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Outline of Part I: Basic Probability

Definitions

Random variables: pdf, expectation, variance, typical distributions

Bounds: Markov, Chebyshev and Chernoff

Multi-dimensional random variables

Maximum likelihood estimation

Central limit theorem
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Outline of Part II: Basic Inferential Statistics

Hypothesis Testing, Confidence intervals

t-Distribution, t-Test, Paired t-Test

Wilcoxon Signed-Rank Test
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Elements of Probability

Definition:

Sample Space Ω: Set of all possible outcomes

Event Space F : A family of subsets of Ω

Probability Measure: Function P : F → R with properties:
1 P(A) ≥ 0 (∀A ∈ F)
2 P(Ω) = 1
3 Ai ’s disjoint, then P(

⋃
i Ai ) =

∑
i P(Ai )
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Conditional Probability and Independence

Conditional probability:

For events A,B:

P(A|B) =
P(A

⋂
B)

P(B)

Intuitively means “probability of A when B is known”

Independence

A, B independent if P(A|B) = P(A) or equivalently:
P(A

⋂
B) = P(A)P(B)

Beware of intuition: roll two dies (xa and xb), outcomes {xa = 2} and
{xa + xb = k} are independent if k = 7, but not otherwise!
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Basic laws and bounds

Union bound: since P(A ∪ B) = P(A) + P(B)− P(A ∩ B), we have

P(
⋃
i

Ai ) ≤
∑
i

P(Ai )

Law of total probability: if
⋃

i Ai = Ω, then

P(B) =
∑
i

P(Ai ∩ B) =
∑
i

P(Ai )P(B|Ai )

Chain rule: P(A1,A2, . . . ,AN) =
P(A1)P(A2|A1)P(A3|A1,A2) · · ·P(AN |A1, . . . ,AN−1)

Bayes rule: P(A|B) = P(B|A)P(A)
P(B)
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Random Variables and Distributions

A random variable X is a function X : Ω→ R
Example: Number of heads in 20 tosses of a coin

Probabilities of events associated with random variables defined based
on the original probability function. e.g.,
P(X = k) = P({ω ∈ Ω|X (ω) = k})
Cumulative Distribution Function (CDF) FX : R→ [0, 1]:
FX (x) = P(X ≤ x)

(X discrete) Probability Mass Function (pmf): pX (x) = P(X = x)

(X continuous) Probability Density Function (pdf):
fX (x) = dFX (x)/dx
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Properties of Distribution Functions

CDF:

0 ≤ FX (x) ≤ 1
FX monotone increasing, with limx→−∞FX (x) = 0, limx→∞FX (x) = 1

pmf:

0 ≤ pX (x) ≤ 1∑
x pX (x) = 1∑
x∈A pX (x) = pX (A)

pdf:

fX (x) ≥ 0´∞
−∞ fX (x)dx = 1´
x∈A fX (x)dx = P(X ∈ A)
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Expectation and Variance

Assume random variable X has pdf fX (x), and g : R→ R. Then

E [g(X )] =

ˆ ∞
−∞

g(x)fX (x)dx

for discrete X , E [g(X )] =
∑

x g(x)pX (x)

Expectation is linear:

for any constant a ∈ R, E [a] = a
E [ag(X )] = aE [g(X )]
E [g(X ) + h(X )] = E [g(X )] + E [h(X )]

Var [X ] = E [(X − E [X ])2] = E [X 2]− E [X ]2
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Conditional Expectation

Conditional Expectation (Discrete)

E [g(X ,Y )|Y = a] =
∑
x

g(x , a)pX |Y=a(x)

(similar for continuous random variables)

Iterated expectation:

E [g(X ,Y )] = Ea[E [g(X ,Y )|Y = a]]
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Some Common Random Variables

X ∼ Bernoulli(p) (0 ≤ p ≤ 1): pX (x) =

{
p x=1,

1− p x=0.

X ∼ Geometric(p) (0 ≤ p ≤ 1): pX (x) = p(1− p)x−1

X ∼ Uniform(a, b) (a < b): fX (x) =

{
1

b−a a ≤ x ≤ b,

0 otherwise.

X ∼ Normal(µ, σ2): fX (x) = 1√
2πσ

e−
1

2σ2 (x−µ)2

X ∼ Binomial(n, p) (n > 0, 0 ≤ p ≤ 1):

pX (x) =

(
n
x

)
px(1− p)n−x
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Some Useful Inequalities

Markov’s Inequality: X random variable, and a > 0. Then:

P(|X | ≥ a) ≤ E [|X |]
a

Chebyshev’s Inequality: If E [X ] = µ, Var(X ) = σ2, k > 0, then:

Pr(|X − µ| ≥ kσ) ≤ 1

k2

Chernoff bound: Let X1, . . . ,Xn independent Bernoulli with
P(Xi = 1) = pi . Denoting µ = E [

∑n
i=1 Xi ] =

∑n
i=1 pi ,

P(
n∑

i=1

Xi ≥ (1 + δ)µ) ≤
(

eδ

(1 + δ)1+δ

)µ
for any δ. Multiple variants of Chernoff-type bounds exist, which can
be useful in different settings
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Multiple Random Variables and Joint Distributions

X1, . . . ,Xn random variables

Joint CDF: FX1,...,Xn(x1, . . . , xn) = P(X1 ≤ x1, . . . ,Xn ≤ xn)

Joint pdf: fX1,...,Xn(x1, . . . , xn) =
∂nFX1,...,Xn

(x1,...,xn)

∂x1...∂xn

Marginalization: fX1(x1) =
´∞
−∞ . . .

´∞
−∞ fX1,...,Xn(x1, . . . , xn)dx2 . . . dxn

Conditioning: fX1|X2,...,Xn
(x1|x2, . . . , xn) =

fX1,...,Xn
(x1,...,xn)

fX2,...,Xn
(x2,...,xn)

Chain Rule: f (x1, . . . , xn) = f (x1)
∏n

i=2 f (xi |x1, . . . , xi−1)

Independence: f (x1, . . . , xn) =
∏n

i=1 f (xi ).
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Random Vectors

X1, . . . ,Xn random variables. X = [X1X2 . . .Xn]T random vector.

If g : Rn → R, then
E [g(X )] =

´
Rn g(x1, . . . , xn)fX1,...,Xn(x1, . . . , xn)dx1 . . . dxn

if g : Rn → Rm, g = [g1 . . . gm]T , then

E [g(X )] =
[
E [g1(X )] . . .E [gm(X )]

]T
Covariance Matrix: Σ = Cov(X ) = E

[
(X − E [X ])(X − E [X ])T

]
Properties of Covariance Matrix:

Σij = Cov [Xi ,Xj ] = E
[
(Xi − E [Xi ])(Xj − E [Xj ])

]
Σ symmetric, positive semidefinite
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Multivariate Gaussian Distribution

µ ∈ Rn, Σ ∈ Rn×n symmetric, positive semidefinite
X ∼ N (µ,Σ) n-dimensional Gaussian distribution:

fX (x) =
1

(2π)n/2det(Σ)1/2
exp

(
− 1

2
(x − µ)TΣ−1(x − µ)

)
E [X ] = µ

Cov(X ) = Σ
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Parameter Estimation: Maximum Likelihood

Parametrized distribution fX (x ; θ) with parameter(s) θ unknown.

IID samples x1, . . . , xn observed.

Goal: Estimate θ

(Ideally) MAP: θ̂ = argmaxθ{fΘ|X (θ|X = (x1, . . . , xn))}
(In practice) MLE: θ̂ = argmaxθ{fX |θ(x1, . . . , xn; θ)}

16 / 27



MLE Example

X ∼ Gaussian(µ, σ2). θ = (µ, σ2) unknown. Samples x1, . . . , xn. Then:

f (x1, . . . , xn;µ, σ2) = (
1

2πσ2
)n/2 exp

(
−
∑n

i=1(xi − µ)2

2σ2

)
Setting: ∂ log f

∂µ = 0 and ∂ log f
∂σ = 0

Gives:

µ̂MLE =

∑n
i=1 xi
n

, σ̂2
MLE =

∑n
i=1(xi − µ̂)2

n
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Central limit theorem

Central limit theorem: Let X1,X2, . . . ,Xn be iid with finite mean µ
and finite variance σ2, then the random variable Y = 1

n

∑n
i=1 Xi is

approximately Gaussian with mean µ and variance σ2

n

Approximation becomes better as n grows

Law of large numbers as a corollary

18 / 27



Confidence intervals

Normal Distribution:

Example: 1.96 is the approximate value of the 97.5 percentile point of
the normal distribution. So, we are 95% confident that a sample from
a normal distribution lies within [−1.96σ,+1.96σ].
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Hypothesis Testing

The goal of hypothesis testing is generally to rule out chance as a plausible
explanation for the results.

Example: efficacy test for a new drug

A sample is selected from the population and the treatment is applied
and the results are measured.
If the results for the individuals in the sample are noticeably different
from the results for the individuals in the original population, we have
strong evidence that the treatment has an effect.
Otherwise, we can not rule out the possibility that the difference
between the sample and the population is simply caused by a sampling
error.

20 / 27



Hypothesis Testing

Null Hypothesis (H0) A maintained hypothesis that is held to be true
unless sufficient evidence to the contrary is presented.
importance.

Alternative Hypothesis (H1) A hypothesis that is held to be true when the
null hypothesis is rejected.

Significance Level (α) The probability of rejecting a true null hypothesis.

p-value The probability of obtaining the observed sample results
assuming the null hypothesis is actually true.

Conclusion If the p-value is equal or smaller than the significance level
(α), it suggests that the observed data are inconsistent with
the assumption that the null hypothesis is true, and thus
that hypothesis must be rejected and the alternative
hypothesis is accepted as true.
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Type I / Type II errors

True state of null hypothesis

Statistical decision H0 true H0 false

Reject H0
Type I error Correct

α 1− β

Don’t reject H0
Correct Type II error
1− α β

Type I error (false positive)

P(Type I error) = α

Type II error(false negative)

P(Type II error) = β
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t-distribution (Student’s distribution)

Suppose Z has the standard normal distribution, V has the χ2

distribution with n degrees of freedom, and that Z and V are
independent. Then

T =
Z√
V /n

has a t-distribution with n degrees of freedom.

As the degrees of freedom increase, the t-distribution approaches the
normal distribution, and is equal to it when n =∞.
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t-Test

A t-test is any statistical hypothesis test in which the test statistic
follows a Student’s t distribution if the null hypothesis is supported.

One-Sample t-Test:

Define Null and Alternative Hypotheses
Choose α
Calculate degrees of freedom
State the decision rule
Calculate test statistic
State the conclusion

Paired t-Test (dependent samples):

Used when comparing the performance of two models/methods
Calculate the difference score for each pairing (loss on each test point)
run a one-sample t-test
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Wilcoxon Signed-Rank Test

1 It can be used as an alternative to the paired t-test
2 Compute the difference for each data pair, drop zeros from the list
3 Order the absolute differences (ignoring signs) and rank them (replace

tied values with the average of ranks)
4 The signed-rank statistic is S = the sum of the ranks for the pairs

with a positive difference. Compute S for this data.

Mean(S) = n(n + 1)/4 SD(S) =

√√√√ n∑
i=1

R2
i /4,

where n is the number of non-zero differences and
∑n

i=1 R
2
i is the

sum of the squares of all the ranks.
5 If n is not too small (and no excessive number of ties), then

Z =
S −Mean(S)

SD(S)
=

S − n(n + 1)/4√∑n
i=1 R

2
i /4

should be approximately normal.
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Example of Wilcoxon Signed-Rank Test

A psychologist wants to test the hypothesis that alcohol consumption
favors Boundary extension (the tendency to remember scenes as if they
included information beyond the boundaries).

Example

Alc=[6/10 4/10 5/10 6/10 3/10 3/10 6/10 7/10 8/10 2/10];

NoAlc=[1/10 3/10 3/10 6/10 3/10 2/10 5/10 6/10 6/10 3/10];

[p,h,stats]= signrank(Alc , NoAlc);

This Matlab code outputs h =1 and p =0.0391. Hence, the Wilcoxon
signed rank test indicates that we can reject the null hypothesis at level
0.05 of significance: alcohol consumption affects boundary extension
occurances.
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