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Matrix	  Factoriza/on	  with	  Missing	  
Values	  

•  Goal	  #1:	  Learn	  a	  Latent	  Factor	  Model	  U	  &	  V	  
•  Goal	  #2:	  Visualize	  &	  Interpret	  U	  &	  V	  	  	  (mostly	  V)	  

Lecture	  13:	  Latent	  Factor	  Models	  &	  Non-‐
Nega/ve	  Matrix	  Factoriza/on	   2	  
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Final	  Product:	  Create	  Something	  Like	  This	  
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vector qi  R f, and each user u is associ-
ated with a vector pu  R f. For a given item 
i, the elements of qi measure the extent to 
which the item possesses those factors, 
positive or negative. For a given user u, 
the elements of pu measure the extent of 
interest the user has in items that are high 
on the corresponding factors, again, posi-
tive or negative. The resulting dot product,  
qi

T pu, captures the interaction between user 
u and item i—the user’s overall interest in 
the item’s characteristics. This approximates 
user u’s rating of item i, which is denoted by 
rui, leading to the estimate 

 
r̂ui  

= qi
T pu. (1) 

The major challenge is computing the map-
ping of each item and user to factor vectors 
qi, pu  R f. After the recommender system 
completes this mapping, it can easily esti-
mate the rating a user will give to any item 
by using Equation 1. 

Such a model is closely related to singular value decom-
position (SVD), a well-established technique for identifying 
latent semantic factors in information retrieval. Applying 
SVD in the collaborative filtering domain requires factoring 
the user-item rating matrix. This often raises difficulties 
due to the high portion of missing values caused by sparse-
ness in the user-item ratings matrix. Conventional SVD is 
undefined when knowledge about the matrix is incom-
plete. Moreover, carelessly addressing only the relatively 
few known entries is highly prone to overfitting. 

Earlier systems relied on imputation to fill in missing 
ratings and make the rating matrix dense.2 However, im-
putation can be very expensive as it significantly increases 
the amount of data. In addition, inaccurate imputation 
might distort the data considerably. Hence, more recent 
works3-6 suggested modeling directly the observed rat-
ings only, while avoiding overfitting through a regularized 
model. To learn the factor vectors (pu and qi), the system 
minimizes the regularized squared error on the set of 
known ratings: 

min
* *,q p ( , )u i

(rui  qi
Tpu)

2 + (|| qi ||
2 + || pu ||

2)  (2) 

Here,  is the set of the (u,i) pairs for which rui is known 
(the training set). 

The system learns the model by fitting the previously 
observed ratings. However, the goal is to generalize those 
previous ratings in a way that predicts future, unknown 
ratings. Thus, the system should avoid overfitting the 
observed data by regularizing the learned parameters, 
whose magnitudes are penalized. The constant  controls 

recommendation. These methods have become popular in 
recent years by combining good scalability with predictive 
accuracy. In addition, they offer much flexibility for model-
ing various real-life situations. 

Recommender systems rely on different types of 
input data, which are often placed in a matrix with one 
dimension representing users and the other dimension 
representing items of interest. The most convenient data 
is high-quality explicit feedback, which includes explicit 
input by users regarding their interest in products. For 
example, Netflix collects star ratings for movies, and TiVo 
users indicate their preferences for TV shows by pressing 
thumbs-up and thumbs-down buttons. We refer to explicit 
user feedback as ratings. Usually, explicit feedback com-
prises a sparse matrix, since any single user is likely to 
have rated only a small percentage of possible items. 

One strength of matrix factorization is that it allows 
incorporation of additional information. When explicit 
feedback is not available, recommender systems can infer 
user preferences using implicit feedback, which indirectly 
reflects opinion by observing user behavior including pur-
chase history, browsing history, search patterns, or even 
mouse movements. Implicit feedback usually denotes the 
presence or absence of an event, so it is typically repre-
sented by a densely filled matrix. 

A BASIC MATRIX FACTORIZATION MODEL 
Matrix factorization models map both users and items 

to a joint latent factor space of dimensionality f, such that 
user-item interactions are modeled as inner products in 
that space. Accordingly, each item i is associated with a 
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Figure 2. A simplified illustration of the latent factor approach, which 
characterizes both users and movies using two axes—male versus female 
and serious versus escapist. 

hTp://www2.research.aT.com/~volinsky/papers/ieeecomputer.pdf	  

You	  need	  to	  create	  	  your	  own	  visualiza/on	  (will	  have	  different	  projec/on	  of	  
movies/users	  onto	  2-‐dimensional	  plane	  than	  example	  above)	  
	  

You	  need	  to	  interpret	  your	  dimensions	  and/or	  clusters	  of	  movies	  in	  your	  projec/on	  

(Your	  visualiza/on	  will	  	  
probably	  not	  be	  as	  clean	  	  
as	  this	  one,	  that	  is	  OK)	  



Outline	  
•  Step	  1:	  Learn	  U	  &	  V	  
–  If	  you	  are	  not	  confident	  in	  implementa/on,	  use	  off-‐
the-‐shelf	  so^ware	  first	  

–  Then	  implement	  your	  own	  solver	  if	  you	  feel	  like	  it	  

•  Step	  2:	  Project	  U	  &	  V	  down	  to	  2	  dimensions	  
–  Basically	  SVD	  in	  Matlab	  or	  Python	  

•  Step	  3:	  Plot	  projected	  U	  &	  V	  	  
– Give	  your	  own	  interpreta/on	  of	  the	  two	  projected	  
dimensions	  
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Step	  1:	  Learning	  U	  &	  V	  

•  Three	  op/ons:	  
– Stochas/c	  Gradient	  Descent	  

•  Each	  step	  of	  SGD	  considers	  single	  index	  (i,j)	  of	  S	  

– Alterna/ng	  Minimiza/on	  
•  Each	  step	  completely	  solves	  U	  or	  V	  while	  holding	  the	  other	  fixed.	  

– Use	  off-‐the-‐shelf	  so^ware	  
•  Will	  only	  get	  20/40	  of	  this	  por/on	  of	  the	  ques/on	  

Step-‐By-‐Step	  Instruc/ons	  for	  Miniproject	  2	   5	  

argmin
U,V

λ
2

U 2
+ V 2( )+ Yi, j −ui

Tvj( )
2

(i, j )∈S
∑

S	  =	  set	  of	  indices	  (i,j)	  	  
of	  observed	  ra/ngs	  

Choice	  of	  regulariza/on	  doesn’t	  maTer	  too	  much	  
	  You	  don’t	  have	  to	  solve	  this	  exact	  objec/ve.	  
(many	  off-‐the-‐shelf	  solve	  something	  related.)	  



Off-‐the-‐Shelf	  So^ware	  
•  Search	  for	  “Collabora/ve	  Filtering	  Matlab”	  or	  “Collabora/ve	  Filtering	  

Python”	  or	  “Collabora/ve	  Filtering	  code”	  

•  hTp://bickson.blogspot.com/2012/12/collabora/ve-‐filtering-‐with-‐
graphchi.html	  

•  hTp://spark.apache.org/docs/1.0.0/mllib-‐collabora/ve-‐filtering.html	  
•  hTp://select.cs.cmu.edu/code/graphlab/pmf.html	  
•  hTp://www.quuxlabs.com/blog/2010/09/matrix-‐factoriza/on-‐a-‐simple-‐

tutorial-‐and-‐implementa/on-‐in-‐python/	  
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Step	  1b:	  Learning	  U	  &	  V	  	  
(More	  Advanced)	  

•  Model	  the	  global	  tendency	  of	  a	  movie’s	  average	  ra/ng	  
•  Model	  the	  global	  tendency	  of	  how	  a	  user	  rates	  on	  average	  
•  This	  keeps	  U	  &	  V	  more	  focused	  on	  variability	  between	  users	  

and	  movies.	  
•  Should	  be	  an	  op/on	  that	  you	  can	  turn	  on	  in	  many	  off-‐the-‐

shelf	  implementa/ons	  
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argmin
U,V ,a,b

λ
2

U 2
+ V 2( )+ Yi, j − ui

Tvj + ai + bj( )( )
2

(i, j )∈S
∑

S	  =	  set	  of	  indices	  (i,j)	  	  	  
of	  observed	  ra/ngs	  

Choice	  of	  regulariza/on	  doesn’t	  maTer	  too	  much	  

Vector	  of	  bias/offset	  terms	  
One	  for	  each	  user	  &	  movie	  



Step	  1c:	  Learning	  U	  &	  V	  	  
(Even	  More	  Advanced)	  

•  Model	  global	  bias	  μ	  as	  average	  over	  all	  observed	  Y	  
•  Treat	  a	  as	  user-‐specific	  devia/on	  from	  global	  bias	  
•  Treat	  b	  as	  movie-‐specific	  devia/on	  from	  global	  bias	  
•  Should	  be	  an	  op/on	  that	  you	  can	  turn	  on	  in	  many	  off-‐the-‐

shelf	  implementa/ons	  

Step-‐By-‐Step	  Instruc/ons	  for	  Miniproject	  2	   8	  

argmin
U,V ,a,b

λ
2

U 2
+ V 2

+ a 2
+ b 2( )+ Yi, j −µ( )− ui

Tvj + ai + bj( )( )
2

(i, j )∈S
∑

S	  =	  set	  of	  indices	  (i,j)	  	  	  
of	  observed	  ra/ngs	  

Choice	  of	  regulariza/on	  doesn’t	  maTer	  too	  much	  

Vector	  of	  bias/offset	  terms	  
One	  for	  each	  user	  &	  movie	  

μ	  is	  average	  of	  all	  observa/ons	  in	  Y	  



Step	  1:	  Interpreta/on	  

•  Common	  K-‐dimensional	  representa/on	  over	  users	  &	  movies	  
–  Ra/ng	  defined	  by	  dot	  product	  (aka	  un-‐normalized	  cosine	  similarity):	  

•  Does	  our	  representa/on	  make	  sense?	  (i.e.,	  is	  it	  interpretable?)	  
–  Need	  to	  visualize!	  
–  But	  can	  only	  (easily)	  visualize	  2-‐dim	  points,	  not	  K-‐dim	  points!	  
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Step	  2:	  Projec/ng	  U	  &	  V	  to	  2	  
Dimensions	  

•  Step	  2a:	  
–  (Op/onal)	  mean	  center	  V:	  each	  row	  of	  V	  has	  zero	  
mean	  

– Compute	  SVD	  of	  V:	  

– The	  first	  two	  columns	  of	  A	  correspond	  to	  best	  2-‐
dimensional	  projec/on	  of	  movies	  V	  
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V = AΣBT

Orthogonal	  Orthogonal	  

Diagonal	  



Step	  2:	  Projec/ng	  U	  &	  V	  to	  2	  
Dimensions	  

•  Step	  2b:	  
– Project	  every	  movie	  &	  user	  using	  A1:2	  

– Now	  each	  user	  &	  movie	  is	  represented	  using	  a	  
two	  dimensional	  point.	  	  Visualize	  and	  interpret!	  
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!V = A1:2
T V ∈ Re2×N

!U = A1:2
T U ∈ Re2×M If	  you	  mean	  centered	  V,	  you	  need	  	  

to	  shi^	  U	  by	  same	  amount	  first	  



Step	  2:	  Projec/ng	  U	  &	  V	  to	  2	  
Dimensions	  

•  Step	  2c	  (op/onal):	  
– Do	  Steps	  2a	  &	  2b:	  

– Then	  rescale	  dimensions:	  
•  E.g.,	  each	  row	  of	  Ũ	  has	  unit	  variance.	  
•  Otherwise,	  visualiza/on	  might	  look	  stretched:	  
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!V = A1:2
T V ∈ Re2×N

!U = A1:2
T U ∈ Re2×M
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vector qi  R f, and each user u is associ-
ated with a vector pu  R f. For a given item 
i, the elements of qi measure the extent to 
which the item possesses those factors, 
positive or negative. For a given user u, 
the elements of pu measure the extent of 
interest the user has in items that are high 
on the corresponding factors, again, posi-
tive or negative. The resulting dot product,  
qi

T pu, captures the interaction between user 
u and item i—the user’s overall interest in 
the item’s characteristics. This approximates 
user u’s rating of item i, which is denoted by 
rui, leading to the estimate 

 
r̂ui  

= qi
T pu. (1) 

The major challenge is computing the map-
ping of each item and user to factor vectors 
qi, pu  R f. After the recommender system 
completes this mapping, it can easily esti-
mate the rating a user will give to any item 
by using Equation 1. 

Such a model is closely related to singular value decom-
position (SVD), a well-established technique for identifying 
latent semantic factors in information retrieval. Applying 
SVD in the collaborative filtering domain requires factoring 
the user-item rating matrix. This often raises difficulties 
due to the high portion of missing values caused by sparse-
ness in the user-item ratings matrix. Conventional SVD is 
undefined when knowledge about the matrix is incom-
plete. Moreover, carelessly addressing only the relatively 
few known entries is highly prone to overfitting. 

Earlier systems relied on imputation to fill in missing 
ratings and make the rating matrix dense.2 However, im-
putation can be very expensive as it significantly increases 
the amount of data. In addition, inaccurate imputation 
might distort the data considerably. Hence, more recent 
works3-6 suggested modeling directly the observed rat-
ings only, while avoiding overfitting through a regularized 
model. To learn the factor vectors (pu and qi), the system 
minimizes the regularized squared error on the set of 
known ratings: 

min
* *,q p ( , )u i

(rui  qi
Tpu)

2 + (|| qi ||
2 + || pu ||

2)  (2) 

Here,  is the set of the (u,i) pairs for which rui is known 
(the training set). 

The system learns the model by fitting the previously 
observed ratings. However, the goal is to generalize those 
previous ratings in a way that predicts future, unknown 
ratings. Thus, the system should avoid overfitting the 
observed data by regularizing the learned parameters, 
whose magnitudes are penalized. The constant  controls 

recommendation. These methods have become popular in 
recent years by combining good scalability with predictive 
accuracy. In addition, they offer much flexibility for model-
ing various real-life situations. 

Recommender systems rely on different types of 
input data, which are often placed in a matrix with one 
dimension representing users and the other dimension 
representing items of interest. The most convenient data 
is high-quality explicit feedback, which includes explicit 
input by users regarding their interest in products. For 
example, Netflix collects star ratings for movies, and TiVo 
users indicate their preferences for TV shows by pressing 
thumbs-up and thumbs-down buttons. We refer to explicit 
user feedback as ratings. Usually, explicit feedback com-
prises a sparse matrix, since any single user is likely to 
have rated only a small percentage of possible items. 

One strength of matrix factorization is that it allows 
incorporation of additional information. When explicit 
feedback is not available, recommender systems can infer 
user preferences using implicit feedback, which indirectly 
reflects opinion by observing user behavior including pur-
chase history, browsing history, search patterns, or even 
mouse movements. Implicit feedback usually denotes the 
presence or absence of an event, so it is typically repre-
sented by a densely filled matrix. 

A BASIC MATRIX FACTORIZATION MODEL 
Matrix factorization models map both users and items 

to a joint latent factor space of dimensionality f, such that 
user-item interactions are modeled as inner products in 
that space. Accordingly, each item i is associated with a 
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Figure 2. A simplified illustration of the latent factor approach, which 
characterizes both users and movies using two axes—male versus female 
and serious versus escapist. 



Step	  2:	  Interpreta/on	  
•  The	  top	  D	  dimensions	  of	  matrix	  A	  defines	  a	  D-‐dim	  projec/on	  

that	  best	  preserves	  the	  learned	  movie	  features	  V:	  
	  
	  
	  
	  

•  We	  want	  2-‐dimensional	  projec/on	  for	  visualiza/on	  purposes	  
–  So	  we	  take	  top	  2	  dimensions	  of	  SVD	  

•  Now	  we	  can	  visualize	  movies	  in	  2D	  plot	  
–  And	  see	  if	  close-‐by	  movies	  have	  similar	  semen/cs	  
–  E.g.,	  horror,	  ac/on,	  etc.	  
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vj − A1:D !vj
2

j
∑!vj = A1:D

T vj
Minimizes	  loss	  of	  
feature	  representa/on:	  

Projected	  representa/on	   Preserva/on	  Loss	  of	  projec/on	  



Step	  2:	  Alterna/ves	  &	  Core	  
Requirements	  

•  You	  don’t	  have	  to	  do	  it	  the	  above	  way	  
–  Although	  the	  above	  method	  should	  always	  give	  you	  
something	  reasonable	  to	  visualize	  

•  Core	  requirement:	  	  
–  Projec/on	  should	  preserves	  as	  much	  of	  the	  original	  
features	  as	  possible	  

–  A	  dot	  product	  in	  the	  2-‐D	  representa/on	  should	  
approximate	  the	  dot	  product	  in	  the	  K-‐D	  representa/on	  
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Step	  3:	  Plot	  U	  &	  V	  

•  Plorng	  V	  is	  more	  important:	  
–  Pick	  a	  few	  movies	  and	  plot	  their	  projected	  2D	  representa/on	  
–  Verify	  that	  distances/angles/axes	  in	  your	  plot	  can	  be	  interpreted	  

	  

•  Can	  also	  plot	  the	  genres	  provided:	  
–  E.g.,	  where	  is	  the	  average	  horror	  movie?	  
–  E.g.,	  compute	  the	  average	  v	  for	  all	  movies	  that	  belong	  to	  horror	  genre	  
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vector qi  R f, and each user u is associ-
ated with a vector pu  R f. For a given item 
i, the elements of qi measure the extent to 
which the item possesses those factors, 
positive or negative. For a given user u, 
the elements of pu measure the extent of 
interest the user has in items that are high 
on the corresponding factors, again, posi-
tive or negative. The resulting dot product,  
qi

T pu, captures the interaction between user 
u and item i—the user’s overall interest in 
the item’s characteristics. This approximates 
user u’s rating of item i, which is denoted by 
rui, leading to the estimate 

 
r̂ui  

= qi
T pu. (1) 

The major challenge is computing the map-
ping of each item and user to factor vectors 
qi, pu  R f. After the recommender system 
completes this mapping, it can easily esti-
mate the rating a user will give to any item 
by using Equation 1. 

Such a model is closely related to singular value decom-
position (SVD), a well-established technique for identifying 
latent semantic factors in information retrieval. Applying 
SVD in the collaborative filtering domain requires factoring 
the user-item rating matrix. This often raises difficulties 
due to the high portion of missing values caused by sparse-
ness in the user-item ratings matrix. Conventional SVD is 
undefined when knowledge about the matrix is incom-
plete. Moreover, carelessly addressing only the relatively 
few known entries is highly prone to overfitting. 

Earlier systems relied on imputation to fill in missing 
ratings and make the rating matrix dense.2 However, im-
putation can be very expensive as it significantly increases 
the amount of data. In addition, inaccurate imputation 
might distort the data considerably. Hence, more recent 
works3-6 suggested modeling directly the observed rat-
ings only, while avoiding overfitting through a regularized 
model. To learn the factor vectors (pu and qi), the system 
minimizes the regularized squared error on the set of 
known ratings: 

min
* *,q p ( , )u i

(rui  qi
Tpu)

2 + (|| qi ||
2 + || pu ||

2)  (2) 

Here,  is the set of the (u,i) pairs for which rui is known 
(the training set). 

The system learns the model by fitting the previously 
observed ratings. However, the goal is to generalize those 
previous ratings in a way that predicts future, unknown 
ratings. Thus, the system should avoid overfitting the 
observed data by regularizing the learned parameters, 
whose magnitudes are penalized. The constant  controls 

recommendation. These methods have become popular in 
recent years by combining good scalability with predictive 
accuracy. In addition, they offer much flexibility for model-
ing various real-life situations. 

Recommender systems rely on different types of 
input data, which are often placed in a matrix with one 
dimension representing users and the other dimension 
representing items of interest. The most convenient data 
is high-quality explicit feedback, which includes explicit 
input by users regarding their interest in products. For 
example, Netflix collects star ratings for movies, and TiVo 
users indicate their preferences for TV shows by pressing 
thumbs-up and thumbs-down buttons. We refer to explicit 
user feedback as ratings. Usually, explicit feedback com-
prises a sparse matrix, since any single user is likely to 
have rated only a small percentage of possible items. 

One strength of matrix factorization is that it allows 
incorporation of additional information. When explicit 
feedback is not available, recommender systems can infer 
user preferences using implicit feedback, which indirectly 
reflects opinion by observing user behavior including pur-
chase history, browsing history, search patterns, or even 
mouse movements. Implicit feedback usually denotes the 
presence or absence of an event, so it is typically repre-
sented by a densely filled matrix. 

A BASIC MATRIX FACTORIZATION MODEL 
Matrix factorization models map both users and items 

to a joint latent factor space of dimensionality f, such that 
user-item interactions are modeled as inner products in 
that space. Accordingly, each item i is associated with a 
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Figure 2. A simplified illustration of the latent factor approach, which 
characterizes both users and movies using two axes—male versus female 
and serious versus escapist. 

Example:	  
(Your	  visualiza/on	  will	  	  
probably	  not	  be	  as	  clean	  	  
as	  this	  one,	  that	  is	  OK)	  



My	  Own	  Example	  

Step-‐By-‐Step	  Instruc/ons	  for	  Miniproject	  2	   16	  

Trained	  using	  	  
Step	  1c	  (lambda=10)	  
Stochas/c	  GD	  
	  
SVD	  of	  Movie	  Matrix	  
Project	  top	  2	  bases	  
	  
Picked	  a	  few	  popular	  
movies,	  and	  ploTed	  them.	  
	  
Then	  found	  a	  few	  extreme	  
points	  (e.g.,	  Clockwork	  
Orange).	  	  
	  
Removed	  most	  children’s	  
movies	  (didn’t	  seem	  to	  
project	  well	  using	  1st	  two	  
SVD	  bases	  –	  maybe	  most	  
ra/ngs	  are	  by	  adults).	  
	  
	  
	  	  

Star	  Wars	  Movies	  
Close	  together	  

Mostly	  Sci-‐Fi	  &	  	  
Horror	  Movies	  

Ac/on	  Movies	  

More	  Historical	  Movies	  
(Jurassic	  Park	  excepted)	  

Free	  Willy	  Movies	  Close	  Together	  


