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Proximal mapping

proximal mapping (or proximal operator) of a convex function h is

proxt(x) = argmin
u

(
h(u) +

1

2t
‖u− x‖22

)
Examples

h(x) = 0 : prox(x) = x
h(x) = IC(x) (indicator function of C) : prox is projection on C

prox(x) = PC(x) = argmin
u∈C

‖u− x‖22

h(x) = ‖x‖1 : proxh is the soft thresholding (shrinkage) function

proxt(x)i = St(xi) = (|xi| − t)+sign(xi) =


xi − t xi ≥ t
0 |xi| ≤ t
xi + t xi ≤ −t
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Gradient Descent (Convergence)

Gradient Descent:
xk+1 = xk − η∇f(xk)

Definition. f is β-smooth when the gradient mapping ∇f is
β-Lipschitz, i.e., ∀x, y ∈ Rn

‖∇f(x)−∇f(y)‖ ≤ β‖x− y‖
Let f be a convex and β-smooth function on Rn. Then for any
x, y ∈ Rn, one has

f(x)− f(y) ≤ ∇f(x)>(x− y)− 1

2β
‖∇f(x)−∇f(y)‖2

Theorem

Assume that f is a continuously differentiable β-smooth and convex on
Rn. Then Gradient Descent with η = 1

β converges with O(1/t), i.e.,

f(xk)− f∗ ≤
2β‖x1 − x∗‖2
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Gradient Descent (Analysis)

Consider the following optimization problem,

minimize
x

g(x)

At iteration xk we use a quadratic upper bound on g,

xk+1 = argmin
x

g(xk) + 〈∇g(xk), x− xk〉+
β

2
‖x− xk‖2

We can equivalently write this as the quadratic optimization

xk+1 = argmin
x

1

2
‖x− (xk − η∇g(xk))‖2

where η = 1
β . The yields the Gradient Descent algorithm:

xk+1 = xk − η∇g(xk)
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First-order

The basic Gradient Descent has two disadvantages: 1) it can’t be
applied to optimize nondifferentiable functions, 2) slow
convergence rate

Approaches to address these issues:
methods with improved convergence

accelerated gradient method
quasi-Newton methods
conjugate gradient method

methods for nondifferentiable or constrained problems

proximal gradient method
subgradient method
smoothing methods
cutting-plane methods
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Nesterov’s Accelerated Gradient Descent

Consider the following sequences:

λs =
1 +

√
1 + 4λ2s−1

2
, λ0 = 0,

γs =
1− λs
λs + 1

Nesterov’s Accelerated Gradient Descent steps:

ys+1 = xs −
1

β
∇f (xs) , y1 = x1,

xs+1 = (1− γs) ys+1 + γsys
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Nesterov’s Accelerated Gradient Descent

Intuitively, Nesterov’s Accelerated Gradient Descent performs a
simple step of gradient descent to go from xs to ys+1:

ys+1 = xs −
1

β
∇f (xs)

and then it “slides” a little bit further than ys+1 in the direction
given by the previous point ys:

xs+1 = (1− γs) ys+1 + γsys

Rate of convergence is O(1/t2) after t steps:

Theorem (Nesterov 1983)

Let f be a convex and β-smooth function, then Nesterov’s Accelerated
Gradient Descent satisfies:

f(yt)− f(x∗) ≤ 2β‖x1 − x∗‖2

t2
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Composite Convex Optimization Problems

We consider composite optimization problems

minimize
x

f(x) := g(x) + h(x),

where g and h are convex but h is non-smooth.

Typically, g is a data-fitting term, and h is a regularizer,

The most well-studied example is `1-regularized least squares,

minimize
x

‖Ax− b‖2 + λ‖x‖1.
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Proximal-Gradient Method

Consider the following composite optimization problem,

minimize
x

g(x) + h(x)

At iteration xk we use a quadratic upper bound on g,

xk+1 = argmin
x

g(xk) + 〈∇g(xk), x− xk〉+
β

2
‖x− xk‖2 + h(x)

We can equivalently write this as the proximal quadratic
optimization (η = 1

β )

xk+1 = argmin
x

1

2
‖x− (xk − η∇g(xk))‖2 + ηh(x)

The solution is the proximal-gradient algorithm:

xk+1 = proxη[xk − η∇g(xk)]
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Iterative Soft-Thresholding (ISTA)

Consider lasso criterion

minimize
1

2
‖y −Ax‖2 + t‖x‖1

Prox function is now

proxt(x) = St(x) = (|x| − t)+sign(x).

where St(x) is the soft-thresholding function discussed earlier:
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FISTA

Let us now combine Nesterovs Accelerated Gradient Descentn with
ISTA, i.e.,

λ0 = 0, λk =
1 +

√
1 + 4λ2k−1

2
, and γk =

1− λk
λk+1

.

Let x1 = y1 an arbitrary initial point, and

yk+1 = proxη[xk − η∇g(xk)]

xk+1 = (1− γk)yk+1 + γkyk.

The convergence rate of FISTA is similar to Nesterovs Accelerated
Gradient Descent: O(1/k2)
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