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Lecture	  4:	  
Recent	  Applica6ons	  of	  Lasso	  
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Today:	  Two	  Recent	  Applica6ons	  
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Selected negative ion mode DESI-MS ion images of sample GC727.  
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Cancer	  Detec0on	   Personaliza0on	  
via	  twi9er	  

Image	  Sources:	  hBp://www.pnas.org/content/111/7/2436	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  hBps://dl.dropboxusercontent.com/u/16830382/papers/badgepaper-‐kdd2013.pdf	   2	  

•  Applica6ons	  of	  Lasso	  (and	  related	  methods)	  
•  Think	  about	  the	  data	  &	  modeling	  goals	  
•  Some	  new	  learning	  problems	  

Slide	  material	  borrowed	  from	  Rob	  Tibshirani	  and	  Khalid	  El-‐Arini	  



Aside:	  Convexity	  
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Image	  Source:	  hBp://en.wikipedia.org/wiki/Convex_func6on	  

Easy	  to	  find	  	  
global	  op0ma!	  

Strict	  convex	  if	  	  
diff	  always	  >0	  
	  

Not	  Convex	  



Aside:	  Convexity	  

•  All	  local	  op6ma	  are	  global	  op6ma:	  

	  
•  Strictly	  convex:	  unique	  global	  op6mum:	  

•  Almost	  all	  objec6ves	  discussed	  are	  (strictly)	  convex:	  
–  SVMs,	  LR,	  Ridge,	  Lasso…	  	  (except	  ANNs)	  
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Cancer	  Detec6on	  
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“Molecular	  assessment	  of	  surgical-‐resec6on	  margins	  	  
	  	  of	  gastric	  cancer	  by	  mass-‐spectrometric	  imaging”	  
	  	  	  Proceedings	  of	  the	  Na0onal	  Academy	  of	  Sciences	  (2014)	  
	  

	  	  	  	  Livia	  S.	  Eberlin,	  Robert	  Tibshirani,	  Jialing	  Zhang,	  Teri	  Longacre,	  Gerald	  Berry,	  	  	  	  	  
	  	  	  	  David	  B.	  Bingham,	  Jeffrey	  Norton,	  Richard	  N.	  Zare,	  and	  George	  A.	  Poultsides	  
	  

	  	  	  	  hBp://www.pnas.org/content/111/7/2436	  
	  	  	  	  hBp://statweb.stanford.edu/~6bs/gp/canc.pdf	  

1.  Surgeon	  removes	  6ssue	  

2.  Pathologist	  examines	  6ssue	  
–  Under	  microscope	  

3.  If	  no	  margin,	  GOTO	  Step	  1.	  

Gastric	  (Stomach)	  Cancer	  
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Image	  Source:	  hBp://statweb.stanford.edu/~6bs/gp/canc.pdf	  
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Gastric	  (Stomach)	  Cancer	  

•  Expensive:	  requires	  a	  pathologist	  
•  Slow:	  examina6on	  can	  take	  up	  to	  an	  hour	  
•  Unreliable:	  20%-‐30%	  can’t	  predict	  on	  the	  spot	  

Drawbacks	  
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Image	  Source:	  hBp://statweb.stanford.edu/~6bs/gp/canc.pdf	  

1.  Surgeon	  removes	  6ssue	  

2.  Pathologist	  examines	  6ssue	  
–  Under	  microscope	  

3.  If	  no	  margin,	  GOTO	  Step	  1.	  



Machine	  Learning	  to	  the	  Rescue!	  
(actually	  just	  sta6s6cs)	  

•  Lasso	  originated	  from	  sta6s6cs	  community.	  	  	  
– But	  we	  machine	  learners	  love	  it!	  

	  

•  Train	  a	  model	  to	  predict	  cancerous	  regions!	  
–  Y	  =	  {C,E,S}	  	  	  	  	  (How	  to	  predict	  3	  possible	  labels?)	  
– What	  is	  X?	  
– What	  is	  loss	  func6on?	  
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argmin
w,b

λ w + L yi,w
T xi − b( )

2

i=1

N

∑Basic	  Lasso:	  



Mass	  Spectrometry	  Imaging	  
•  DESI-‐MSI	  (Desorp6on	  Electrospray	  Ioniza6on)	  

•  Effec6vely	  runs	  in	  real-‐6me	  	  (used	  to	  generate	  x)	  
	  	  	  	  	  	  	  hBp://en.wikipedia.org/wiki/Desorp6on_electrospray_ioniza6on	  

9	  

11

Technology to the rescue!
DESI (Desorption electrospray ionization)

An electrically charged “mist” is directed at the sample; surface ions are freed and
enter the mass spec.

Robert Tibshirani, Stanford University Cancer detection /lasso/ customized training

Image	  Source:	  hBp://statweb.stanford.edu/~6bs/gp/canc.pdf	  
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12

The data for one patient

Epithelial
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Spectrum sampled at 11,000 m/z values

Spectrum for each pixel

Robert Tibshirani, Stanford University Cancer detection /lasso/ customized training

Each	  pixel	  is	  data	  point	  
	  
x	  via	  spectroscopy	  
y	  via	  cell-‐type	  label	  
	  
	  

x	  

Image	  Source:	  hBp://statweb.stanford.edu/~6bs/gp/canc.pdf	  
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Selected negative ion mode DESI-MS ion images of sample GC727.  

Eberlin L S et al. PNAS 2014;111:2436-2441 
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Image	  Source:	  hBp://statweb.stanford.edu/~6bs/gp/canc.pdf	  

Each	  pixel	  has	  	  
11K	  features.	  
Visualizing	  a	  
few	  features.	  

x	  



•  Mul6class	  y:	  
	  

•  Most	  common	  model:	  

•  Loss	  func0on?	  

Mul6class	  Predic6on	  
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Mul6class	  Logis6c	  Regression	  

13	  hBp://statweb.stanford.edu/~6bs/gp/canc.pdf	  

Referred	  to	  as	  Mul6nomial	  Log-‐Likelihood	  by	  Tibshirani	  

P(y | x,w,b)∝ ey w
T x−b( )

P(y | x,w,b) = e
y wT x−b( )

e
y wT x−b( ) + e

−y wT x−b( )
Binary	  LR:	  

“Log	  Linear”	  Property:	  

P(y = k | x,w,b)∝ ewk
T x−bkExtension	  to	  Mul0class:	  

Keep	  a	  (wk,bk)	  	  
for	  each	  class	  

(w1,b1)	  =	  (-‐w-‐1,-‐b-‐1)	  

P(y = k | x,w,b) = ewk
T x−bk

ewm
T x−bm

m
∑

Mul0class	  LR:	  

y ∈ −1,+1{ }



Mul6class	  Log	  Loss	  
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Mul6class	  Log	  Loss	  

•  Suppose	  x=1	  &	  ignore	  b	  
– Model	  score	  is	  just	  wk	  

–  Vary	  one	  weight,	  others	  =	  1	  

15	  

− lnP(y | x,w,b) = −wy
T x + by + ln ewm

T x−bm

m
∑
#

$
%

&

'
(

∂wk − lnP(y | x,w,b) =
−1+P(y | x,w,b)( ) x if y = k

P(y | x,w,b)x if y ≠ k

$
%
&

'&

-5 0 5
0

1

2

3

4

5

6

wk

Lo
g	  
Lo
ss
	   y=k	  

y≠k	  



Lasso	  Mul6class	  Logis6c	  Regression	  

•  Probabilis6c	  model	  
•  Sparse	  weights	  
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Back	  to	  the	  Problem	  

•  Image	  Tissue	  Samples	  

•  Each	  pixel	  is	  an	  x	  
–  11K	  features	  via	  Mass	  Spec	  
–  Computable	  in	  real	  6me	  

– 1	  predic6on	  per	  pixel	  

•  y	  via	  lab	  results	  	  
–  ~2	  weeks	  turn-‐around	  
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of nine gastric-cancer operations in direct comparison with margin
assessment by frozen-section histopathology, and we demonstrate
that this approach could be very valuable for clinical use.

Results
Molecular Imaging of Gastric Tissue. Negative ion mode DESI-MSI
was performed on 62 banked human gastric samples, including
normal and cancerous gastric tissue. For most of the samples
analyzed, evaluation of the 2D DESI-MSI images revealed some
heterogeneity within the sample, with discrete regions within the
samples that presented three main distinct spectral profiles: gas-
tric adenocarcinoma, normal epithelium (mucosa), and normal
stroma (submucosa) tissue, which were later verified by pathologic
evaluation of the same tissue sections using H&E staining (20).
Fig. S1 shows representative negative ion mode DESI mass

spectra for sample GC727, a poorly differentiated gastric ade-
nocarcinoma with areas of cancerous tissue, and an adjacent
normal gastric tissue with regions of both normal epithelial and
adjacent normal stroma tissue. Most of the ions detected in the
mass spectra were identified as small metabolites related to energy
production, free fatty acids, fatty acid dimers, and complex phos-
pholipids. An overall evaluation of the mass-spectral profiles
reveals a higher similarity between the spectra obtained for gastric
cancer and normal epithelial tissue than gastric cancer and stroma
tissue, which is expected given the fact that gastric adenocarcinomas
start from the inner epithelial layer of the stomach. Nevertheless,
strong differences in the relative abundances of various ions were
found within the three distinct regions, which can be clearly seen in
the selected DESI-MS ion images (Fig. 1).

Diagnostic Feature Selection and Identification. The large number of
molecular features obtained from the combination of all pixels
throughout all of the 62 banked samples analyzed makes data in-
terpretation difficult and calls for the use of multivariate statistical
techniques (21–23). Models generated using the Lasso are simpler
and easier to interpret than those from other linear regression
methods, as it yields “sparse” models, that is, models that involve
only a subset of the variables/predictors (24). Using the training set
of samples (28 frozen banked samples from 14 patients), the Lasso
selected a total of 120 m/z values that are important in charac-
terizing all three classes and yielded the lowest cross-validation

errors (Fig. 2 and Table S1). From those 120 m/z values, 44 dif-
ferent m/z values were selected by the classifier as important fea-
tures to characterize gastric cancer whereas 46 m/z values and
30 m/z values were found as important features to characterize
normal epithelium and normal gastric stroma, respectively.
Many of the ions selected as statistically significant by the

Lasso were tentatively identified as biologically relevant mole-
cules (Table S2) using high mass resolution/high mass accuracy
and tandem mass spectrometry analyses of tissue sections. For
example, the species with m/z 723.3, which received a positive
weight by the Lasso for characterizing normal epithelial tissue,
was a doubly charged ion whose accurate mass and isotopic
distribution matched that of the doubly deprotonated form of
the cardiolipin CL(1′-[18:2/18:2],3′-[18:2/18:2]), with a mass error
of +1.93 ppm. CLs are interesting complex phospholipids
(PLs) found almost exclusively in the inner mitochondrial
membrane of cells and are intimately involved in maintaining
mitochondrial functionality, membrane integrity, and ulti-
mately in energy production and metabolism (25). Remarkably,
major abnormalities in CL content such as deficiency of this
mature CL specie have been reported in cancer (25). Other
important peaks that were given positive weight for the nor-
mal epithelial tissue class were identified as phospholipid
(PL) species such as glycerophosphoethanolamine PE(36:1) at
m/z 742.6, glycerophosphoserine PS(36:1) at m/z 788.5, and PS
(38:1) at m/z 816.5, based on accurate mass measurements (mass
errors of less than +1.60 ppm) and tandem MS experiments in
comparison with literature on the fragmentation patterns of
these lipid species (26–28). Note that isomerism of the double
bonds in the fatty-acid (FA) chains of complex lipids compli-
cates precise structural assignment, which is why FA chains
are solely tentatively assigned. Besides PL species, small mol-
ecules related to energy and metabolism, such as m/z 145.2 and
m/z 146.2, which were respectively tentatively assigned as the
amino acids glutamine and glutamate, were selected by the Lasso
as being statistically significant for the epithelial class with
a negative weight, which indicates that a small relative abun-
dance of these peaks in comparison with that detected in other
classes is important for characterizing normal epithelial tissue.
Interestingly, a peak at m/z 312.2 was selected by the Lasso as

Fig. 1. Selected negative ion mode DESI-MS ion images of sample GC727.
Higher relative abundances of the ions atm/z 775,m/z 773,m/z 303,m/z 747,
m/z 797, and m/z 887 were observed in the region of cancer whereas higher
relative abundances of the ions atm/z 788,m/z 723,m/z 812, andm/z 861 are
observed in the region of normal gastric epithelial tissue, and higher relative
abundances of the ions at m/z 737, m/z 818, m/z 215, and m/z 810 are ob-
served in the regions with normal stromal tissue. Other ions, such asm/z 885,
m/z 836, and m/z 281, show similar relative abundances throughout the
cancerous and normal epithelial regions of the tissue sections. Shown is the
optical image of the same tissue section subjected to H&E stain, with regions
of cancer delineated in red, normal gastric epithelial tissue in green, and
normal gastric stromal tissue in blue, as diagnosed by pathologic analysis.

Fig. 2. The Lasso method yields a model with parsimonious sets of features
for discriminating between gastric adenocarcinoma, normal epithelial tissue,
and normal gastric stromal tissue. A mathematical weight for each statisti-
cally informative feature is calculated by the Lasso depending on the im-
portance of the height (or ion abundance) of that peak in characterizing
a certain class. Features that do not contribute to characterizing a class re-
ceive a weight of zero and are disregarded. An ion whose peak height, or
abundance, is important for characterizing a certain class is given a positive
weight whereas ions whose low abundances or absence are important re-
ceive a negative weight. The peak weights given by the Lasso to each of the
selected mass-spectral features are shown in the mass spectra for each m/z
value, with weights for each class displayed in its respective color (epithelium
in green, cancer in red, and stroma in blue), as shown in A. The average mass
spectra for each class for all pixels obtained for the training samples are
shown in its respective color in B.

Eberlin et al. PNAS | February 18, 2014 | vol. 111 | no. 7 | 2437
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Learn	  a	  Predic6ve	  Model	  

•  Training	  set:	  28	  6ssue	  samples	  from	  14	  pa6ents	  
–  Cross	  valida6on	  to	  select	  λ	  

•  Test	  set:	  21	  6ssue	  samples	  from	  9	  pa6ents	  
	  

•  Test	  Performance:	  

18	  

Table S2. Tentative identification of ions selected by the Lasso as statistically significant using high mass resolution/high mass accuracy
and tandem mass spectrometry analyses

m/z

Lasso weights

Measured m/z* Attribution† Mass error (ppm, delta m/z)‡ Molecular formula§Epithelium Cancer Stroma

145.8 −0.513 145.0623 Glutamine +2.76 (0.0004) C5H9O3N2

146.3 −0.523 146.0463 Glutamate +2.74 (0.0004) C5H8O4N
175.3 −0.513 175.0253 Ascorbic acid +2.86 (0.0005) C6H7O6

215.3 −0.678 215.0331 Glucose/Fructose +1.40 (0.0003) C6H12O6Cl
301.3 0.344 301.2173 Eicosapentaenoic acid +0.15 (0.00005) C20H29O2

312.3 0.070 −0.064 312.2551 N-palmitoyl glycine +2.24 (0.0007) C18H34O3N
327.8 0.304 327.2336 Docosahexaenoic acid +1.80 (0.0006) C22H31O2

333.3 0.811 333.2805 Docosatrienoic acid +1.80 (0.0006) C22H37O2

536.8 0.552 537.4896 Oleic acid + palmitic dimer +1.46 (0.0008) C34H65O4

723.3 0.288 723.4802 CL(1′-[18:2/18:2],3′-[18:2/18:2]) +1.93 (0.0014) C81H140O17P2
737.3 0.327 737.5377 SM(d16:1/18:0)+Cl +0.95 (0.0007) C39H79ClN2O6P
742.8 0.435 742.5397 PE(18:0/18:1) +0.67 (0.0005) C41H77O8NP
775.8 0.382 775.5521 PG(18:0/18:1) +3.35 (0.0026) C42H80O10P
788.3 0.173 788.5456 PS(18:0/18:1) +1.14 (0.0009) C42H79O10NP
810.8 0.047 810.5298 PS(18:1/20:3) +0.84 (0.0007) C44H77O10NP
816.3 0.321 816.5773 PS(20:0/18:1) +1.59 (0.0013) C44H83O10NP
844.3 0.271 844.6079 PS(18:1/22:0) +0.71 (0.0006) C46H87O10NP
887.8 0.040 887.5677 PI(18:1/20:2) +2.47 (0.0022) C47H84O13P
913.8 0.216 913.5826 PI(18:2/22:2) +2.63 (0.0024) C49H86O13P

*High mass accuracy/mass resolution measurements were obtained from tissue using an Orbitrap mass spectrometer.
†Tentative assignments were based on data obtained from tandem mass spectrometry experiments and high mass accuracy measurements. CL, cardiolipin; PE,
glycerophosphoethanolamines; PG, glycerophosphoglycerols; PI, glycerophosphoinositols; PS, glycerophosphoserines; SM, sphingomyelin. (X:Y/X:Y) denotes
the number of carbons and double bonds in each fatty-acid chain.
‡Mass errors were calculated based on the exact monoisotopic m/z of the deprotonated form of the assigned molecules.
§Molecular formulas of the deprotonated form of the assigned molecules.

Table S3. Prediction results for the 12,480 pixels analyzed in the training set of samples using
the “don’t-know” category, in comparison with pathologic analysis

Pathology

Predicted

Don’t know Agreement, % Overall agreement, %Cancer Epithelium Stroma

Cancer 5,809 114 2 230 97.0 97.2
Epithelium 134 3,566 118 122 96.8
Stroma 25 82 2,630 143 96.1

Cancer Normal Agreement, % Overall agreement, %

Cancer 5,809 116 230 97.0 98.4
Normal 159 6,396 265 99.7

Eberlin et al. www.pnas.org/cgi/content/short/1400274111 7 of 8

≥0.2	  margin	  	  
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19	  hBp://cshprotocols.cshlp.org/content/2008/5/pdb.prot4986	  

•  Lasso	  yields	  sparse	  weights!	  (Manual	  Inspec0on	  Feasible!)	  

•  Many	  correlated	  features	  
–  Lasso	  tends	  to	  focus	  on	  one	  

17#h%p://cshprotocols.cshlp.org/content/2008/5/pdb.prot4986#

•  Lasso%yields%sparse%weights!%
•  Many#correlated#features#

–  Lasso#tends#to#focus#on#one#

of nine gastric-cancer operations in direct comparison with margin
assessment by frozen-section histopathology, and we demonstrate
that this approach could be very valuable for clinical use.

Results
Molecular Imaging of Gastric Tissue. Negative ion mode DESI-MSI
was performed on 62 banked human gastric samples, including
normal and cancerous gastric tissue. For most of the samples
analyzed, evaluation of the 2D DESI-MSI images revealed some
heterogeneity within the sample, with discrete regions within the
samples that presented three main distinct spectral profiles: gas-
tric adenocarcinoma, normal epithelium (mucosa), and normal
stroma (submucosa) tissue, which were later verified by pathologic
evaluation of the same tissue sections using H&E staining (20).
Fig. S1 shows representative negative ion mode DESI mass

spectra for sample GC727, a poorly differentiated gastric ade-
nocarcinoma with areas of cancerous tissue, and an adjacent
normal gastric tissue with regions of both normal epithelial and
adjacent normal stroma tissue. Most of the ions detected in the
mass spectra were identified as small metabolites related to energy
production, free fatty acids, fatty acid dimers, and complex phos-
pholipids. An overall evaluation of the mass-spectral profiles
reveals a higher similarity between the spectra obtained for gastric
cancer and normal epithelial tissue than gastric cancer and stroma
tissue, which is expected given the fact that gastric adenocarcinomas
start from the inner epithelial layer of the stomach. Nevertheless,
strong differences in the relative abundances of various ions were
found within the three distinct regions, which can be clearly seen in
the selected DESI-MS ion images (Fig. 1).

Diagnostic Feature Selection and Identification. The large number of
molecular features obtained from the combination of all pixels
throughout all of the 62 banked samples analyzed makes data in-
terpretation difficult and calls for the use of multivariate statistical
techniques (21–23). Models generated using the Lasso are simpler
and easier to interpret than those from other linear regression
methods, as it yields “sparse” models, that is, models that involve
only a subset of the variables/predictors (24). Using the training set
of samples (28 frozen banked samples from 14 patients), the Lasso
selected a total of 120 m/z values that are important in charac-
terizing all three classes and yielded the lowest cross-validation

errors (Fig. 2 and Table S1). From those 120 m/z values, 44 dif-
ferent m/z values were selected by the classifier as important fea-
tures to characterize gastric cancer whereas 46 m/z values and
30 m/z values were found as important features to characterize
normal epithelium and normal gastric stroma, respectively.
Many of the ions selected as statistically significant by the

Lasso were tentatively identified as biologically relevant mole-
cules (Table S2) using high mass resolution/high mass accuracy
and tandem mass spectrometry analyses of tissue sections. For
example, the species with m/z 723.3, which received a positive
weight by the Lasso for characterizing normal epithelial tissue,
was a doubly charged ion whose accurate mass and isotopic
distribution matched that of the doubly deprotonated form of
the cardiolipin CL(1′-[18:2/18:2],3′-[18:2/18:2]), with a mass error
of +1.93 ppm. CLs are interesting complex phospholipids
(PLs) found almost exclusively in the inner mitochondrial
membrane of cells and are intimately involved in maintaining
mitochondrial functionality, membrane integrity, and ulti-
mately in energy production and metabolism (25). Remarkably,
major abnormalities in CL content such as deficiency of this
mature CL specie have been reported in cancer (25). Other
important peaks that were given positive weight for the nor-
mal epithelial tissue class were identified as phospholipid
(PL) species such as glycerophosphoethanolamine PE(36:1) at
m/z 742.6, glycerophosphoserine PS(36:1) at m/z 788.5, and PS
(38:1) at m/z 816.5, based on accurate mass measurements (mass
errors of less than +1.60 ppm) and tandem MS experiments in
comparison with literature on the fragmentation patterns of
these lipid species (26–28). Note that isomerism of the double
bonds in the fatty-acid (FA) chains of complex lipids compli-
cates precise structural assignment, which is why FA chains
are solely tentatively assigned. Besides PL species, small mol-
ecules related to energy and metabolism, such as m/z 145.2 and
m/z 146.2, which were respectively tentatively assigned as the
amino acids glutamine and glutamate, were selected by the Lasso
as being statistically significant for the epithelial class with
a negative weight, which indicates that a small relative abun-
dance of these peaks in comparison with that detected in other
classes is important for characterizing normal epithelial tissue.
Interestingly, a peak at m/z 312.2 was selected by the Lasso as

Fig. 1. Selected negative ion mode DESI-MS ion images of sample GC727.
Higher relative abundances of the ions atm/z 775,m/z 773,m/z 303,m/z 747,
m/z 797, and m/z 887 were observed in the region of cancer whereas higher
relative abundances of the ions atm/z 788,m/z 723,m/z 812, andm/z 861 are
observed in the region of normal gastric epithelial tissue, and higher relative
abundances of the ions at m/z 737, m/z 818, m/z 215, and m/z 810 are ob-
served in the regions with normal stromal tissue. Other ions, such asm/z 885,
m/z 836, and m/z 281, show similar relative abundances throughout the
cancerous and normal epithelial regions of the tissue sections. Shown is the
optical image of the same tissue section subjected to H&E stain, with regions
of cancer delineated in red, normal gastric epithelial tissue in green, and
normal gastric stromal tissue in blue, as diagnosed by pathologic analysis.

Fig. 2. The Lasso method yields a model with parsimonious sets of features
for discriminating between gastric adenocarcinoma, normal epithelial tissue,
and normal gastric stromal tissue. A mathematical weight for each statisti-
cally informative feature is calculated by the Lasso depending on the im-
portance of the height (or ion abundance) of that peak in characterizing
a certain class. Features that do not contribute to characterizing a class re-
ceive a weight of zero and are disregarded. An ion whose peak height, or
abundance, is important for characterizing a certain class is given a positive
weight whereas ions whose low abundances or absence are important re-
ceive a negative weight. The peak weights given by the Lasso to each of the
selected mass-spectral features are shown in the mass spectra for each m/z
value, with weights for each class displayed in its respective color (epithelium
in green, cancer in red, and stroma in blue), as shown in A. The average mass
spectra for each class for all pixels obtained for the training samples are
shown in its respective color in B.
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Fig. S5. DESI-MSI and Lasso prediction results obtained for gastric-cancer patient A. Selected ion images show a high relative abundance of m/z 333.5 and m/z
775.5, two ions selected by Lasso as statistically significant for characterizing cancer in a large region of the cancer section that was found by pathologic
analysis to be composed of 100% tumor cells, which were infiltrating into adjacent normal epithelial tissue. In both distal and proximal margins, ions that
characterize normal epithelial and stroma tissue, such as m/z 723 and m/z 788, are observed in high relative abundances throughout the entire tissue pieces. In
A, negative ion mode DESI-MS ion images ofm/z 333.5 andm/z 788.6 are shown for cancer section and distal and proximal margins. Lasso prediction results are
shown in B for each sample, with pixels predicted as cancer shown in red, as normal epithelium shown in green, and as normal stroma shown in blue. In C,
optical images of the H&E-stained tissue sections are shown with the regions diagnosed by pathology delineated using the same color representation.
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Extension:	  Local	  Linearity	  

	  
•  Assumes	  probability	  shigs	  along	  straight	  line	  
– Ogen	  not	  true	  

•  Approach:	  cluster	  based	  on	  x	  
– Train	  customized	  model	  for	  each	  cluster	  

20	  

P(y | x,w,b) = ewy
T x−by

ewm
T x−bm

m
∑

47

Table: Test error rates by patient for standard and customized training

Patient 1 2 3 4 5 6 Overall

Standard training 0.29% 4.56% 6.78% 0.00% 13.76% 2.77% 3.58%
Customized training 0.71% 1.89% 0.82% 0.40% 9.43% 0.92% 1.89%

Robert Tibshirani, Stanford University Cancer detection /lasso/ customized training

hBp://statweb.stanford.edu/~6bs/gp/canc.pdf	  



Recap:	  Cancer	  Detec6on	  

•  Seems	  Awesome!	  	  What’s	  the	  catch?	  
– Small	  sample	  size	  

•  Tested	  on	  9	  pa6ents	  
– Machine	  Learning	  only	  part	  of	  the	  solu6on	  

•  Need	  infrastructure	  investment,	  etc.	  
•  Analyze	  the	  scien6fic	  legi6macy	  	  

– Social/Poli6cal/Legal	  
•  If	  there	  is	  mis-‐predic6on,	  who	  is	  at	  fault?	  

21	  

Fig. S5. DESI-MSI and Lasso prediction results obtained for gastric-cancer patient A. Selected ion images show a high relative abundance of m/z 333.5 and m/z
775.5, two ions selected by Lasso as statistically significant for characterizing cancer in a large region of the cancer section that was found by pathologic
analysis to be composed of 100% tumor cells, which were infiltrating into adjacent normal epithelial tissue. In both distal and proximal margins, ions that
characterize normal epithelial and stroma tissue, such as m/z 723 and m/z 788, are observed in high relative abundances throughout the entire tissue pieces. In
A, negative ion mode DESI-MS ion images ofm/z 333.5 andm/z 788.6 are shown for cancer section and distal and proximal margins. Lasso prediction results are
shown in B for each sample, with pixels predicted as cancer shown in red, as normal epithelium shown in green, and as normal stroma shown in blue. In C,
optical images of the H&E-stained tissue sections are shown with the regions diagnosed by pathology delineated using the same color representation.
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Personaliza6on	  via	  twiBer	  

22	  

examining(B"

music(

soccer( Labour(

Biden(

September"2012"



overloaded	  by	  news	  

≥	  1	  million	  news	  ar6cles	  &	  blog	  posts	  generated	  every	  hour*	  

*	  [www.spinn3r.com]	  

“Represen6ng	  Documents	  Through	  Their	  Readers”	  
	  	  	  Proceedings	  of	  the	  ACM	  Conference	  on	  Knowledge	  Discovery	  and	  	  
	  	  	  Data	  Mining	  (2013)	  
	  

	  	  	  	  Khalid	  El-‐Arini,	  Min	  Xu,	  Emily	  Fox,	  Carlos	  Guestrin	  
	  

	  	  	  	  hBps://dl.dropboxusercontent.com/u/16830382/papers/badgepaper-‐kdd2013.pdf	  
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user	  

	  News	  Recommenda6on	  Engine	  

corpus	  

Vector	  representa0on:	  
•  Bag	  of	  words	  
•  LDA	  topics	  
•  etc.	  

24	  



Challenge	  

Most	  common	  representa6ons	  don’t	  
naturally	  line	  up	  with	  user	  interests	  
	  
Fine-‐grained	  representa0ons	  (bag	  of	  words)	  too	  specific	  

High-‐level	  topics	  (e.g.,	  from	  a	  topic	  model)	  
	  -‐	  too	  fuzzy	  and/or	  vague	  
	  -‐	  can	  be	  inconsistent	  over	  0me	  
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Goal	  

Improve	  recommenda6on	  
performance	  through	  a	  
more	  natural	  document	  

representa6on	  

26	  



An	  Opportunity:	  News	  is	  Now	  Social	  

•  In	  2012,	  Guardian	  announced	  more	  readers	  
visit	  site	  via	  Facebook	  than	  via	  Google	  search	  

27	  



badges	  
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Approach	  

Learn	  a	  document	  representa6on	  based	  on	  
how	  readers	  publicly	  describe	  themselves	  

29	  
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Using	  many	  tweets,	  can	  we	  learn	  
that	  someone	  who	  iden6fies	  with	  

music	  
reads	  ar6cles	  with	  these	  words:	  
via	  profile	  badges	  

?	  
31	  



Given:	  training	  set	  of	  tweeted	  news	  ar6cles	  from	  
a	  specific	  period	  of	  6me	  
	  

1. 	  	  Learn	  a	  badge	  dic0onary	  from	  training	  set	  

	  
	  
	  
	  

2. 	  Use	  badge	  dic6onary	  to	  encode	  new	  ar0cles	  
	   	  	  

music	  

badges	  

w
or
ds
	  

3	  million	  ar6cles	  
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Advantages	  

•  Interpretable	  
– Clear	  labels	  
– Correspond	  to	  user	  interests	  

•  Higher-‐level	  than	  words	  
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Advantages	  

•  Interpretable	  
– Clear	  labels	  
– Correspond	  to	  user	  interests	  
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Advantages	  

•  Interpretable	  
– Clear	  labels	  
– Correspond	  to	  user	  interests	  

•  Higher-‐level	  than	  words	  
•  Seman6cally	  consistent	  over	  6me	  

poli0cs	  
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Given:	  training	  set	  of	  tweeted	  news	  ar6cles	  from	  
a	  specific	  period	  of	  6me	  
	  

1. 	  	  Learn	  a	  badge	  dic0onary	  from	  training	  set	  

	  
	  
	  
	  

2. 	  Use	  badge	  dic6onary	  to	  encode	  new	  ar0cles	  
	   	  	  

music	  

badges	  

w
or
ds
	  

3	  million	  ar6cles	  
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Dic6onary	  Learning	  

y Fleetwood	  Mac	  

Nicks	  

love	  

album	  

linux	  

music	  

gig	  

cycling	  ✓

•  Training	  data	  :	  
Bag-‐of-‐words	  

representa6on	  of	  
document	  

Iden6fies	  badges	  
in	  TwiBer	  profile	  

of	  tweeter	  

S = zi, yi( ){ }i=1
N

z

y
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Dic6onary	  Learning	  

•  Training	  Objec6ve:	  

38	  

Bag-‐of-‐words	  
representa6on	  of	  

document	  

Iden6fies	  badges	  
in	  TwiBer	  profile	  

of	  tweeter	  

S = zi, yi( ){ }i=1
N

argmin
B,W

λB B +λW W + yi −BWi
2

i=1

N

∑Given:!training!set!of!tweeted!news!ar.cles!from!
a!specific!period!of!.me!
'

1. ''Learn!a!badge'dic/onary'from!training!set!
!
!
!
!

2. !Use!badge!dic.onary!to!encode'new'
' 'documents!

!

music!

badges!

w
or
ds
!

3'million'ar.cles!in!
our!experiments!

Given:!training!set!of!tweeted!news!ar.cles!from!
a!specific!period!of!.me!
'

!
!
!
!

' ar.cles!

ba
dg
es
!

“Dic0onary”	   “Encoding”	  



•  Not	  convex!	  (because	  of	  BW	  term)	  

•  Convex	  if	  only	  op6mize	  B	  or	  W	  (but	  not	  both)	  

•  Alterna6ng	  Op6miza6on	  (between	  B	  and	  W)	  

•  How	  to	  ini6alize?	  	  	  	  	  	  	  	  	  	  	  	  
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argmin
B,W

λB B +λW W + yi −BWi
2

i=1

N

∑Given:!training!set!of!tweeted!news!ar.cles!from!
a!specific!period!of!.me!
'

1. ''Learn!a!badge'dic/onary'from!training!set!
!
!
!
!

2. !Use!badge!dic.onary!to!encode'new'
' 'documents!

!

music!

badges!

w
or
ds
!

3'million'ar.cles!in!
our!experiments!

Given:!training!set!of!tweeted!news!ar.cles!from!
a!specific!period!of!.me!
'

!
!
!
!

' ar.cles!

ba
dg
es
!

S = zi, yi( ){ }i=1
N

linux	  

music	  

gig	  

cycling	  ✓ z

“Dic0onary”	   “Encoding”	  

Wi =
zi
zi

Ini6alize:	  

Use:	  



•  Suppose	  Badge	  s	  ogen	  co-‐occurs	  with	  Badge	  t	  
–  Bs	  &	  Bt	  are	  correlated	  

•  From	  perspec6ve	  of	  W,	  B’s	  are	  features.	  
–  Lasso	  tends	  to	  focus	  on	  one	  correlated	  feature	  

40	  

argmin
B,W

λB B +λW W + yi −BWi
2

i=1

N

∑

Many	  ar6cles	  might	  be	  about	  Gig,	  Fes6val	  &	  Music	  simultaneously.	  



•  Suppose	  Badge	  s	  ogen	  co-‐occurs	  with	  Badge	  t	  
–  Bs	  &	  Bt	  are	  correlated	  

•  From	  perspec6ve	  of	  W,	  B’s	  are	  features.	  
–  Lasso	  tends	  to	  focus	  on	  one	  correlated	  feature	  

•  Graph	  Guided	  Fused	  Lasso:	  
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argmin
B,W

λB B +λW W +λG ωst
(s,t )∈E (G )
∑

i=1

N

∑ Wis −Wit + yi −BWi
2

i=1

N

∑

argmin
B,W

λB B +λW W + yi −BWi
2

i=1

N

∑

Graph	  G	  of	  related	  Badges	   Co-‐occurance	  Rate	  	  
On	  TwiBer	  Profiles	  



Encoding	  New	  Ar6cles	  

•  Badge	  Dic6onary	  B	  is	  already	  learned	  
	  
•  Given	  a	  new	  document	  j	  with	  word	  vector	  yj	  
– Learn	  Badge	  Encoding	  Wj:	  

42	  

argmin
Wj

λW Wj +λG Wjs −Wjt
(s,t )∈G
∑ + yj −BWj

2



	  
	  
	  
1. 	  Learn	  a	  badge	  dic0onary	  from	  training	  set	  
	  
	  
	  
	  
2. 	  Use	  badge	  dic6onary	  to	  encode	  new	  ar0cles	  
	  

music	  

badges	  

w
or
ds
	  

Recap:	  Badge	  Dic6onary	  Learning	  
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Examining	  B	  

music	  

soccer	   Labour	  

Biden	  
September	  2012	  
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Badges	  Over	  Time	  

September	  2010	  

music	   Biden	  
September	  2012	  
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A	  Spectrum	  of	  Pundits	  

•  Limit	  badges	  to	  progressive	  and	  TCOT	  

•  Predict	  poli6cal	  alignments	  of	  likely	  readers?	  

“top	  conserva6ves	  on	  TwiBer”	  
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more	  conserva6ve	  
•  Took	  all	  ar6cles	  by	  columnist	  
•  Looked	  at	  encoding	  score	  

•  progressive	  vs	  TCOT	  
•  Average	  
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User	  Study	  
•  Which	  representa6on	  best	  captures	  user	  preferences	  
over	  6me?	  

•  Study	  on	  Amazon	  Mechanical	  Turk	  with	  112	  users	  
1.  Show	  users	  random	  20	  ar6cles	  from	  Guardian,	  from	  6me	  

period	  1,	  and	  obtain	  ra6ngs	  
2.  Pick	  random	  representa6on	  	  

•  bag	  of	  words,	  high	  level	  topic,	  Badges	  

3.  Represent	  user	  preferences	  as	  mean	  of	  liked	  ar6cles	  
4.  GOTO	  next	  6me	  period	  

•  Recommend	  according	  to	  preferences	  
•  GOTO	  STEP	  2	  
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User	  Study	  

tf−idf LDA badges
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High	  Level	  Topic	  Bag	  of	  Words	   Badges	  



Recap:	  Personaliza6on	  via	  twiBer	  

•  Sparse	  Dic6onary	  Learning	  	  
– Learn	  a	  new	  representa6on	  of	  ar6cles	  
– Encode	  ar6cles	  using	  dic6onary	  
– BeBer	  than	  Bag	  of	  Words	  
– BeBer	  than	  High	  Level	  Topics	  

•  Based	  on	  social	  data	  
– Badges	  on	  twiBer	  profile	  &	  twee6ng	  
– Seman6cs	  not	  directly	  evident	  from	  text	  alone	  
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Next	  Week	  

•  Sequence	  Predic6on	  

•  Hidden	  Markov	  Models	  

•  Condi6onal	  Random	  Fields	  

•  Homework	  1	  due	  Tues	  1/20	  @5pm	  	  
– via	  Moodle	  
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