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Proximal mapping

proximal mapping (or proximal operator) of a convex function A is

1
prox,(z) = argmin <h(u) + 2—t||u - x||g>
u

Examples
h(z) =0: prox(z) ==
h(z) = Ic(z) (indicator function of C) : prox is projection on C

prox(z) = Po(z) = argmin ||u — z||3
ueC

h(z) = ||z|l1 : prox,, is the soft thresholding (shrinkage) function

€Tr; — t €Z; 2 t
prox,(z); = S¢(x;) = (Ja;| — t)4sign(z;) =<0 || <t
i+t x; < —t
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Gradient Descent (Convergence)

Gradient Descent:
zp1 = 2k — NV f(zk)
Definition. f is S-smooth when the gradient mapping V f is
[B-Lipschitz, i.e., Vz,y € R"
IV () = VI < lle g
Let f be a convex and f-smooth function on R™. Then for any
x,y € R™ one has

(@) - f(y) < Vi) @ —y) - ;Buww VWP

Assume that f is a continuously differentiable 5-smooth and convezr on

R™. Then Gradient Descent with n = % converges with O(1/t), i.e.,

N 26“3}1 — l‘*H2
T _ < -0 -




Gradient Descent (Analysis)

Consider the following optimization problem,
minimize g(x)

At iteration x; we use a quadratic upper bound on g,

Pt = angmin. g(o) + (Vo(o), 2 = 2x) + 5w = o

We can equivalently write this as the quadratic optimization

.1 2
s = avgmin 3 o~ (i ~ 7V ()]
where n = % The yields the Gradient Descent algorithm:
The1 = T — NV G(Tk)
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The basic Gradient Descent has two disadvantages: 1) it can’t be
applied to optimize nondifferentiable functions, 2) slow
convergence rate

Approaches to address these issues:
methods with improved convergence

accelerated gradient method
quasi-Newton methods
conjugate gradient method

methods for nondifferentiable or constrained problems

proximal gradient method
subgradient method
smoothing methods
cutting-plane methods
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Nesterov’s Accelerated Gradient Descent

Consider the following sequences:

1+, /1+4X2_,
s Ao

= ) = 07
2
R P
TN
Nesterov’s Accelerated Gradient Descent steps:
1
Yst1 = xs— -Vf(zs), y1 =,

B
Ts+1 = (1 - '78) Ys+1 + VsYs



Nesterov’s Accelerated Gradient Descent

Intuitively, Nesterov’s Accelerated Gradient Descent performs a
simple step of gradient descent to go from zg to ysy1:

Ys+1 = Ts— ;Vf (l’s)

and then it “slides” a little bit further than ysy; in the direction
given by the previous point ys:

Topr = (1 —7s) Yst1 +VsYs

Rate of convergence is O(1/t?) after t steps:
Theorem (Nesterov 1983)

Let f be a convex and [3-smooth function, then Nesterov’s Accelerated
Gradient Descent satisfies:

L 2Bl — "]

flw) - £(") >




Composite Convex Optimization Problems

We consider composite optimization problems

minimize f(z) == g(x) + h(x),

where g and h are convex but A is non-smooth.
Typically, g is a data-fitting term, and h is a regularizer,

The most well-studied example is ¢1-regularized least squares,

minimize ||Az — b||* + \||z||1.
x
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Proximal-Gradient Method

Consider the following composite optimization problem,

minimize g(z) + h(z)

At iteration x; we use a quadratic upper bound on g,

Piss = axgmin g(ay) + (Vo(a).w — a1 + 5z — a2+ h(x)

We can equivalently write this as the proximal quadratic
optimization (n = %)

L1
g1 = argmin. o ||z — (v = nVg(ar))|* + nh(x)

The solution is the proximal-gradient algorithm:

Tgy1 = prox, [vx — nVg(wy)]
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[terative Soft-Thresholding (ISTA)

Consider lasso criterion
1
minimize -y — Az|? + t|z |
Prox function is now

prox(z) = Si(x) = (|| — 1) ysign(x).

where S;(z) is the soft-thresholding function discussed earlier:

11/13



FISTA

Let us now combine Nesterovs Accelerated Gradient Descentn with

ISTA, i.e.,
L+ /1+40 Y
Xo=0, A\ = , and 7, = k.
2 Ak+1

Let 1 = y1 an arbitrary initial point, and

Yet1 = prox,[zy —nVg(ay)]
T = (1= Y)Yk+1 + WYk

The convergence rate of FISTA is similar to Nesterovs Accelerated
Gradient Descent: O(1/k?)
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