
Machine Learning & Data Mining Caltech CS/CNS/EE 155
Practice Questions March 11th, 2015

1 Equivalence of Matrix Norm Definitions

(The purpose of this question is to improve your comfort in manipulating matrix algebra.)

The squared Frobenious norm has two equivalent definitions:

‖X‖2F = trace
(
XTX

)
, and ‖X‖2F =

∑
d

σ2
d, (1)

where σd denotes the d-th singular value of X , i.e., σd forms the diagonal of Σ in the SVD of X = UΣV T .
Similarly, the trace norm has two equivalent definitions:

‖X‖∗ = trace
(√

XTX
)
, and ‖X‖∗ =

∑
d

σd, (2)

where for any symmetric square matrix A, if B =
√
A, then BB = A.

Question: Prove that the two expressions in (1) are equivalent, and prove that the two expressions in
(2) are equivalent. You can assume that X is a square matrix for convenience.

Solution. We will leverage the SVD of X = UΣV T . To show (1), we see that

trace
(
XTX

)
= trace

(
V ΣUTUΣV T

)
(3)

= trace
(
V ΣΣV T

)
(4)

= trace
(
V Σ2V T

)
(5)

= trace
(
Σ2V TV

)
(6)

= trace
(
Σ2
)

(7)

=
∑
d

σ2
d, (8)

where (1) follows from the fact that U is orthogonal and thus UTU = I , (6) follows from the rotational
invarance of the trace operator: trace(ABC) = trace(BCA) = trace(CAB), and (7) follows from the
fact that V is orthogonal and thus V TV = I .

To show (2), we see that

trace
(√

XTX
)

= trace
(√

V ΣUTUΣV T
)

(9)

= trace
(√

Σ2
)

(10)

= trace (Σ) (11)

=
∑
d

σd, (12)

where (10) follows from the same logic as (4)-(7).

1

Machine Learning & Data Mining Caltech CS/CNS/EE 155
Practice Questions March 11th, 2015

2 Properties of Bootstrap Sampling

(The purpose of this question is to improve your comfort in manipulating probability concepts.)

Let S = {(xi, yi)}i = 1N denote a training set of size N . In this question, we will analyze the properties
of a single bootstrapped dataset of S. Recall that Bootstrapping is the process of creating a new dataset S′

of size N where each entry in S′ is sampled uniformly from S (with replacement). Procedurally, this means

• Initialize S′ ← ∅

• For j = 1, . . . , N

– sample (x′j , y
′
j) by sampling uniformly from S (and independently of other samples)

– add (x′j , y
′
j) to S′

• Return S′

This means that some entries in S will appear multiple times in S′, and some entries won’t appear at all.
For a specific (x, y) ∈ S, what is the probability that (x, y) will appear at least once S′.

Question: What does this probability converge to in the limit asN increases? You can assume that every
(x, y) ∈ S is unique (there are no duplicates in S).

Solution. Let P ((x, y) ∈ S′) denote the probability that (x, y) appears at least once in S′. Then it suffices
to compute P ((x, y) /∈ S′) = 1− P ((x, y) ∈ S′). We can write P ((x, y) /∈ S′) as

P ((x, y) /∈ S′) = P
(
∀(x′j , y′j) ∈ S′ : (x, y) 6= (x′j , y

′
j)
)

(13)

=

N∏
j=1

P ((x, y) 6= (x′j , y
′
j)) (14)

=

N∏
j=1

(
1− 1

N

)
(15)

=

(
1− 1

N

)N
, (16)

where (14) follows from the independence of sampling each (x′j , y
′
j), and (15) is simply using the definition

of uniform distribution. Thus we can see that the probability of (x, y) appearing at least once in S′ is

P ((x, y) ∈ S′) = 1− P ((x, y) /∈ S′) = 1−
(

1− 1

N

)N
.

In the limit as N increases, we can solve:

c ≡ lim
N→∞

log

((
1− 1

N

)N)
, (17)

after which we know that:

lim
N→∞

1−
(

1− 1

N

)N
= 1− ec. (18)

2

Machine Learning & Data Mining Caltech CS/CNS/EE 155
Practice Questions March 11th, 2015

We will use L’Hospital’s rule1 to calculate (17):

lim
N→∞

log

((
1− 1

N

)N)
= lim
N→∞

N log

(
1− 1

N

)
= lim
N→∞

log
(
1− 1

N

)
1
N

= lim
N→∞

1
1− 1

N

1
N2

− 1
N2

(19)

= lim
N→∞

− 1

1− 1
N

= −1, (20)

where (19) follows from applying L’Hospital’s rule and the chain rule when differentiating log(1 − 1/N).
Thus we see that

lim
N→∞

P ((x, y) ∈ S′) = 1− 1

e
.

1http://en.wikipedia.org/wiki/L%27H%C3%B4pital%27s_rule

3

http://en.wikipedia.org/wiki/L%27H%C3%B4pital%27s_rule

Machine Learning & Data Mining Caltech CS/CNS/EE 155
Practice Questions March 11th, 2015

3 Bias-Variance Decomposition

(The purpose of this question is to improve your comfort with manipulating probability concepts and loss
functions.)

Let fS denote a regression model2 whose parameters are trained using training set S. Then if we treat
the training set S as a random variable (i.e., sampled from the true test distribution), then fS is also a
random variable.

For any test data point x with true label y, we can write the expected squared loss of fS as

ES

[
(fS(x)− y)

2
]
, (21)

where the expectation is taken over the randomness of the training set S.
Question #1: Derive the bias-variance decomposition of (21):

ES

[
(fS(x)− y)

2
]

= ES

[(
fS(x)− f̄(x)

)2]
+ ES

[(
f̄(x)− y

)2]
, (22)

where f̄ denotes the expectation of fS over the randomness of S:

f̄(x) = ES [fS(x)] . (23)

Question #2: Why are the two terms in the RHS of (22) referred to as the variance and bias of fS(x),
respectively?

Solution. The first term in the RHS of (22) is called the variance of fS(x) because it measures the variance
of the distribution of fS(x), and actually does not depend on the true label y at all. The second term in the
RHS of (22) is called the bias of fS(x) because it measures the bias of the distribution of fS(x) relative to the
true label y. In other words, if the bias term were 0, then the distribution of fS(x) could be interpreted as
being “centered” around the true label y.

The derivation is as follows:

ES

[
(fS(x)− y)

2
]

= ES
[
fS(x)2 − 2yfS(x) + y2

]
= ES

[
fS(x)2

]
− 2yES [fS(x)] + y2 (24)

= ES
[
fS(x)2

]
− 2yf̄(x) + y2 (25)

= ES
[
fS(x)2

]
− 2yf̄(x) + y2 + 2f̄(x)2 − 2f̄(x)2 (26)

= ES
[
fS(x)2

]
− 2yf̄(x) + y2 + 2f̄(x)− 2ES [fS(x)] f̄(x) (27)

= ES
[
fS(x)2 − 2fS(x)f̄(x) + f̄(x)2

]
+ ES

[
f̄(x)2 − 2yf̄(x) + y2

]
(28)

= ES

[(
fS(x)− f̄(x)

)2]
+ ES

[(
f̄(x)− y

)2]
.

(24) follows from linearity of expectation. (25) follows from applying (23). (26) follows from just adding
and substracting 2f̄(x)2 (note that f̄(x) is a deterministic constant given x). (27) follows from applying (23).
(28) follows from linearity of expectation and re-arranging terms.

2For any input x, fS(x) outputs a scalar real value.

4

Machine Learning & Data Mining Caltech CS/CNS/EE 155
Practice Questions March 11th, 2015

4 Multiclass SVM

(The purpose of this question is to improve your comfort in reasoning about constraints in machine learning
optimization problems.)

Consider the multiclass SVM model that makes predictions on input x ∈ <D via:

h(x|w) = argmaxy∈{1,...,K} w
T
y x,

where the model is defined as:

w =


w1

w2

...
wK

 ∈ <DK ,
for each model sub-vector wk ∈ <D.

The multiclass SVM objective over a training set S = {(xi, yi)}Ni=1 can be described as:

argminw,ξ
1

2
‖w‖2 +

C

N

N∑
i=1

ξi (29)

s.t.

∀i,∀y′ ∈ {1, . . . ,K} : wTyixi − w
T
y′xi ≥ 1[yi 6=y′] − ξi (30)

Note that C ≥ 0 is the hyperparameter that trade-off off between regularization and training loss.
Question: For a single training data point (xi, yi), compute the stochastic (sub-)gradient of w by differ-

entiating:

argminw,ξ
1

2N
‖w‖2 +

C

N
ξi (31)

s.t.

∀y′ ∈ {1, . . . ,K} : wTyixi − w
T
y′xi ≥ 1[yi 6=y′] − ξi (32)

It will be convenient to use the following equivalent definition of ξi:

ξi = max
y′∈{1,...,K}

{
1[yi 6=y′] −

(
wTyixi − w

T
y′xi

)}
. (33)

Also, assume for simplicity that exactly one y′ is maximal in (33).

Solution. We can write the gradient w.r.t. w of (31) as:

∇w =
1

N
w +

C

N

∂ξi
∂w

.

Let ŷ denote the y′ ∈ {1, . . . ,K} that maximizes the definition in (33) for the current value of w. Then we
can simplify the definition of ξi as:

ξi = 1[yi 6=ŷ] −
(
wTyixi − w

T
ŷ xi
)
, (34)

5

Machine Learning & Data Mining Caltech CS/CNS/EE 155
Practice Questions March 11th, 2015

which implies that ∂ξi/∂w is only potentially non-zero in the sub-vectors corresponding to wyi and wŷ .3

In the case where ŷ = yi (i.e., the current model w predicts the correct ŷ = yi with sufficiently large
margin), then (34) implies that ξi = 0 and that

∂ξi
∂w

= 0.

In the case where ŷ 6= yi, then (34) implies that ξi > 0 and that for each sub-vector wk:

∂ξi
∂wk

=

 xi if k = ŷ
−xi if k = yi
0 otherwise

.

Note that this derivation extends to general structured SVMs – it just requires an algorithm to compute ŷ
since that could take exponential time via exhaustive search.

3For general structured prediction, finding the ŷ that maximizes (34) requires us to do something beyond exhaustive enumeration.
For instance, for sequence labeling problems ŷ can be computed via dynamic programming approaches such as Viterbi.

6

Machine Learning & Data Mining Caltech CS/CNS/EE 155
Practice Questions March 11th, 2015

5 Featurized Latent Factor Models

(The purpose of this question is to improve your comfort in working with more complicated latent-factor
models that activate more than one pair of latent factors for each data point.)

Consider a featurized version of collaborative filtering, where we have user features z ∈ <F and item
features x ∈ <D. We model the rating a user with features z would give to an item with features x as

y ≈ (Uz)T (V x),

where U ∈ <K×F and V ∈ <K×D are projection matrices that map user and item features into a K-
dimensional latent feature space.4

Given training data, our goal is to learn U and V by minimizing the regularized training loss:

argminU,V
λ

2

(
‖U‖2F + ‖V ‖2F

)
+

1

2

∑
(z,x,y)∈S

(
y − (Uz)T (V x)

)2
. (35)

Question: Derive the gradient for U .

Solution. The answer is:

∂U = λU −
∑

(z,x,y)∈S

[(
y − (Uz)T (V x)

)
V xzT

]
.

The answer can be derived by applying the chain rule to:

∂

∂U

(
y − (Uz)T (V x)

)2
= 2

(
y − (Uz)T (V x)

) ∂

∂U

[
−(Uz)T (V x)

]
.

We next observe that:
(Uz)T (V x) = trace

(
zTUTV x

)
= trace

(
UTV xzT

)
,

and use the following matrix derivative identity:

∂

∂U
trace

(
UTM

)
= M

to achieve the result.

4This setting reduces to conventional feature-less collaborative filtering by assuming that each z and x have exactly one entry 1
and the rest 0.

7

Machine Learning & Data Mining Caltech CS/CNS/EE 155
Practice Questions March 11th, 2015

6 Tensor Latent Factor Models

(The purpose of this question is to improve your comfort in working with higher order models.)

Tensor(Factoriza:on(

Lecture(13:(Latent(Factor(Models(&(Non9Nega:ve(Matrix(Factoriza:on(50(

Y&

U&

W&×(=&
(Missing(Values)(

N(

M(

Q(

M(

K(

Q(

N(V&
K(

Figure 1: Illustration of 3-way tensor latent factor model.

Consider a three-way D-dimensional latent factor model as depicted in Figure 1:

yabc ≈ 〈ua, vb, wc〉 =

K∑
k=1

uakvbkwck,

where 〈a, b, c〉 denotes a 3-way dot product, and each latent factor ua, vb, wc is a D-dimensional vector that
we will estimate from data. Let S = {(a, b, c)} denote a set of training indices where we’ve observed Yabc.
Our goal is to learn the model parameters A, B, and C to minimize the regularized training loss over a
training set S:

argminU,V,W
λ

2

(
‖U‖2F + ‖V ‖2F + ‖W‖2F

)
+

1

2

∑
(a,b,c)∈S

(Yabc − 〈ua, vb, wc〉)2 . (36)

where ua, vb, and wc denote the corresponding columns of U ∈ <K×M , V ∈ <K×N , and W ∈ <K×Q,
respectively.

Question: Compute the gradient w.r.t. ua of (36).
Hint: use the Hadamard product5 in representing your solution:

vb ◦ wc =


vb1wc1
vb2wc2

...
vbKwcK

 ∈ <K .

Solution. Define Sa = {(a′, b′, c′) ∈ S : a′ = a} as the training indices with first index being a. Focusing
just on the ua component, we can rewrite (36) as

argminua

λ

2
‖ua‖2 +

1

2

∑
(a,b,c)∈Sa

(
Yabc − uTa (vb ◦ wc)

)2
. (37)

5http://en.wikipedia.org/wiki/Hadamard_product_%28matrices%29

8

http://en.wikipedia.org/wiki/Hadamard_product_%28matrices%29

Machine Learning & Data Mining Caltech CS/CNS/EE 155
Practice Questions March 11th, 2015

We can write the gradient of (37) w.r.t. ua as

∂ua = λua −
∑

(a,b,c)∈Sa

(
Yabc − uTa (vb ◦ wc)

)
(vb ◦ wc).

Note that this is basically identical to the 2-way latent factor model except for the additional Hadamard
product. In other words, when optimizing ua, we treat (vb ◦wc) as the “features” and ua as the linear model
parameter.

9

Machine Learning & Data Mining Caltech CS/CNS/EE 155
Practice Questions March 11th, 2015

7 Neural Net Backprop Gradient Derivation

(The purpose of this question is to improve your comfort with models that have multiple layers.)

Σ"

x" f(x)"

Σ"

Σ

x1"

x2"

h1"

h2"

w11"

w21"

w12"

w22"

u1"

u2"

Figure 2: Illustration of Simple Neural Network.

In this question, we will consider the following neural network depicted in Figure 2. There are six
parameters in the model, u1, u2, w11, w21, w12, and w22.

The network takes in a 2-dimensional input x and outputs a real value f(x) ∈ [0, 1]. The final output
f(x) is a weighted combination of two hidden node activations with a sigmoid transfer function:

f(x) = σ (u1h1(x) + u2h2(x)) , (38)

where:
σ(s) =

es

1 + es
.

The two hidden layers outputs, h1(x) and h2(x), are weighted combinations of the input xwith a rectilinear
transfer function:

hi(x) = τ (w1ix1 + w2ix2) , (39)

where:
τ(s) = max{0, s}.

Question: For a given training data point (x, y), compute the stochastic gradient of the squared-loss of
(x, y) w.r.t. w11:

∂

∂w11
L(y, f(x)) ≡ ∂

∂w11
(y − f(x))

2
.

Ignore the case where f(x) might not be differentiable (because the rectilinear function is not differentiable
everywhere).

Hint: write out the formula using the chain rule and use the following definition of the derivative of
σ(s):

∂

∂s
σ(s) = σ(s)(1− σ(s)).

Solution. We first note that only the first hidden node h1 depends on w11, so we can write out the chain
rule of derivatives from L(y, f(x)) to w11 through h1:

∂

∂w11
L(y, f(x)) =

∂L

∂f

∂f

∂h1

∂h1
∂w11

. (40)

10

Machine Learning & Data Mining Caltech CS/CNS/EE 155
Practice Questions March 11th, 2015

We can expand each term in (40) as:
∂L

∂f
= −2(y − f),

∂f

∂h1
=
∂σ(u1h1 + u2h2)

∂h1
= σ(u1h1 + u2h2)(1− σ(u1h1 + u2h2))u1,

∂h1
∂w11

=

{
x1 if w11x1 + w21x2 > 0
0 otherwise .

(In the case where w11x1 + w21x2 = 0, then ∂h1/∂w11 is undefined because τ(0) is not differentiable. How-
ever, in practice this basically never happens, and so we generally ignore this case during stochastic gradi-
ent descent.)

11

Machine Learning & Data Mining Caltech CS/CNS/EE 155
Practice Questions March 11th, 2015

8 Convolutional Kernels

(The purpose of this question is to improve your comfort in reasoning about spatial models such as convo-
lutional networks.)

Here are three convolution filters:

K1 =


0 0 −0.375 0 0
0 −0.375 −0.75 −0.375 0

−0.375 −0.75 7 −0.75 −0.375
0 −0.375 −0.75 −0.375 0
0 0 −0.375 0 0

 ,

K2 =


0.0054 0.0180 0.0268 0.0180 0.0054
0.0180 0.0597 0.0890 0.0597 0.0180
0.0268 0.0890 0.1328 0.0890 0.0268
0.0180 0.0597 0.0890 0.0597 0.0180
0.0054 0.0180 0.0268 0.0180 0.0054

 ,

K3 =


0 0 0 0 0
0 −1 0 1 0
0 −1 0 1 0
0 −1 0 1 0
0 0 0 0 0

 .
This question involves convolutional filters. Let K be a (2r + 1) × (2r + 1)-dimensional convolutional

filter. Convolving an image X with K corresponds to a new image X̃ with pixel values:

X̃i,j =

r∑
i′=−r

r∑
j′=−r

Xi+i′,j+j′Ki′+r+1,j′+r+1.

In other words, each pixel X̃i,j in the convolved image is computed via the weighted sum of an image patch
of X centered at Xi,j with weights K (ignore boundary cases).

Figure 3: Original Image

Question: Suppose we convolve the three filtersK1,K2, andK3 on the image shown in Figure 3. Which
resulting image in Figure 4 corresponds to which kernel?

12

Machine Learning & Data Mining Caltech CS/CNS/EE 155
Practice Questions March 11th, 2015

Figure 4: Convolved Images

Solution. K1 corresponds to the right image in Figure 4. K1 is a sharpening filter, because it accentuates
pixels that have high contrast with neighboring pixels.

K2 corresponds to the middle image in Figure 4. K2 is a blurring filter, because it computes a weighted
average of a neighborhood of pixels.

K3 corresponds to the left iamgein Figure 4. K3 is an edge detection (or Gabor) filter, because it only ac-
tivates when there is an increase in pixel intensity from left-to-right. Note that the sum of K3 is 0, meaning
that the resulting image X̃ is black whenever there are no pixel intensity gradients in the image neighbor-
hood patch.

13

Machine Learning & Data Mining Caltech CS/CNS/EE 155
Practice Questions March 11th, 2015

9 Hidden Markov Models

(The purpose of this question is to improve your comfort in working with structured or graphical models.)

Given an input sequence x = (x1, . . . , xM) and output sequence y = (y1, . . . , yM), a hidden Markov
model decomposes the probability of P (x, y) as:

P (x, y) =

M∏
i=1

P (xi|yi)P (yi|yi−1), (41)

where y0 = 0 denotes a special start state.
Suppose each yi ∈ {1, 2} can take one of two states, and each xi ∈ {A,B} can take one of two observa-

tions. The P (yi|yi−1) probability table is:

P (yi|yi−1) yi = 1 yi = 2
yi−1 = 0 2/3 1/3
yi−1 = 1 3/4 1/4
yi−1 = 2 1/2 1/2

and the P (xi|yi) probability table is:

P (xi|yi) xi = A xi = B
yi = 1 2/3 1/3
yi = 2 1/5 4/5

Question: Compute P (x = (A,A,B)) and argmaxy P (x = (A,A,B), y).

Solution. We can compute P (x = (A,A,B)) by marginalizing out all possible y’s:

P (x = (A,A,B)) =
∑
y

P (x = (A,A,B), y), (42)

and then we can just use (41).

OPTION 1: Brute Force Exhaustive Enumeration of All Possible y’s. This problem is small enough to
exhaustively enumerate all possible y’s. There are 8 possible y’s that are length-3:

y ∈ {(1, 1, 1), (1, 1, 2), (1, 2, 1), (1, 2, 2), (2, 1, 1), (2, 1, 2), (2, 2, 1), (2, 2, 2)}.

One could simply brute force compute P (x = (A,A,B)) via (42) by summing over the 8 possible y’s:

P (x = (A,A,B), y = (1, 1, 1)) =
2

3

2

3

2

3

3

4

1

3

3

4
=

72

1296
.

P (x = (A,A,B), y = (1, 1, 2)) =
2

3

2

3

2

3

3

4

4

5

1

4
=

96

2160
.

P (x = (A,A,B), y = (1, 2, 1)) =
2

3

2

3

1

5

1

4

1

3

1

2
=

4

1080
.

14

Machine Learning & Data Mining Caltech CS/CNS/EE 155
Practice Questions March 11th, 2015

P (x = (A,A,B), y = (1, 2, 2)) =
2

3

2

3

1

5

1

4

4

5

1

2
=

16

1800
.

P (x = (A,A,B), y = (2, 1, 1)) =
1

5

1

3

2

3

1

2

1

3

3

4
=

6

1080
.

P (x = (A,A,B), y = (2, 1, 2)) =
1

5

1

3

2

3

1

2

4

5

1

4
=

8

1800
.

P (x = (A,A,B), y = (2, 2, 1)) =
1

5

1

3

1

5

1

2

1

3

1

2
=

1

900
.

P (x = (A,A,B), y = (2, 2, 2)) =
1

5

1

3

1

5

1

2

4

5

1

2
=

4

1500
.

The sum over the above eight values yields:

P (x = (A,A,B) =
72

1296
+

96

2160
+

4

1080
+

16

1800
+

6

1080
+

8

1800
+

1

900
+

4

1500
≈ 0.126.

and taking the max over the above eight values yields:

argmaxy P (x = (A,A,B), y) = (1, 1, 1).

OPTION 2a: Dynamic Programming via Forward Algorithm to Compute P (x = (A,A,B)). The dy-
namic programming solution leverages the following observation for length-M inputs x:

P (x) =
∑
y

P (x, y) (43)

=
∑
y

M∏
i=1

P
(
xi|yi

)
P
(
yi|yi−1

)
(44)

=
∑

y(1:M−1)

M−1∏
i=1

P
(
xi|yi

)
P
(
yi|yi−1

)∑
yM

P
(
xM |yM

)
P
(
yM |yM−1

)
(45)

=
∑

y(1:M−1)

P
(
x(1:M−1), y(1:M−1)

)∑
yM

P
(
xM |yM)P (yM |yM−1

)
, (46)

where y(1:M−1) denotes the length-(M − 1) prefix subsequence of y (i.e., the first M − 1 tokens).
(46) defines a recursive definition of P (x) that we can exploit to more efficiently and compactly compute

P (x). For a given x, define αit as:

αit =
∑

y(1:i−1)

P
(
x(1:i), y(1:i−1) ⊕ t

)
≡ P

(
x(1:i)

∣∣yi = t
)
,

where y(1:i−1) ⊕ t denotes the list append operator that appends token t to the end of y(1:i−1). In other
words αit is the total joint probability of the first i tokens in x, x(1:i), conditioned on yi = t. Thus, we can
write P (x) for lenght-M x as:

P (x) =
∑
t

P
(
x|yM = t

)
=
∑
t

αMt . (47)

15

Machine Learning & Data Mining Caltech CS/CNS/EE 155
Practice Questions March 11th, 2015

Exploiting (46), we can recursively define αit as:

αit = P
(
xi
∣∣yi = t

)∑
t′

αi−1t′ P
(
yi = t

∣∣yi−1 = t′
)
, (48)

which gives us an efficient and compact way to recursively compute each αi vector and finally (47):

α1 =

[
2
3
2
3

1
5
1
3

]
≈
[

0.4444
0.0667

]
,

α2 =

[
2
3

(
3
4α

1
1 + 1

2α
1
2

)
1
5

(
1
4α

1
1 + 1

2α
1
2

)] ≈ [0.2444
0.0289

]
,

α3 =

[
1
3

(
3
4α

2
1 + 1

2α
2
2

)
4
5

(
1
4α

2
1 + 1

2α
2
2

)] ≈ [0.0659
0.0604

]
.

Via (47) summing over α3 yields P (x = (A,A,B)) = α3
1 + α3

2 ≈ 0.126.

OPTION 2b: Dynamic Programming via Viterbi to Compute argmaxy P (x = (A,A,B), y). Define ŷit as
the length-i solution ending in the token t that maximizes probability of P (x(1:i), ŷit):

ŷit =
(

argmaxy1,...,yi−1 P
(
x(1:i), y(1:i−1) ⊕ t

))
⊕ t. (49)

We can also keep track of the probability as αit:

αit = P
(
x(1:i), ŷit

)
. (50)

Assuming we have computed ŷMt , the most likely y can be solved via:

argmaxy P (x, y) = argmaxt P
(
x, ŷMt

)
.

The key observation is that we can compute ŷ and α recursively via:

ŷit =
(

argmaxŷi−1

t′
P
(
x(1:i), yi−1t′ ⊕ t

))
⊕ t, (51)

αit = argmaxt′ α
i−1
t′ P

(
xi |t

)
P (t |t′) . (52)

Typically (51) is computed as a side product of computing (52).

α1 =

[
2
3
2
3

1
5
1
3

]
≈
[

0.444
0.067

]
, ŷ1 =

[
(1)
(2)

]
.

α2 =

[
2
3
3
4α

1
1

1
5
1
4α

1
1

]
=

[
0.222
0.022

]
, ŷ2 =

[
(1, 1)
(1, 2)

]
.

α3 =

[
1
3
3
4α

2
1

4
5
1
4α

2
1

]
=

[
0.056
0.044

]
, ŷ2 =

[
(1, 1, 1)
(1, 1, 2)

]
.

16

	Equivalence of Matrix Norm Definitions
	Properties of Bootstrap Sampling
	Bias-Variance Decomposition
	Multiclass SVM
	Featurized Latent Factor Models
	Tensor Latent Factor Models
	Neural Net Backprop Gradient Derivation
	Convolutional Kernels
	Hidden Markov Models

