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•  Applica6ons	
  of	
  Lasso	
  (and	
  related	
  methods)	
  
•  Think	
  about	
  the	
  data	
  &	
  modeling	
  goals	
  
•  Some	
  new	
  learning	
  problems	
  

Slide	
  material	
  borrowed	
  from	
  Rob	
  Tibshirani	
  and	
  Khalid	
  El-­‐Arini	
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Aside:	
  Convexity	
  

•  All	
  local	
  op6ma	
  are	
  global	
  op6ma:	
  

	
  
•  Strictly	
  convex:	
  unique	
  global	
  op6mum:	
  

•  Almost	
  all	
  objec6ves	
  discussed	
  are	
  (strictly)	
  convex:	
  
–  SVMs,	
  LR,	
  Ridge,	
  Lasso…	
  	
  (except	
  ANNs)	
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Gastric	
  (Stomach)	
  Cancer	
  

•  Expensive:	
  requires	
  a	
  pathologist	
  
•  Slow:	
  examina6on	
  can	
  take	
  up	
  to	
  an	
  hour	
  
•  Unreliable:	
  20%-­‐30%	
  can’t	
  predict	
  on	
  the	
  spot	
  

Drawbacks	
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Machine	
  Learning	
  to	
  the	
  Rescue!	
  
(actually	
  just	
  sta6s6cs)	
  

•  Lasso	
  originated	
  from	
  sta6s6cs	
  community.	
  	
  	
  
– But	
  we	
  machine	
  learners	
  love	
  it!	
  

	
  

•  Train	
  a	
  model	
  to	
  predict	
  cancerous	
  regions!	
  
–  Y	
  =	
  {C,E,S}	
  	
  	
  	
  	
  (How	
  to	
  predict	
  3	
  possible	
  labels?)	
  
– What	
  is	
  X?	
  
– What	
  is	
  loss	
  func6on?	
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argmin
w,b

λ w + L yi,w
T xi − b( )

2

i=1

N

∑Basic	
  Lasso:	
  



Mass	
  Spectrometry	
  Imaging	
  
•  DESI-­‐MSI	
  (Desorp6on	
  Electrospray	
  Ioniza6on)	
  

•  Effec6vely	
  runs	
  in	
  real-­‐6me	
  	
  (used	
  to	
  generate	
  x)	
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Technology to the rescue!
DESI (Desorption electrospray ionization)

An electrically charged “mist” is directed at the sample; surface ions are freed and
enter the mass spec.
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The data for one patient
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Spectrum sampled at 11,000 m/z values

Spectrum for each pixel
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Each	
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  data	
  point	
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  pixel	
  has	
  	
  
11K	
  features.	
  
Visualizing	
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•  Mul6class	
  y:	
  
	
  

•  Most	
  common	
  model:	
  

•  Loss	
  func0on?	
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Mul6class	
  Logis6c	
  Regression	
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Referred	
  to	
  as	
  Mul6nomial	
  Log-­‐Likelihood	
  by	
  Tibshirani	
  

P(y | x,w,b)∝ ey w
T x−b( )

P(y | x,w,b) = e
y wT x−b( )

e
y wT x−b( ) + e

−y wT x−b( )
Binary	
  LR:	
  

“Log	
  Linear”	
  Property:	
  

P(y = k | x,w,b)∝ ewk
T x−bkExtension	
  to	
  Mul0class:	
  

Keep	
  a	
  (wk,bk)	
  	
  
for	
  each	
  class	
  

(w1,b1)	
  =	
  (-­‐w-­‐1,-­‐b-­‐1)	
  

P(y = k | x,w,b) = ewk
T x−bk

ewm
T x−bm

m
∑

Mul0class	
  LR:	
  

y ∈ −1,+1{ }
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Mul6class	
  Log	
  Loss	
  

•  Suppose	
  x=1	
  &	
  ignore	
  b	
  
– Model	
  score	
  is	
  just	
  wk	
  

–  Vary	
  one	
  weight,	
  others	
  =	
  1	
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Lasso	
  Mul6class	
  Logis6c	
  Regression	
  

•  Probabilis6c	
  model	
  
•  Sparse	
  weights	
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Back	
  to	
  the	
  Problem	
  

•  Image	
  Tissue	
  Samples	
  

•  Each	
  pixel	
  is	
  an	
  x	
  
–  11K	
  features	
  via	
  Mass	
  Spec	
  
–  Computable	
  in	
  real	
  6me	
  

– 1	
  predic6on	
  per	
  pixel	
  

•  y	
  via	
  lab	
  results	
  	
  
–  ~2	
  weeks	
  turn-­‐around	
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of nine gastric-cancer operations in direct comparison with margin
assessment by frozen-section histopathology, and we demonstrate
that this approach could be very valuable for clinical use.

Results
Molecular Imaging of Gastric Tissue. Negative ion mode DESI-MSI
was performed on 62 banked human gastric samples, including
normal and cancerous gastric tissue. For most of the samples
analyzed, evaluation of the 2D DESI-MSI images revealed some
heterogeneity within the sample, with discrete regions within the
samples that presented three main distinct spectral profiles: gas-
tric adenocarcinoma, normal epithelium (mucosa), and normal
stroma (submucosa) tissue, which were later verified by pathologic
evaluation of the same tissue sections using H&E staining (20).
Fig. S1 shows representative negative ion mode DESI mass

spectra for sample GC727, a poorly differentiated gastric ade-
nocarcinoma with areas of cancerous tissue, and an adjacent
normal gastric tissue with regions of both normal epithelial and
adjacent normal stroma tissue. Most of the ions detected in the
mass spectra were identified as small metabolites related to energy
production, free fatty acids, fatty acid dimers, and complex phos-
pholipids. An overall evaluation of the mass-spectral profiles
reveals a higher similarity between the spectra obtained for gastric
cancer and normal epithelial tissue than gastric cancer and stroma
tissue, which is expected given the fact that gastric adenocarcinomas
start from the inner epithelial layer of the stomach. Nevertheless,
strong differences in the relative abundances of various ions were
found within the three distinct regions, which can be clearly seen in
the selected DESI-MS ion images (Fig. 1).

Diagnostic Feature Selection and Identification. The large number of
molecular features obtained from the combination of all pixels
throughout all of the 62 banked samples analyzed makes data in-
terpretation difficult and calls for the use of multivariate statistical
techniques (21–23). Models generated using the Lasso are simpler
and easier to interpret than those from other linear regression
methods, as it yields “sparse” models, that is, models that involve
only a subset of the variables/predictors (24). Using the training set
of samples (28 frozen banked samples from 14 patients), the Lasso
selected a total of 120 m/z values that are important in charac-
terizing all three classes and yielded the lowest cross-validation

errors (Fig. 2 and Table S1). From those 120 m/z values, 44 dif-
ferent m/z values were selected by the classifier as important fea-
tures to characterize gastric cancer whereas 46 m/z values and
30 m/z values were found as important features to characterize
normal epithelium and normal gastric stroma, respectively.
Many of the ions selected as statistically significant by the

Lasso were tentatively identified as biologically relevant mole-
cules (Table S2) using high mass resolution/high mass accuracy
and tandem mass spectrometry analyses of tissue sections. For
example, the species with m/z 723.3, which received a positive
weight by the Lasso for characterizing normal epithelial tissue,
was a doubly charged ion whose accurate mass and isotopic
distribution matched that of the doubly deprotonated form of
the cardiolipin CL(1′-[18:2/18:2],3′-[18:2/18:2]), with a mass error
of +1.93 ppm. CLs are interesting complex phospholipids
(PLs) found almost exclusively in the inner mitochondrial
membrane of cells and are intimately involved in maintaining
mitochondrial functionality, membrane integrity, and ulti-
mately in energy production and metabolism (25). Remarkably,
major abnormalities in CL content such as deficiency of this
mature CL specie have been reported in cancer (25). Other
important peaks that were given positive weight for the nor-
mal epithelial tissue class were identified as phospholipid
(PL) species such as glycerophosphoethanolamine PE(36:1) at
m/z 742.6, glycerophosphoserine PS(36:1) at m/z 788.5, and PS
(38:1) at m/z 816.5, based on accurate mass measurements (mass
errors of less than +1.60 ppm) and tandem MS experiments in
comparison with literature on the fragmentation patterns of
these lipid species (26–28). Note that isomerism of the double
bonds in the fatty-acid (FA) chains of complex lipids compli-
cates precise structural assignment, which is why FA chains
are solely tentatively assigned. Besides PL species, small mol-
ecules related to energy and metabolism, such as m/z 145.2 and
m/z 146.2, which were respectively tentatively assigned as the
amino acids glutamine and glutamate, were selected by the Lasso
as being statistically significant for the epithelial class with
a negative weight, which indicates that a small relative abun-
dance of these peaks in comparison with that detected in other
classes is important for characterizing normal epithelial tissue.
Interestingly, a peak at m/z 312.2 was selected by the Lasso as

Fig. 1. Selected negative ion mode DESI-MS ion images of sample GC727.
Higher relative abundances of the ions atm/z 775,m/z 773,m/z 303,m/z 747,
m/z 797, and m/z 887 were observed in the region of cancer whereas higher
relative abundances of the ions atm/z 788,m/z 723,m/z 812, andm/z 861 are
observed in the region of normal gastric epithelial tissue, and higher relative
abundances of the ions at m/z 737, m/z 818, m/z 215, and m/z 810 are ob-
served in the regions with normal stromal tissue. Other ions, such asm/z 885,
m/z 836, and m/z 281, show similar relative abundances throughout the
cancerous and normal epithelial regions of the tissue sections. Shown is the
optical image of the same tissue section subjected to H&E stain, with regions
of cancer delineated in red, normal gastric epithelial tissue in green, and
normal gastric stromal tissue in blue, as diagnosed by pathologic analysis.

Fig. 2. The Lasso method yields a model with parsimonious sets of features
for discriminating between gastric adenocarcinoma, normal epithelial tissue,
and normal gastric stromal tissue. A mathematical weight for each statisti-
cally informative feature is calculated by the Lasso depending on the im-
portance of the height (or ion abundance) of that peak in characterizing
a certain class. Features that do not contribute to characterizing a class re-
ceive a weight of zero and are disregarded. An ion whose peak height, or
abundance, is important for characterizing a certain class is given a positive
weight whereas ions whose low abundances or absence are important re-
ceive a negative weight. The peak weights given by the Lasso to each of the
selected mass-spectral features are shown in the mass spectra for each m/z
value, with weights for each class displayed in its respective color (epithelium
in green, cancer in red, and stroma in blue), as shown in A. The average mass
spectra for each class for all pixels obtained for the training samples are
shown in its respective color in B.

Eberlin et al. PNAS | February 18, 2014 | vol. 111 | no. 7 | 2437
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Learn	
  a	
  Predic6ve	
  Model	
  

•  Training	
  set:	
  28	
  6ssue	
  samples	
  from	
  14	
  pa6ents	
  
–  Cross	
  valida6on	
  to	
  select	
  λ	
  

•  Test	
  set:	
  21	
  6ssue	
  samples	
  from	
  9	
  pa6ents	
  
	
  

•  Test	
  Performance:	
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Table S2. Tentative identification of ions selected by the Lasso as statistically significant using high mass resolution/high mass accuracy
and tandem mass spectrometry analyses

m/z

Lasso weights

Measured m/z* Attribution† Mass error (ppm, delta m/z)‡ Molecular formula§Epithelium Cancer Stroma

145.8 −0.513 145.0623 Glutamine +2.76 (0.0004) C5H9O3N2

146.3 −0.523 146.0463 Glutamate +2.74 (0.0004) C5H8O4N
175.3 −0.513 175.0253 Ascorbic acid +2.86 (0.0005) C6H7O6

215.3 −0.678 215.0331 Glucose/Fructose +1.40 (0.0003) C6H12O6Cl
301.3 0.344 301.2173 Eicosapentaenoic acid +0.15 (0.00005) C20H29O2

312.3 0.070 −0.064 312.2551 N-palmitoyl glycine +2.24 (0.0007) C18H34O3N
327.8 0.304 327.2336 Docosahexaenoic acid +1.80 (0.0006) C22H31O2

333.3 0.811 333.2805 Docosatrienoic acid +1.80 (0.0006) C22H37O2

536.8 0.552 537.4896 Oleic acid + palmitic dimer +1.46 (0.0008) C34H65O4

723.3 0.288 723.4802 CL(1′-[18:2/18:2],3′-[18:2/18:2]) +1.93 (0.0014) C81H140O17P2
737.3 0.327 737.5377 SM(d16:1/18:0)+Cl +0.95 (0.0007) C39H79ClN2O6P
742.8 0.435 742.5397 PE(18:0/18:1) +0.67 (0.0005) C41H77O8NP
775.8 0.382 775.5521 PG(18:0/18:1) +3.35 (0.0026) C42H80O10P
788.3 0.173 788.5456 PS(18:0/18:1) +1.14 (0.0009) C42H79O10NP
810.8 0.047 810.5298 PS(18:1/20:3) +0.84 (0.0007) C44H77O10NP
816.3 0.321 816.5773 PS(20:0/18:1) +1.59 (0.0013) C44H83O10NP
844.3 0.271 844.6079 PS(18:1/22:0) +0.71 (0.0006) C46H87O10NP
887.8 0.040 887.5677 PI(18:1/20:2) +2.47 (0.0022) C47H84O13P
913.8 0.216 913.5826 PI(18:2/22:2) +2.63 (0.0024) C49H86O13P

*High mass accuracy/mass resolution measurements were obtained from tissue using an Orbitrap mass spectrometer.
†Tentative assignments were based on data obtained from tandem mass spectrometry experiments and high mass accuracy measurements. CL, cardiolipin; PE,
glycerophosphoethanolamines; PG, glycerophosphoglycerols; PI, glycerophosphoinositols; PS, glycerophosphoserines; SM, sphingomyelin. (X:Y/X:Y) denotes
the number of carbons and double bonds in each fatty-acid chain.
‡Mass errors were calculated based on the exact monoisotopic m/z of the deprotonated form of the assigned molecules.
§Molecular formulas of the deprotonated form of the assigned molecules.

Table S3. Prediction results for the 12,480 pixels analyzed in the training set of samples using
the “don’t-know” category, in comparison with pathologic analysis

Pathology

Predicted

Don’t know Agreement, % Overall agreement, %Cancer Epithelium Stroma

Cancer 5,809 114 2 230 97.0 97.2
Epithelium 134 3,566 118 122 96.8
Stroma 25 82 2,630 143 96.1

Cancer Normal Agreement, % Overall agreement, %

Cancer 5,809 116 230 97.0 98.4
Normal 159 6,396 265 99.7

Eberlin et al. www.pnas.org/cgi/content/short/1400274111 7 of 8
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•  Lasso	
  yields	
  sparse	
  weights!	
  (Manual	
  Inspec0on	
  Feasible!)	
  

•  Many	
  correlated	
  features	
  
–  Lasso	
  tends	
  to	
  focus	
  on	
  one	
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of nine gastric-cancer operations in direct comparison with margin
assessment by frozen-section histopathology, and we demonstrate
that this approach could be very valuable for clinical use.

Results
Molecular Imaging of Gastric Tissue. Negative ion mode DESI-MSI
was performed on 62 banked human gastric samples, including
normal and cancerous gastric tissue. For most of the samples
analyzed, evaluation of the 2D DESI-MSI images revealed some
heterogeneity within the sample, with discrete regions within the
samples that presented three main distinct spectral profiles: gas-
tric adenocarcinoma, normal epithelium (mucosa), and normal
stroma (submucosa) tissue, which were later verified by pathologic
evaluation of the same tissue sections using H&E staining (20).
Fig. S1 shows representative negative ion mode DESI mass

spectra for sample GC727, a poorly differentiated gastric ade-
nocarcinoma with areas of cancerous tissue, and an adjacent
normal gastric tissue with regions of both normal epithelial and
adjacent normal stroma tissue. Most of the ions detected in the
mass spectra were identified as small metabolites related to energy
production, free fatty acids, fatty acid dimers, and complex phos-
pholipids. An overall evaluation of the mass-spectral profiles
reveals a higher similarity between the spectra obtained for gastric
cancer and normal epithelial tissue than gastric cancer and stroma
tissue, which is expected given the fact that gastric adenocarcinomas
start from the inner epithelial layer of the stomach. Nevertheless,
strong differences in the relative abundances of various ions were
found within the three distinct regions, which can be clearly seen in
the selected DESI-MS ion images (Fig. 1).

Diagnostic Feature Selection and Identification. The large number of
molecular features obtained from the combination of all pixels
throughout all of the 62 banked samples analyzed makes data in-
terpretation difficult and calls for the use of multivariate statistical
techniques (21–23). Models generated using the Lasso are simpler
and easier to interpret than those from other linear regression
methods, as it yields “sparse” models, that is, models that involve
only a subset of the variables/predictors (24). Using the training set
of samples (28 frozen banked samples from 14 patients), the Lasso
selected a total of 120 m/z values that are important in charac-
terizing all three classes and yielded the lowest cross-validation

errors (Fig. 2 and Table S1). From those 120 m/z values, 44 dif-
ferent m/z values were selected by the classifier as important fea-
tures to characterize gastric cancer whereas 46 m/z values and
30 m/z values were found as important features to characterize
normal epithelium and normal gastric stroma, respectively.
Many of the ions selected as statistically significant by the

Lasso were tentatively identified as biologically relevant mole-
cules (Table S2) using high mass resolution/high mass accuracy
and tandem mass spectrometry analyses of tissue sections. For
example, the species with m/z 723.3, which received a positive
weight by the Lasso for characterizing normal epithelial tissue,
was a doubly charged ion whose accurate mass and isotopic
distribution matched that of the doubly deprotonated form of
the cardiolipin CL(1′-[18:2/18:2],3′-[18:2/18:2]), with a mass error
of +1.93 ppm. CLs are interesting complex phospholipids
(PLs) found almost exclusively in the inner mitochondrial
membrane of cells and are intimately involved in maintaining
mitochondrial functionality, membrane integrity, and ulti-
mately in energy production and metabolism (25). Remarkably,
major abnormalities in CL content such as deficiency of this
mature CL specie have been reported in cancer (25). Other
important peaks that were given positive weight for the nor-
mal epithelial tissue class were identified as phospholipid
(PL) species such as glycerophosphoethanolamine PE(36:1) at
m/z 742.6, glycerophosphoserine PS(36:1) at m/z 788.5, and PS
(38:1) at m/z 816.5, based on accurate mass measurements (mass
errors of less than +1.60 ppm) and tandem MS experiments in
comparison with literature on the fragmentation patterns of
these lipid species (26–28). Note that isomerism of the double
bonds in the fatty-acid (FA) chains of complex lipids compli-
cates precise structural assignment, which is why FA chains
are solely tentatively assigned. Besides PL species, small mol-
ecules related to energy and metabolism, such as m/z 145.2 and
m/z 146.2, which were respectively tentatively assigned as the
amino acids glutamine and glutamate, were selected by the Lasso
as being statistically significant for the epithelial class with
a negative weight, which indicates that a small relative abun-
dance of these peaks in comparison with that detected in other
classes is important for characterizing normal epithelial tissue.
Interestingly, a peak at m/z 312.2 was selected by the Lasso as

Fig. 1. Selected negative ion mode DESI-MS ion images of sample GC727.
Higher relative abundances of the ions atm/z 775,m/z 773,m/z 303,m/z 747,
m/z 797, and m/z 887 were observed in the region of cancer whereas higher
relative abundances of the ions atm/z 788,m/z 723,m/z 812, andm/z 861 are
observed in the region of normal gastric epithelial tissue, and higher relative
abundances of the ions at m/z 737, m/z 818, m/z 215, and m/z 810 are ob-
served in the regions with normal stromal tissue. Other ions, such asm/z 885,
m/z 836, and m/z 281, show similar relative abundances throughout the
cancerous and normal epithelial regions of the tissue sections. Shown is the
optical image of the same tissue section subjected to H&E stain, with regions
of cancer delineated in red, normal gastric epithelial tissue in green, and
normal gastric stromal tissue in blue, as diagnosed by pathologic analysis.

Fig. 2. The Lasso method yields a model with parsimonious sets of features
for discriminating between gastric adenocarcinoma, normal epithelial tissue,
and normal gastric stromal tissue. A mathematical weight for each statisti-
cally informative feature is calculated by the Lasso depending on the im-
portance of the height (or ion abundance) of that peak in characterizing
a certain class. Features that do not contribute to characterizing a class re-
ceive a weight of zero and are disregarded. An ion whose peak height, or
abundance, is important for characterizing a certain class is given a positive
weight whereas ions whose low abundances or absence are important re-
ceive a negative weight. The peak weights given by the Lasso to each of the
selected mass-spectral features are shown in the mass spectra for each m/z
value, with weights for each class displayed in its respective color (epithelium
in green, cancer in red, and stroma in blue), as shown in A. The average mass
spectra for each class for all pixels obtained for the training samples are
shown in its respective color in B.
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Fig. S5. DESI-MSI and Lasso prediction results obtained for gastric-cancer patient A. Selected ion images show a high relative abundance of m/z 333.5 and m/z
775.5, two ions selected by Lasso as statistically significant for characterizing cancer in a large region of the cancer section that was found by pathologic
analysis to be composed of 100% tumor cells, which were infiltrating into adjacent normal epithelial tissue. In both distal and proximal margins, ions that
characterize normal epithelial and stroma tissue, such as m/z 723 and m/z 788, are observed in high relative abundances throughout the entire tissue pieces. In
A, negative ion mode DESI-MS ion images ofm/z 333.5 andm/z 788.6 are shown for cancer section and distal and proximal margins. Lasso prediction results are
shown in B for each sample, with pixels predicted as cancer shown in red, as normal epithelium shown in green, and as normal stroma shown in blue. In C,
optical images of the H&E-stained tissue sections are shown with the regions diagnosed by pathology delineated using the same color representation.
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Extension:	
  Local	
  Linearity	
  

	
  
•  Assumes	
  probability	
  shigs	
  along	
  straight	
  line	
  
– Ogen	
  not	
  true	
  

•  Approach:	
  cluster	
  based	
  on	
  x	
  
– Train	
  customized	
  model	
  for	
  each	
  cluster	
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P(y | x,w,b) = ewy
T x−by

ewm
T x−bm

m
∑

47

Table: Test error rates by patient for standard and customized training

Patient 1 2 3 4 5 6 Overall

Standard training 0.29% 4.56% 6.78% 0.00% 13.76% 2.77% 3.58%
Customized training 0.71% 1.89% 0.82% 0.40% 9.43% 0.92% 1.89%

Robert Tibshirani, Stanford University Cancer detection /lasso/ customized training

hBp://statweb.stanford.edu/~6bs/gp/canc.pdf	
  



Recap:	
  Cancer	
  Detec6on	
  

•  Seems	
  Awesome!	
  	
  What’s	
  the	
  catch?	
  
– Small	
  sample	
  size	
  

•  Tested	
  on	
  9	
  pa6ents	
  
– Machine	
  Learning	
  only	
  part	
  of	
  the	
  solu6on	
  

•  Need	
  infrastructure	
  investment,	
  etc.	
  
•  Analyze	
  the	
  scien6fic	
  legi6macy	
  	
  

– Social/Poli6cal/Legal	
  
•  If	
  there	
  is	
  mis-­‐predic6on,	
  who	
  is	
  at	
  fault?	
  

21	
  

Fig. S5. DESI-MSI and Lasso prediction results obtained for gastric-cancer patient A. Selected ion images show a high relative abundance of m/z 333.5 and m/z
775.5, two ions selected by Lasso as statistically significant for characterizing cancer in a large region of the cancer section that was found by pathologic
analysis to be composed of 100% tumor cells, which were infiltrating into adjacent normal epithelial tissue. In both distal and proximal margins, ions that
characterize normal epithelial and stroma tissue, such as m/z 723 and m/z 788, are observed in high relative abundances throughout the entire tissue pieces. In
A, negative ion mode DESI-MS ion images ofm/z 333.5 andm/z 788.6 are shown for cancer section and distal and proximal margins. Lasso prediction results are
shown in B for each sample, with pixels predicted as cancer shown in red, as normal epithelium shown in green, and as normal stroma shown in blue. In C,
optical images of the H&E-stained tissue sections are shown with the regions diagnosed by pathology delineated using the same color representation.
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Personaliza6on	
  via	
  twiBer	
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examining(B"

music(

soccer( Labour(

Biden(

September"2012"



overloaded	
  by	
  news	
  

≥	
  1	
  million	
  news	
  ar6cles	
  &	
  blog	
  posts	
  generated	
  every	
  hour*	
  

*	
  [www.spinn3r.com]	
  

“Represen6ng	
  Documents	
  Through	
  Their	
  Readers”	
  
	
  	
  	
  Proceedings	
  of	
  the	
  ACM	
  Conference	
  on	
  Knowledge	
  Discovery	
  and	
  	
  
	
  	
  	
  Data	
  Mining	
  (2013)	
  
	
  

	
  	
  	
  	
  Khalid	
  El-­‐Arini,	
  Min	
  Xu,	
  Emily	
  Fox,	
  Carlos	
  Guestrin	
  
	
  

	
  	
  	
  	
  hBps://dl.dropboxusercontent.com/u/16830382/papers/badgepaper-­‐kdd2013.pdf	
  

23	
  



user	
  

	
  News	
  Recommenda6on	
  Engine	
  

corpus	
  

Vector	
  representa0on:	
  
•  Bag	
  of	
  words	
  
•  LDA	
  topics	
  
•  etc.	
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Challenge	
  

Most	
  common	
  representa6ons	
  don’t	
  
naturally	
  line	
  up	
  with	
  user	
  interests	
  
	
  
Fine-­‐grained	
  representa0ons	
  (bag	
  of	
  words)	
  too	
  specific	
  

High-­‐level	
  topics	
  (e.g.,	
  from	
  a	
  topic	
  model)	
  
	
  -­‐	
  too	
  fuzzy	
  and/or	
  vague	
  
	
  -­‐	
  can	
  be	
  inconsistent	
  over	
  0me	
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Goal	
  

Improve	
  recommenda6on	
  
performance	
  through	
  a	
  
more	
  natural	
  document	
  

representa6on	
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An	
  Opportunity:	
  News	
  is	
  Now	
  Social	
  

•  In	
  2012,	
  Guardian	
  announced	
  more	
  readers	
  
visit	
  site	
  via	
  Facebook	
  than	
  via	
  Google	
  search	
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badges	
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Approach	
  

Learn	
  a	
  document	
  representa6on	
  based	
  on	
  
how	
  readers	
  publicly	
  describe	
  themselves	
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Using	
  many	
  tweets,	
  can	
  we	
  learn	
  
that	
  someone	
  who	
  iden6fies	
  with	
  

music	
  
reads	
  ar6cles	
  with	
  these	
  words:	
  
via	
  profile	
  badges	
  

?	
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Given:	
  training	
  set	
  of	
  tweeted	
  news	
  ar6cles	
  from	
  
a	
  specific	
  period	
  of	
  6me	
  
	
  

1. 	
  	
  Learn	
  a	
  badge	
  dic0onary	
  from	
  training	
  set	
  

	
  
	
  
	
  
	
  

2. 	
  Use	
  badge	
  dic6onary	
  to	
  encode	
  new	
  ar0cles	
  
	
   	
  	
  

music	
  

badges	
  

w
or
ds
	
  

3	
  million	
  ar6cles	
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Advantages	
  

•  Interpretable	
  
– Clear	
  labels	
  
– Correspond	
  to	
  user	
  interests	
  

•  Higher-­‐level	
  than	
  words	
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Advantages	
  

•  Interpretable	
  
– Clear	
  labels	
  
– Correspond	
  to	
  user	
  interests	
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Advantages	
  

•  Interpretable	
  
– Clear	
  labels	
  
– Correspond	
  to	
  user	
  interests	
  

•  Higher-­‐level	
  than	
  words	
  
•  Seman6cally	
  consistent	
  over	
  6me	
  

poli0cs	
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Given:	
  training	
  set	
  of	
  tweeted	
  news	
  ar6cles	
  from	
  
a	
  specific	
  period	
  of	
  6me	
  
	
  

1. 	
  	
  Learn	
  a	
  badge	
  dic0onary	
  from	
  training	
  set	
  

	
  
	
  
	
  
	
  

2. 	
  Use	
  badge	
  dic6onary	
  to	
  encode	
  new	
  ar0cles	
  
	
   	
  	
  

music	
  

badges	
  

w
or
ds
	
  

3	
  million	
  ar6cles	
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Dic6onary	
  Learning	
  

y Fleetwood	
  Mac	
  

Nicks	
  

love	
  

album	
  

linux	
  

music	
  

gig	
  

cycling	
  ✓

•  Training	
  data	
  :	
  
Bag-­‐of-­‐words	
  

representa6on	
  of	
  
document	
  

Iden6fies	
  badges	
  
in	
  TwiBer	
  profile	
  

of	
  tweeter	
  

S = zi, yi( ){ }i=1
N

z

y
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Dic6onary	
  Learning	
  

•  Training	
  Objec6ve:	
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Bag-­‐of-­‐words	
  
representa6on	
  of	
  

document	
  

Iden6fies	
  badges	
  
in	
  TwiBer	
  profile	
  

of	
  tweeter	
  

S = zi, yi( ){ }i=1
N

argmin
B,W

λB B +λW W + yi −BWi
2

i=1

N

∑Given:!training!set!of!tweeted!news!ar.cles!from!
a!specific!period!of!.me!
'

1. ''Learn!a!badge'dic/onary'from!training!set!
!
!
!
!

2. !Use!badge!dic.onary!to!encode'new'
' 'documents!

!

music!

badges!

w
or
ds
!

3'million'ar.cles!in!
our!experiments!

Given:!training!set!of!tweeted!news!ar.cles!from!
a!specific!period!of!.me!
'

!
!
!
!

' ar.cles!

ba
dg
es
!

“Dic0onary”	
   “Encoding”	
  



•  Not	
  convex!	
  (because	
  of	
  BW	
  term)	
  

•  Convex	
  if	
  only	
  op6mize	
  B	
  or	
  W	
  (but	
  not	
  both)	
  

•  Alterna6ng	
  Op6miza6on	
  (between	
  B	
  and	
  W)	
  

•  How	
  to	
  ini6alize?	
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argmin
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λB B +λW W + yi −BWi
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i=1

N

∑Given:!training!set!of!tweeted!news!ar.cles!from!
a!specific!period!of!.me!
'

1. ''Learn!a!badge'dic/onary'from!training!set!
!
!
!
!

2. !Use!badge!dic.onary!to!encode'new'
' 'documents!

!

music!

badges!

w
or
ds
!

3'million'ar.cles!in!
our!experiments!

Given:!training!set!of!tweeted!news!ar.cles!from!
a!specific!period!of!.me!
'

!
!
!
!

' ar.cles!
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es
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S = zi, yi( ){ }i=1
N

linux	
  

music	
  

gig	
  

cycling	
  ✓ z

“Dic0onary”	
   “Encoding”	
  

Wi =
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Ini6alize:	
  

Use:	
  



•  Suppose	
  Badge	
  s	
  ogen	
  co-­‐occurs	
  with	
  Badge	
  t	
  
–  Bs	
  &	
  Bt	
  are	
  correlated	
  

•  From	
  perspec6ve	
  of	
  W,	
  B’s	
  are	
  features.	
  
–  Lasso	
  tends	
  to	
  focus	
  on	
  one	
  correlated	
  feature	
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argmin
B,W

λB B +λW W + yi −BWi
2

i=1

N

∑

Many	
  ar6cles	
  might	
  be	
  about	
  Gig,	
  Fes6val	
  &	
  Music	
  simultaneously.	
  



•  Suppose	
  Badge	
  s	
  ogen	
  co-­‐occurs	
  with	
  Badge	
  t	
  
–  Bs	
  &	
  Bt	
  are	
  correlated	
  

•  From	
  perspec6ve	
  of	
  W,	
  B’s	
  are	
  features.	
  
–  Lasso	
  tends	
  to	
  focus	
  on	
  one	
  correlated	
  feature	
  

•  Graph	
  Guided	
  Fused	
  Lasso:	
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argmin
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λB B +λW W +λG ωst
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Graph	
  G	
  of	
  related	
  Badges	
   Co-­‐occurance	
  Rate	
  	
  
On	
  TwiBer	
  Profiles	
  



Encoding	
  New	
  Ar6cles	
  

•  Badge	
  Dic6onary	
  B	
  is	
  already	
  learned	
  
	
  
•  Given	
  a	
  new	
  document	
  j	
  with	
  word	
  vector	
  yj	
  
– Learn	
  Badge	
  Encoding	
  Wj:	
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argmin
Wj

λW Wj +λG Wjs −Wjt
(s,t )∈G
∑ + yj −BWj
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1. 	
  Learn	
  a	
  badge	
  dic0onary	
  from	
  training	
  set	
  
	
  
	
  
	
  
	
  
2. 	
  Use	
  badge	
  dic6onary	
  to	
  encode	
  new	
  ar0cles	
  
	
  

music	
  

badges	
  

w
or
ds
	
  

Recap:	
  Badge	
  Dic6onary	
  Learning	
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Examining	
  B	
  

music	
  

soccer	
   Labour	
  

Biden	
  
September	
  2012	
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Badges	
  Over	
  Time	
  

September	
  2010	
  

music	
   Biden	
  
September	
  2012	
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A	
  Spectrum	
  of	
  Pundits	
  

•  Limit	
  badges	
  to	
  progressive	
  and	
  TCOT	
  

•  Predict	
  poli6cal	
  alignments	
  of	
  likely	
  readers?	
  

“top	
  conserva6ves	
  on	
  TwiBer”	
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more	
  conserva6ve	
  
•  Took	
  all	
  ar6cles	
  by	
  columnist	
  
•  Looked	
  at	
  encoding	
  score	
  

•  progressive	
  vs	
  TCOT	
  
•  Average	
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User	
  Study	
  
•  Which	
  representa6on	
  best	
  captures	
  user	
  preferences	
  
over	
  6me?	
  

•  Study	
  on	
  Amazon	
  Mechanical	
  Turk	
  with	
  112	
  users	
  
1.  Show	
  users	
  random	
  20	
  ar6cles	
  from	
  Guardian,	
  from	
  6me	
  

period	
  1,	
  and	
  obtain	
  ra6ngs	
  
2.  Pick	
  random	
  representa6on	
  	
  

•  bag	
  of	
  words,	
  high	
  level	
  topic,	
  Badges	
  

3.  Represent	
  user	
  preferences	
  as	
  mean	
  of	
  liked	
  ar6cles	
  
4.  GOTO	
  next	
  6me	
  period	
  

•  Recommend	
  according	
  to	
  preferences	
  
•  GOTO	
  STEP	
  2	
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User	
  Study	
  

tf−idf LDA badges
5
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B
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High	
  Level	
  Topic	
  Bag	
  of	
  Words	
   Badges	
  



Recap:	
  Personaliza6on	
  via	
  twiBer	
  

•  Sparse	
  Dic6onary	
  Learning	
  	
  
– Learn	
  a	
  new	
  representa6on	
  of	
  ar6cles	
  
– Encode	
  ar6cles	
  using	
  dic6onary	
  
– BeBer	
  than	
  Bag	
  of	
  Words	
  
– BeBer	
  than	
  High	
  Level	
  Topics	
  

•  Based	
  on	
  social	
  data	
  
– Badges	
  on	
  twiBer	
  profile	
  &	
  twee6ng	
  
– Seman6cs	
  not	
  directly	
  evident	
  from	
  text	
  alone	
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Next	
  Week	
  

•  Sequence	
  Predic6on	
  

•  Hidden	
  Markov	
  Models	
  

•  Condi6onal	
  Random	
  Fields	
  

•  Homework	
  1	
  due	
  Tues	
  1/20	
  @5pm	
  	
  
– via	
  Moodle	
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