Machine Learning & Data Mining Caltech CS/CNS/EE 155
Homework 1 January 12th, 2015

Overview

e This homework is due on Moodle at 5:00 pm on January 20, 2015.

e This homework explores the qualitative effects of different types of regularization and demonstrates
how Lasso (¢;) regularization works.

e Students should be able to complete each problem in 2-3 hours.

1 Effects of Regularization [Shenghan Yao, 30 points]

Basic questions:

Question A [4 points]: In order to prevent over-fitting in the least-squares linear regression problem,
we add a regularization penalty term. Can adding the penalty term decrease the training (in-sample) error?
Also can it always decrease the out-of-sample errors? Please justify your answers.

Question B [2 points]: ¢; regularization is sometimes favored over ¢, regularization due to its ability to
generate a sparse w (more zero weights). In fact, £, regularization (using ¢, norm instead of ¢; and ¢, norm)
can generate a sparser w, which seems favorable in high-dimensional problems. However, it is rarely used.
Could you please explain why?

Implementation of L-2 regularization:

We are going to experiment with linear regression for the Red Wine Quality Rating data set.! Download
the data for training and testing. There are three training data sets wine_trainingl.txt, wine_training2.txt,
and wine_training3.txt (100, 50 and 25 data points respectively) and one testing data set wine_testing.txt
(100 data points).

The data in each data set represents how 11 different factors (first 11 columns) affect the wine quality
(the 12th column). Each column of data represents a different factor, and is described in brief in the file
wine_name.txt. When evaluating training error (£i,) and validation error (E,yt) use the square error:

1 N 2
FE = N;(men—yn)

Implement the ¢, regularized least-squares linear regression that minimizes:
N
1 T 2 A
FE = NT;:I (w Ty — yn) + Nw w

Train the model with 10 different choices of \:
A = [0.0001, 0.0005, 0.0025, 0.0125,0.0625, 0.3125, 1.5625, 7.815, 39.0625, 195.3125]

(Brief instructions for loading data into Matlab are in loading_data.txt).
Question C [9 points]: Do the following for each of the 3 training data sets and attach your plots in the
homework submission (Hint: use semi-log plot):

(1) Plot the training error (Ei,) versus different As.

1Wine quality Data Set: https://archive.ics.uci.edu/ml/datasets/Wine+Quality


https://archive.ics.uci.edu/ml/datasets/Wine+Quality
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(2) Plot the validation error (E,y;) versus different As.

(3) Plot the norm of w versus different As.

Question D [3 points]: Considering that the data in wine_training3.txt is a subset of the data in wine_training1.txt,
compare errors (training and validation) resulting from training with wine_training1.txt (100 data points)
versus wine_training3.txt (25 data points). Please briefly explain the difference.

Question E [4 points]: Briefly explain the qualitative behavior (i.e., over-fitting and under-fitting) of the
training and validation errors with different As while training with data in wine_trainl.txt.

Question F [4 points]: Briefly explain the qualitative behavior of norm of w with different As while
training with the data in wine_trainl.txt.

Question G [4 points]: If the model were trained with wine_train3.txt, which A would you choose to
train your final model? Why?

2 Lasso (/1) vs. Ridge (/5) Regularization [Bryan He, 30 points]

Many datasets we now encounter in regression problems are very high dimensional. One way to handle
this is to encourage the weights to be sparse, and only allow a small number of features to have non-zero
weight. The direct way of encouraging a sparse weight vector is use £y regularization and penalize the /
norm, which is the number of non-zero elements in the vector. However, the ¢, norm is far from smooth,
and as a result, it is hard to optimize.

Two related methods are Lasso (¢;) regression and Ridge (¢2) regression. Although both result in shrink-
age estimators, only Lasso regression results in sparse weight vectors. This problem compares the behavior
of the two methods.

Question A: Let D be a set of data points, and let w be a D-dimensional weight vector. Both Lasso and
Ridge regression can be formulated as a maximum a posteriori (MAP) estimate of p(w|D) with different
priors p(w|\), where X is a parameter controlling the shape of the prior.

(1) [3 points] In the case of Lasso regression, the prior is that the weights are independent and
identically distributed (i.i.d.) zero-mean Laplacian random variables

T
>/

p(w|\) = HLap w;|0,1/7) :H§ e Awil,

7j=1 j=1
Show that under this prior,

w = argmax p(w|D)
w

is equivalent to

w = argmin (— log p(D|w) + A||w]|1) .
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(2) [3 points] In the case of Ridge regression, the prior is that the weights arei.i.d. zero-mean Normal
random variables

D D 2
p(w|A) = HN(wj|o, 1/2)) = H \/;e—ij.

j=1 =1
Show that under this prior,

w = argmax p(w|D)
w

is equivalent to

w = argmin (— log p(D|w) + Allw]|3) .

(3) [3 points] Suppose that y ~ N (Xw,oI) and D contains X and y. Show that

w = argmax p(D|w)
w

is equivalent to

W = argmin ||y — Xwl||3
wW

This means that least-squares linear regression is a maximum likelihood estimator when there is
white Gaussian noise.

Question B: This section compares the behavior of Lasso and Ridge regression on a synthetic dataset.
The dataset consists 1000 independent samples of a 9-dimensional feature vector x = [z1,..., 29| drawn
from a uniform distribution on the interval [—1, 1], along with the response

yZ—4.’L‘1—3%2—25E3—1:L‘4+0£C5+1x6+2$7+3x8+4$9+nZWTX+TL7

where n is a standard Normal random variable. The file question2data.txt consists of 1000 lines of 10 tab-
delimited values. The first 9 columns represent z1,...,z9, and the last column represents y. Each row
consists of one sample. Using MATLAB, you may load the file by running

>> data = dlmread(’question2data.txt’, "\t’);
>> X = data(:, 1:9);
>> Y = data(:, 10);

You may also generate the dataset using the process specified above. This problem explores the behavior
of the estimated weights as the strength of the regularization (\) varies.

(1) [4 points] Estimate the weights w using linear regression with Lasso regularization for various
choices of A. For each of the weights, plot the weight as a function of A (start with A = 0 and
increase A until all weights are small). Using a linear scale for A will allow the plot to be easily
interpreted.

(2) [4 points] Estimate the weights w using linear regression with Ridge regularization for various
choices of A. For each of the weights, plot the weight as a function of A (start with A = 0 and
increase A until all weights are small).
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(3) [3 points] As regularization parameter varies, how many of the estimated weights are exactly
zero with Lasso regression? How many of the estimated weights are exactly zero with Ridge
regression?

Question C: For general choices of p(D|w), an analytic solution for regularized linear regression may
not exist. However, when p(D|w) has a standard normal distribution (corresponding to linear regression),
an analytic solution exists for 1-dimensional Lasso regression and for Ridge regression in all dimensions.

(1) [4 points] Solve for argmin||y — w’x||? + A||w||; in the case of a 1-dimensional feature space. This
w
is linear regression with Lasso regression.

(2) [1 point] Suppose that when A = 0, w1 # 0. Does there exist a value for A such that w; = 0? What
is the smallest such value?

(3) [4 points] Solve for argmin||y — wTx||?> + A||w||3 for an arbitrary number of dimensions. This is

w
linear regression with Ridge regression.

(4) [1 point] Suppose that when A = 0, w; # 0. Does there exist a value for A such that w; = 0? What
is the smallest such value?
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