
Step-‐By-‐Step	 Instruc/ons	 for	
Miniproject	 2	

Step-‐By-‐Step	 Instruc/ons	 for	 Miniproject	 2	 1	

Matrix	 Factoriza/on	 with	 Missing	
Values	

•  Goal	 #1:	 Learn	 a	 Latent	 Factor	 Model	 U	 &	 V	
•  Goal	 #2:	 Visualize	 &	 Interpret	 U	 &	 V	 	 	 (mostly	 V)	

Lecture	 13:	 Latent	 Factor	 Models	 &	 Non-‐
Nega/ve	 Matrix	 Factoriza/on	 2	

Y	
(missing	 values)	

N	 Movies	

M
	 U
se
rs
	

UT	

V	

=	

N	

M	

K	

K	

“Latent	 Factors”	

Final	 Product:	 Create	 Something	 Like	 This	

Step-‐By-‐Step	 Instruc/ons	 for	 Miniproject	 2	 3	

COVER FE ATURE

COMPUTER 44

vector qi R f, and each user u is associ-
ated with a vector pu R f. For a given item
i, the elements of qi measure the extent to
which the item possesses those factors,
positive or negative. For a given user u,
the elements of pu measure the extent of
interest the user has in items that are high
on the corresponding factors, again, posi-
tive or negative. The resulting dot product,
qi

T pu, captures the interaction between user
u and item i—the user’s overall interest in
the item’s characteristics. This approximates
user u’s rating of item i, which is denoted by
rui, leading to the estimate

r̂ui

= qi
T pu. (1)

The major challenge is computing the map-
ping of each item and user to factor vectors
qi, pu R f. After the recommender system
completes this mapping, it can easily esti-
mate the rating a user will give to any item
by using Equation 1.

Such a model is closely related to singular value decom-
position (SVD), a well-established technique for identifying
latent semantic factors in information retrieval. Applying
SVD in the collaborative filtering domain requires factoring
the user-item rating matrix. This often raises difficulties
due to the high portion of missing values caused by sparse-
ness in the user-item ratings matrix. Conventional SVD is
undefined when knowledge about the matrix is incom-
plete. Moreover, carelessly addressing only the relatively
few known entries is highly prone to overfitting.

Earlier systems relied on imputation to fill in missing
ratings and make the rating matrix dense.2 However, im-
putation can be very expensive as it significantly increases
the amount of data. In addition, inaccurate imputation
might distort the data considerably. Hence, more recent
works3-6 suggested modeling directly the observed rat-
ings only, while avoiding overfitting through a regularized
model. To learn the factor vectors (pu and qi), the system
minimizes the regularized squared error on the set of
known ratings:

min
* *,q p (,)u i

(rui qi
Tpu)

2 + (|| qi ||
2 + || pu ||

2) (2)

Here, is the set of the (u,i) pairs for which rui is known
(the training set).

The system learns the model by fitting the previously
observed ratings. However, the goal is to generalize those
previous ratings in a way that predicts future, unknown
ratings. Thus, the system should avoid overfitting the
observed data by regularizing the learned parameters,
whose magnitudes are penalized. The constant controls

recommendation. These methods have become popular in
recent years by combining good scalability with predictive
accuracy. In addition, they offer much flexibility for model-
ing various real-life situations.

Recommender systems rely on different types of
input data, which are often placed in a matrix with one
dimension representing users and the other dimension
representing items of interest. The most convenient data
is high-quality explicit feedback, which includes explicit
input by users regarding their interest in products. For
example, Netflix collects star ratings for movies, and TiVo
users indicate their preferences for TV shows by pressing
thumbs-up and thumbs-down buttons. We refer to explicit
user feedback as ratings. Usually, explicit feedback com-
prises a sparse matrix, since any single user is likely to
have rated only a small percentage of possible items.

One strength of matrix factorization is that it allows
incorporation of additional information. When explicit
feedback is not available, recommender systems can infer
user preferences using implicit feedback, which indirectly
reflects opinion by observing user behavior including pur-
chase history, browsing history, search patterns, or even
mouse movements. Implicit feedback usually denotes the
presence or absence of an event, so it is typically repre-
sented by a densely filled matrix.

A BASIC MATRIX FACTORIZATION MODEL
Matrix factorization models map both users and items

to a joint latent factor space of dimensionality f, such that
user-item interactions are modeled as inner products in
that space. Accordingly, each item i is associated with a

Geared
toward
males

Serious

Escapist

The Princess
Diaries

Braveheart

Lethal Weapon

Independence
Day

Ocean’s 11
Sense and
Sensibility

Gus

Dave

Geared
toward

females

Amadeus

The Lion King Dumb and
Dumber

The Color Purple

Figure 2. A simplified illustration of the latent factor approach, which
characterizes both users and movies using two axes—male versus female
and serious versus escapist.

hTp://www2.research.aT.com/~volinsky/papers/ieeecomputer.pdf	

You	 need	 to	 create	 	 your	 own	 visualiza/on	 (will	 have	 different	 projec/on	 of	
movies/users	 onto	 2-‐dimensional	 plane	 than	 example	 above)	
	

You	 need	 to	 interpret	 your	 dimensions	 and/or	 clusters	 of	 movies	 in	 your	 projec/on	

(Your	 visualiza/on	 will	 	
probably	 not	 be	 as	 clean	 	
as	 this	 one,	 that	 is	 OK)	

Outline	
•  Step	 1:	 Learn	 U	 &	 V	
–  If	 you	 are	 not	 confident	 in	 implementa/on,	 use	 off-‐
the-‐shelf	 so^ware	 first	

–  Then	 implement	 your	 own	 solver	 if	 you	 feel	 like	 it	

•  Step	 2:	 Project	 U	 &	 V	 down	 to	 2	 dimensions	
–  Basically	 SVD	 in	 Matlab	 or	 Python	

•  Step	 3:	 Plot	 projected	 U	 &	 V	 	
– Give	 your	 own	 interpreta/on	 of	 the	 two	 projected	
dimensions	

Step-‐By-‐Step	 Instruc/ons	 for	 Miniproject	 2	 4	

Step	 1:	 Learning	 U	 &	 V	

•  Three	 op/ons:	
– Stochas/c	 Gradient	 Descent	

•  Each	 step	 of	 SGD	 considers	 single	 index	 (i,j)	 of	 S	

– Alterna/ng	 Minimiza/on	
•  Each	 step	 completely	 solves	 U	 or	 V	 while	 holding	 the	 other	 fixed.	

– Use	 off-‐the-‐shelf	 so^ware	
•  Will	 only	 get	 20/40	 of	 this	 por/on	 of	 the	 ques/on	

Step-‐By-‐Step	 Instruc/ons	 for	 Miniproject	 2	 5	

argmin
U,V

λ
2

U 2
+ V 2()+ Yi, j −ui

Tvj()
2

(i, j)∈S
∑

S	 =	 set	 of	 indices	 (i,j)	 	
of	 observed	 ra/ngs	

Choice	 of	 regulariza/on	 doesn’t	 maTer	 too	 much	
	 You	 don’t	 have	 to	 solve	 this	 exact	 objec/ve.	
(many	 off-‐the-‐shelf	 solve	 something	 related.)	

Off-‐the-‐Shelf	 So^ware	
•  Search	 for	 “Collabora/ve	 Filtering	 Matlab”	 or	 “Collabora/ve	 Filtering	

Python”	 or	 “Collabora/ve	 Filtering	 code”	

•  hTp://bickson.blogspot.com/2012/12/collabora/ve-‐filtering-‐with-‐
graphchi.html	

•  hTp://spark.apache.org/docs/1.0.0/mllib-‐collabora/ve-‐filtering.html	
•  hTp://select.cs.cmu.edu/code/graphlab/pmf.html	
•  hTp://www.quuxlabs.com/blog/2010/09/matrix-‐factoriza/on-‐a-‐simple-‐

tutorial-‐and-‐implementa/on-‐in-‐python/	

Step-‐By-‐Step	 Instruc/ons	 for	 Miniproject	 2	 6	

Step	 1b:	 Learning	 U	 &	 V	 	
(More	 Advanced)	

•  Model	 the	 global	 tendency	 of	 a	 movie’s	 average	 ra/ng	
•  Model	 the	 global	 tendency	 of	 how	 a	 user	 rates	 on	 average	
•  This	 keeps	 U	 &	 V	 more	 focused	 on	 variability	 between	 users	

and	 movies.	
•  Should	 be	 an	 op/on	 that	 you	 can	 turn	 on	 in	 many	 off-‐the-‐

shelf	 implementa/ons	

Step-‐By-‐Step	 Instruc/ons	 for	 Miniproject	 2	 7	

argmin
U,V ,a,b

λ
2

U 2
+ V 2()+ Yi, j − ui

Tvj + ai + bj()()
2

(i, j)∈S
∑

S	 =	 set	 of	 indices	 (i,j)	 	 	
of	 observed	 ra/ngs	

Choice	 of	 regulariza/on	 doesn’t	 maTer	 too	 much	

Vector	 of	 bias/offset	 terms	
One	 for	 each	 user	 &	 movie	

Step	 1c:	 Learning	 U	 &	 V	 	
(Even	 More	 Advanced)	

•  Model	 global	 bias	 μ	 as	 average	 over	 all	 observed	 Y	
•  Treat	 a	 as	 user-‐specific	 devia/on	 from	 global	 bias	
•  Treat	 b	 as	 movie-‐specific	 devia/on	 from	 global	 bias	
•  Should	 be	 an	 op/on	 that	 you	 can	 turn	 on	 in	 many	 off-‐the-‐

shelf	 implementa/ons	

Step-‐By-‐Step	 Instruc/ons	 for	 Miniproject	 2	 8	

argmin
U,V ,a,b

λ
2

U 2
+ V 2

+ a 2
+ b 2()+ Yi, j −µ()− ui

Tvj + ai + bj()()
2

(i, j)∈S
∑

S	 =	 set	 of	 indices	 (i,j)	 	 	
of	 observed	 ra/ngs	

Choice	 of	 regulariza/on	 doesn’t	 maTer	 too	 much	

Vector	 of	 bias/offset	 terms	
One	 for	 each	 user	 &	 movie	

μ	 is	 average	 of	 all	 observa/ons	 in	 Y	

Step	 1:	 Interpreta/on	

•  Common	 K-‐dimensional	 representa/on	 over	 users	 &	 movies	
–  Ra/ng	 defined	 by	 dot	 product	 (aka	 un-‐normalized	 cosine	 similarity):	

•  Does	 our	 representa/on	 make	 sense?	 (i.e.,	 is	 it	 interpretable?)	
–  Need	 to	 visualize!	
–  But	 can	 only	 (easily)	 visualize	 2-‐dim	 points,	 not	 K-‐dim	 points!	

Step-‐By-‐Step	 Instruc/ons	 for	 Miniproject	 2	 9	

Matrix(Factoriza/on(with(Missing(
Values(

•  Goal(#1:(Learn(a(Latent(Factor(Model(U(&(V(
•  Goal(#2:(Visualize(&(Interpret(U(&(V((
Lecture(13:(Latent(Factor(Models(&(Non%

Nega/ve(Matrix(Factoriza/on(2(

Y"
(missing(values)(

N(Movies(

M
(U
se
rs
(
UT"

V"

="

N(

M(

K(

K(

“Latent(Factors”(

Yi, j ≈ ui
Tvj Yi, j ≈ ui

Tvj + ai + bjor	

Step	 2:	 Projec/ng	 U	 &	 V	 to	 2	
Dimensions	

•  Step	 2a:	
–  (Op/onal)	 mean	 center	 V:	 each	 row	 of	 V	 has	 zero	
mean	

– Compute	 SVD	 of	 V:	

– The	 first	 two	 columns	 of	 A	 correspond	 to	 best	 2-‐
dimensional	 projec/on	 of	 movies	 V	

Step-‐By-‐Step	 Instruc/ons	 for	 Miniproject	 2	 10	

V = AΣBT

Orthogonal	 Orthogonal	

Diagonal	

Step	 2:	 Projec/ng	 U	 &	 V	 to	 2	
Dimensions	

•  Step	 2b:	
– Project	 every	 movie	 &	 user	 using	 A1:2	

– Now	 each	 user	 &	 movie	 is	 represented	 using	 a	
two	 dimensional	 point.	 	 Visualize	 and	 interpret!	

Step-‐By-‐Step	 Instruc/ons	 for	 Miniproject	 2	 11	

!V = A1:2
T V ∈ Re2×N

!U = A1:2
T U ∈ Re2×M If	 you	 mean	 centered	 V,	 you	 need	 	

to	 shi^	 U	 by	 same	 amount	 first	

Step	 2:	 Projec/ng	 U	 &	 V	 to	 2	
Dimensions	

•  Step	 2c	 (op/onal):	
– Do	 Steps	 2a	 &	 2b:	

– Then	 rescale	 dimensions:	
•  E.g.,	 each	 row	 of	 Ũ	 has	 unit	 variance.	
•  Otherwise,	 visualiza/on	 might	 look	 stretched:	

Step-‐By-‐Step	 Instruc/ons	 for	 Miniproject	 2	 12	

!V = A1:2
T V ∈ Re2×N

!U = A1:2
T U ∈ Re2×M

COVER FE ATURE

COMPUTER 44

vector qi R f, and each user u is associ-
ated with a vector pu R f. For a given item
i, the elements of qi measure the extent to
which the item possesses those factors,
positive or negative. For a given user u,
the elements of pu measure the extent of
interest the user has in items that are high
on the corresponding factors, again, posi-
tive or negative. The resulting dot product,
qi

T pu, captures the interaction between user
u and item i—the user’s overall interest in
the item’s characteristics. This approximates
user u’s rating of item i, which is denoted by
rui, leading to the estimate

r̂ui

= qi
T pu. (1)

The major challenge is computing the map-
ping of each item and user to factor vectors
qi, pu R f. After the recommender system
completes this mapping, it can easily esti-
mate the rating a user will give to any item
by using Equation 1.

Such a model is closely related to singular value decom-
position (SVD), a well-established technique for identifying
latent semantic factors in information retrieval. Applying
SVD in the collaborative filtering domain requires factoring
the user-item rating matrix. This often raises difficulties
due to the high portion of missing values caused by sparse-
ness in the user-item ratings matrix. Conventional SVD is
undefined when knowledge about the matrix is incom-
plete. Moreover, carelessly addressing only the relatively
few known entries is highly prone to overfitting.

Earlier systems relied on imputation to fill in missing
ratings and make the rating matrix dense.2 However, im-
putation can be very expensive as it significantly increases
the amount of data. In addition, inaccurate imputation
might distort the data considerably. Hence, more recent
works3-6 suggested modeling directly the observed rat-
ings only, while avoiding overfitting through a regularized
model. To learn the factor vectors (pu and qi), the system
minimizes the regularized squared error on the set of
known ratings:

min
* *,q p (,)u i

(rui qi
Tpu)

2 + (|| qi ||
2 + || pu ||

2) (2)

Here, is the set of the (u,i) pairs for which rui is known
(the training set).

The system learns the model by fitting the previously
observed ratings. However, the goal is to generalize those
previous ratings in a way that predicts future, unknown
ratings. Thus, the system should avoid overfitting the
observed data by regularizing the learned parameters,
whose magnitudes are penalized. The constant controls

recommendation. These methods have become popular in
recent years by combining good scalability with predictive
accuracy. In addition, they offer much flexibility for model-
ing various real-life situations.

Recommender systems rely on different types of
input data, which are often placed in a matrix with one
dimension representing users and the other dimension
representing items of interest. The most convenient data
is high-quality explicit feedback, which includes explicit
input by users regarding their interest in products. For
example, Netflix collects star ratings for movies, and TiVo
users indicate their preferences for TV shows by pressing
thumbs-up and thumbs-down buttons. We refer to explicit
user feedback as ratings. Usually, explicit feedback com-
prises a sparse matrix, since any single user is likely to
have rated only a small percentage of possible items.

One strength of matrix factorization is that it allows
incorporation of additional information. When explicit
feedback is not available, recommender systems can infer
user preferences using implicit feedback, which indirectly
reflects opinion by observing user behavior including pur-
chase history, browsing history, search patterns, or even
mouse movements. Implicit feedback usually denotes the
presence or absence of an event, so it is typically repre-
sented by a densely filled matrix.

A BASIC MATRIX FACTORIZATION MODEL
Matrix factorization models map both users and items

to a joint latent factor space of dimensionality f, such that
user-item interactions are modeled as inner products in
that space. Accordingly, each item i is associated with a

Geared
toward
males

Serious

Escapist

The Princess
Diaries

Braveheart

Lethal Weapon

Independence
Day

Ocean’s 11
Sense and
Sensibility

Gus

Dave

Geared
toward

females

Amadeus

The Lion King Dumb and
Dumber

The Color Purple

Figure 2. A simplified illustration of the latent factor approach, which
characterizes both users and movies using two axes—male versus female
and serious versus escapist.

Step	 2:	 Interpreta/on	
•  The	 top	 D	 dimensions	 of	 matrix	 A	 defines	 a	 D-‐dim	 projec/on	

that	 best	 preserves	 the	 learned	 movie	 features	 V:	
	
	
	
	

•  We	 want	 2-‐dimensional	 projec/on	 for	 visualiza/on	 purposes	
–  So	 we	 take	 top	 2	 dimensions	 of	 SVD	

•  Now	 we	 can	 visualize	 movies	 in	 2D	 plot	
–  And	 see	 if	 close-‐by	 movies	 have	 similar	 semen/cs	
–  E.g.,	 horror,	 ac/on,	 etc.	

Step-‐By-‐Step	 Instruc/ons	 for	 Miniproject	 2	 13	

vj − A1:D !vj
2

j
∑!vj = A1:D

T vj
Minimizes	 loss	 of	
feature	 representa/on:	

Projected	 representa/on	 Preserva/on	 Loss	 of	 projec/on	

Step	 2:	 Alterna/ves	 &	 Core	
Requirements	

•  You	 don’t	 have	 to	 do	 it	 the	 above	 way	
–  Although	 the	 above	 method	 should	 always	 give	 you	
something	 reasonable	 to	 visualize	

•  Core	 requirement:	 	
–  Projec/on	 should	 preserves	 as	 much	 of	 the	 original	
features	 as	 possible	

–  A	 dot	 product	 in	 the	 2-‐D	 representa/on	 should	
approximate	 the	 dot	 product	 in	 the	 K-‐D	 representa/on	

Step-‐By-‐Step	 Instruc/ons	 for	 Miniproject	 2	 14	

Step	 3:	 Plot	 U	 &	 V	

•  Plorng	 V	 is	 more	 important:	
–  Pick	 a	 few	 movies	 and	 plot	 their	 projected	 2D	 representa/on	
–  Verify	 that	 distances/angles/axes	 in	 your	 plot	 can	 be	 interpreted	

	

•  Can	 also	 plot	 the	 genres	 provided:	
–  E.g.,	 where	 is	 the	 average	 horror	 movie?	
–  E.g.,	 compute	 the	 average	 v	 for	 all	 movies	 that	 belong	 to	 horror	 genre	

Step-‐By-‐Step	 Instruc/ons	 for	 Miniproject	 2	 15	

COVER FE ATURE

COMPUTER 44

vector qi R f, and each user u is associ-
ated with a vector pu R f. For a given item
i, the elements of qi measure the extent to
which the item possesses those factors,
positive or negative. For a given user u,
the elements of pu measure the extent of
interest the user has in items that are high
on the corresponding factors, again, posi-
tive or negative. The resulting dot product,
qi

T pu, captures the interaction between user
u and item i—the user’s overall interest in
the item’s characteristics. This approximates
user u’s rating of item i, which is denoted by
rui, leading to the estimate

r̂ui

= qi
T pu. (1)

The major challenge is computing the map-
ping of each item and user to factor vectors
qi, pu R f. After the recommender system
completes this mapping, it can easily esti-
mate the rating a user will give to any item
by using Equation 1.

Such a model is closely related to singular value decom-
position (SVD), a well-established technique for identifying
latent semantic factors in information retrieval. Applying
SVD in the collaborative filtering domain requires factoring
the user-item rating matrix. This often raises difficulties
due to the high portion of missing values caused by sparse-
ness in the user-item ratings matrix. Conventional SVD is
undefined when knowledge about the matrix is incom-
plete. Moreover, carelessly addressing only the relatively
few known entries is highly prone to overfitting.

Earlier systems relied on imputation to fill in missing
ratings and make the rating matrix dense.2 However, im-
putation can be very expensive as it significantly increases
the amount of data. In addition, inaccurate imputation
might distort the data considerably. Hence, more recent
works3-6 suggested modeling directly the observed rat-
ings only, while avoiding overfitting through a regularized
model. To learn the factor vectors (pu and qi), the system
minimizes the regularized squared error on the set of
known ratings:

min
* *,q p (,)u i

(rui qi
Tpu)

2 + (|| qi ||
2 + || pu ||

2) (2)

Here, is the set of the (u,i) pairs for which rui is known
(the training set).

The system learns the model by fitting the previously
observed ratings. However, the goal is to generalize those
previous ratings in a way that predicts future, unknown
ratings. Thus, the system should avoid overfitting the
observed data by regularizing the learned parameters,
whose magnitudes are penalized. The constant controls

recommendation. These methods have become popular in
recent years by combining good scalability with predictive
accuracy. In addition, they offer much flexibility for model-
ing various real-life situations.

Recommender systems rely on different types of
input data, which are often placed in a matrix with one
dimension representing users and the other dimension
representing items of interest. The most convenient data
is high-quality explicit feedback, which includes explicit
input by users regarding their interest in products. For
example, Netflix collects star ratings for movies, and TiVo
users indicate their preferences for TV shows by pressing
thumbs-up and thumbs-down buttons. We refer to explicit
user feedback as ratings. Usually, explicit feedback com-
prises a sparse matrix, since any single user is likely to
have rated only a small percentage of possible items.

One strength of matrix factorization is that it allows
incorporation of additional information. When explicit
feedback is not available, recommender systems can infer
user preferences using implicit feedback, which indirectly
reflects opinion by observing user behavior including pur-
chase history, browsing history, search patterns, or even
mouse movements. Implicit feedback usually denotes the
presence or absence of an event, so it is typically repre-
sented by a densely filled matrix.

A BASIC MATRIX FACTORIZATION MODEL
Matrix factorization models map both users and items

to a joint latent factor space of dimensionality f, such that
user-item interactions are modeled as inner products in
that space. Accordingly, each item i is associated with a

Geared
toward
males

Serious

Escapist

The Princess
Diaries

Braveheart

Lethal Weapon

Independence
Day

Ocean’s 11
Sense and
Sensibility

Gus

Dave

Geared
toward

females

Amadeus

The Lion King Dumb and
Dumber

The Color Purple

Figure 2. A simplified illustration of the latent factor approach, which
characterizes both users and movies using two axes—male versus female
and serious versus escapist.

Example:	
(Your	 visualiza/on	 will	 	
probably	 not	 be	 as	 clean	 	
as	 this	 one,	 that	 is	 OK)	

My	 Own	 Example	

Step-‐By-‐Step	 Instruc/ons	 for	 Miniproject	 2	 16	

Trained	 using	 	
Step	 1c	 (lambda=10)	
Stochas/c	 GD	
	
SVD	 of	 Movie	 Matrix	
Project	 top	 2	 bases	
	
Picked	 a	 few	 popular	
movies,	 and	 ploTed	 them.	
	
Then	 found	 a	 few	 extreme	
points	 (e.g.,	 Clockwork	
Orange).	 	
	
Removed	 most	 children’s	
movies	 (didn’t	 seem	 to	
project	 well	 using	 1st	 two	
SVD	 bases	 –	 maybe	 most	
ra/ngs	 are	 by	 adults).	
	
	
	 	

Star	 Wars	 Movies	
Close	 together	

Mostly	 Sci-‐Fi	 &	 	
Horror	 Movies	

Ac/on	 Movies	

More	 Historical	 Movies	
(Jurassic	 Park	 excepted)	

Free	 Willy	 Movies	 Close	 Together	

