{m} \sum_{i} \left(y_{i} - u_{m}^{T} V x_{i} \right)^{2} \qquad \text{U: MxK}$$

$$\underset{U,V}{\operatorname{argmin}} \frac{\lambda}{2} \left(\|U\|_{Fro}^{2} + \|V\|_{Fro}^{2} \right) + \frac{1}{2} \sum_{i} \left(y_{i} - z_{i}^{T} U^{T} V x_{i} \right)^{2} \qquad \text{U: FxK}$$

$$S = \left\{ (x_{i}, z_{i}, y_{i}) \right\}$$

Story So Far: Latent Factor Models

$$\underset{U,V}{\operatorname{argmin}} \frac{\lambda}{2} \left(\left\| U \right\|_{Fro}^{2} + \left\| V \right\|_{Fro}^{2} \right) + \frac{1}{2} \sum_{i} \left(y_{i} - z_{i}^{T} U^{T} V x_{i} \right)^{2} \quad S = \left\{ (x_{i}, z_{i}, y_{i}) \right\}$$

- Simplest Case: reduces to SVD of matrix Y
 - No missing values
 - (z,x) indicator features
- General Case: projects high-dimensional feature representation into low-dimensional linear model

Non-Negative Matrix Factorization

Limitations of PCA & SVD

CS 155 Eigenface Basis

http://hebb.mit.edu/people/seung/papers/nmfconverge.pdf

Avg Face

Non-Negative Matrix Factorization

- Assume Y is non-negative
- Find non-negative U & V

CS 155 Non-Negative Face Basis

Aside: Non-Orthogonal Projections

- If columns of A are not orthogonal, A^TA≠I
 - How to reverse transformation $x'=A^{T}x$?
 - Solution: Pseudoinverse!

$$A = U\Sigma V^T$$
SVD

$$A^{+} = V \Sigma^{+} U^{T}$$

Pseudoinverse

$$\Sigma^{+} = \begin{bmatrix} \sigma_{1} & 0 & \cdots & 0 \\ 0 & \sigma_{2} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \sigma_{D} \end{bmatrix} \qquad \sigma^{+} = \begin{cases} 1/\sigma & \text{if } \sigma > 0 \\ 0 & \text{otherwise} \end{cases}$$

Intuition: use the rank-K orthogonal basis that spans A.

$$A^{+T}A^{T}x = U\Sigma^{+}V^{T}V\Sigma U^{T}x$$
$$= U_{1:K}U_{1:K}^{T}x$$

Objective Function

$$\underset{U \geq 0, V \geq 0}{\operatorname{argmin}} \sum_{ij} \ell(y_{ij}, u_i^T v_j)$$

- Squared Loss:
 - Penalizes squared distance

$$\ell(a,b) = (a-b)^2$$

- Generalized Relative Entropy
 - Aka, unnormalized KL divergence
 - Penalizes ratio

 $\ell(a,b) = a \log \frac{a}{b} - a + b$

Train using gradient descent

http://hebb.mit.edu/people/seung/papers/nmfconverge.pdf

SVD/PCA vs NNMF

• SVD/PCA:

- Finds the best orthogonal basis faces
 - Basis faces can be neg.
- Coeffs can be negative
- Often trickier to visualize
- Better reconstructions
 with fewer basis faces
 - Basis faces capture the most variations

NNMF:

- Finds best set of nonnegative basis faces
- Non-negative coeffs
 - Often non-overlapping
- Easier to visualize
- Requires more basis faces for good reconstructions

Varying top 6 Eigenfaces

Non-Negative Latent Factor Models

$$\underset{U,V}{\operatorname{argmin}} \frac{\lambda}{2} \Big(\|U\|_{Fro}^{2} + \|V\|_{Fro}^{2} \Big) + \sum_{i} \ell \Big(y_{i}, z_{i}^{T} U^{T} V x_{i} \Big) \qquad S = \Big\{ (x_{i}, z_{i}, y_{i}) \Big\}$$

- Simplest Case: reduces to NNMF of matrix Y
 - No missing values
 - (z,x) indicator features
- General Case: projects high-dimensional nonnegative features into low-dimensional nonnegative linear model

Tensor Latent Factor Models

Tensor Factorization

Tri-Linear Model

$$\underset{U,V,W}{\operatorname{argmin}} \frac{\lambda}{2} \Big(\|U\|_{Fro}^{2} + \|V\|_{Fro}^{2} + \|W\|_{Fro}^{2} \Big) + \sum_{i} \ell \Big(y_{i}, \left\langle U^{T} z_{i}, V^{T} x_{i}, W^{T} q_{i} \right\rangle \Big)$$

- Prediction via 3-way dot product:
 - Related to Hadamard Product
- Example: online advertising
 - User profile z
 - Item description x
 - Query q

 $\langle a,b,c\rangle = \sum_{k} a_k b_k c_k$

Solve using Gradient Descent

Next Week

Embeddings

- Recent Applications of Latent Factor Models
 - Example of non-negative latent factor model
 - Example of tensor latent factor model

- Kaggle Mini-project closes Next Tuesday
 - Report due next Thursday