
Machine Learning & Data Mining Caltech CS/CNS/EE 155
Homework 1 January 12th, 2015

Overview

• This homework is due on Moodle at 5:00 pm on January 20, 2015.
• This homework explores the qualitative effects of different types of regularization and demonstrates

how Lasso (`1) regularization works.
• Students should be able to complete each problem in 2-3 hours.

1 Effects of Regularization [Shenghan Yao, 30 points]

Basic questions:

Question A [4 points]: In order to prevent over-fitting in the least-squares linear regression problem,
we add a regularization penalty term. Can adding the penalty term decrease the training (in-sample) error?
Also can it always decrease the out-of-sample errors? Please justify your answers.

Question B [2 points]: `1 regularization is sometimes favored over `2 regularization due to its ability to
generate a sparse w (more zero weights). In fact, `0 regularization (using `0 norm instead of `1 and `2 norm)
can generate a sparser w, which seems favorable in high-dimensional problems. However, it is rarely used.
Could you please explain why?

Implementation of L-2 regularization:

We are going to experiment with linear regression for the Red Wine Quality Rating data set.1 Download
the data for training and testing. There are three training data sets wine training1.txt, wine training2.txt,
and wine training3.txt (100, 50 and 25 data points respectively) and one testing data set wine testing.txt
(100 data points).

The data in each data set represents how 11 different factors (first 11 columns) affect the wine quality
(the 12th column). Each column of data represents a different factor, and is described in brief in the file
wine name.txt. When evaluating training error (Ein) and validation error (Eout) use the square error:
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Implement the `2 regularized least-squares linear regression that minimizes:
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Train the model with 10 different choices of λ:

λ = [0.0001, 0.0005, 0.0025, 0.0125, 0.0625, 0.3125, 1.5625, 7.815, 39.0625, 195.3125]

(Brief instructions for loading data into Matlab are in loading data.txt).
Question C [9 points]: Do the following for each of the 3 training data sets and attach your plots in the

homework submission (Hint: use semi-log plot):

(1) Plot the training error (Ein) versus different λs.

1Wine quality Data Set: https://archive.ics.uci.edu/ml/datasets/Wine+Quality
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(2) Plot the validation error (Eout) versus different λs.

(3) Plot the norm of w versus different λs.

Question D [3 points]: Considering that the data in wine training3.txt is a subset of the data in wine training1.txt,
compare errors (training and validation) resulting from training with wine training1.txt (100 data points)
versus wine training3.txt (25 data points). Please briefly explain the difference.

Question E [4 points]: Briefly explain the qualitative behavior (i.e., over-fitting and under-fitting) of the
training and validation errors with different λs while training with data in wine train1.txt.

Question F [4 points]: Briefly explain the qualitative behavior of norm of w with different λs while
training with the data in wine train1.txt.

Question G [4 points]: If the model were trained with wine train3.txt, which λ would you choose to
train your final model? Why?

2 Lasso (`1) vs. Ridge (`2) Regularization [Bryan He, 30 points]

Many datasets we now encounter in regression problems are very high dimensional. One way to handle
this is to encourage the weights to be sparse, and only allow a small number of features to have non-zero
weight. The direct way of encouraging a sparse weight vector is use `0 regularization and penalize the `0
norm, which is the number of non-zero elements in the vector. However, the `0 norm is far from smooth,
and as a result, it is hard to optimize.

Two related methods are Lasso (`1) regression and Ridge (`2) regression. Although both result in shrink-
age estimators, only Lasso regression results in sparse weight vectors. This problem compares the behavior
of the two methods.

Question A: Let D be a set of data points, and let w be a D-dimensional weight vector. Both Lasso and
Ridge regression can be formulated as a maximum a posteriori (MAP) estimate of p(w|D) with different
priors p(w|λ), where λ is a parameter controlling the shape of the prior.

(1) [3 points] In the case of Lasso regression, the prior is that the weights are independent and
identically distributed (i.i.d.) zero-mean Laplacian random variables

p(w|λ) =
D∏
j=1

Lap(wj |0, 1/λ) =
D∏
j=1

λ

2
e−λ|wj |.

Show that under this prior,

ŵ = argmax
w

p(w|D)

is equivalent to

ŵ = argmin
w

(− log p(D|w) + λ‖w‖1) .
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(2) [3 points] In the case of Ridge regression, the prior is that the weights are i.i.d. zero-mean Normal
random variables

p(w|λ) =
D∏
j=1

N (wj |0, 1/2λ) =
D∏
j=1

√
λ

π
e−λw

2
j .

Show that under this prior,

ŵ = argmax
w

p(w|D)

is equivalent to

ŵ = argmin
w

(
− log p(D|w) + λ‖w‖22

)
.

(3) [3 points] Suppose that y ∼ N (Xw, σ2I) and D contains X and y. Show that

ŵ = argmax
w

p(D|w)

is equivalent to

ŵ = argmin
w

‖y −Xw‖22

This means that least-squares linear regression is a maximum likelihood estimator when there is
white Gaussian noise.

Question B: This section compares the behavior of Lasso and Ridge regression on a synthetic dataset.
The dataset consists 1000 independent samples of a 9-dimensional feature vector x = [x1, . . . , x9] drawn
from a uniform distribution on the interval [−1, 1], along with the response

y = −4x1 − 3x2 − 2x3 − 1x4 + 0x5 + 1x6 + 2x7 + 3x8 + 4x9 + n = wTx+ n,

where n is a standard Normal random variable. The file question2data.txt consists of 1000 lines of 10 tab-
delimited values. The first 9 columns represent x1, . . . , x9, and the last column represents y. Each row
consists of one sample. Using MATLAB, you may load the file by running

>> data = dlmread(’question2data.txt’, ’\t’);
>> X = data(:, 1:9);
>> Y = data(:, 10);

You may also generate the dataset using the process specified above. This problem explores the behavior
of the estimated weights as the strength of the regularization (λ) varies.

(1) [4 points] Estimate the weights w using linear regression with Lasso regularization for various
choices of λ. For each of the weights, plot the weight as a function of λ (start with λ = 0 and
increase λ until all weights are small). Using a linear scale for λ will allow the plot to be easily
interpreted.

(2) [4 points] Estimate the weights w using linear regression with Ridge regularization for various
choices of λ. For each of the weights, plot the weight as a function of λ (start with λ = 0 and
increase λ until all weights are small).
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(3) [3 points] As regularization parameter varies, how many of the estimated weights are exactly
zero with Lasso regression? How many of the estimated weights are exactly zero with Ridge
regression?

Question C: For general choices of p(D|w), an analytic solution for regularized linear regression may
not exist. However, when p(D|w) has a standard normal distribution (corresponding to linear regression),
an analytic solution exists for 1-dimensional Lasso regression and for Ridge regression in all dimensions.

(1) [4 points] Solve for argmin
w
‖y−wTx‖2+λ‖w‖1 in the case of a 1-dimensional feature space. This

is linear regression with Lasso regression.

(2) [1 point] Suppose that when λ = 0, w1 6= 0. Does there exist a value for λ such that w1 = 0? What
is the smallest such value?

(3) [4 points] Solve for argmin
w
‖y −wTx‖2 + λ‖w‖22 for an arbitrary number of dimensions. This is

linear regression with Ridge regression.

(4) [1 point] Suppose that when λ = 0, wi 6= 0. Does there exist a value for λ such that wi = 0? What
is the smallest such value?
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